A revamped rat reference genome improves the discovery of genetic diversity in laboratory rats
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 GM140287
NIGMS NIH HHS - United States
P01 HL149620
NHLBI NIH HHS - United States
U01 DA043098
NIDA NIH HHS - United States
R01 HL064541
NHLBI NIH HHS - United States
R24 AA013162
NIAAA NIH HHS - United States
U24 HG010859
NHGRI NIH HHS - United States
R01 HG011252
NHGRI NIH HHS - United States
P30 DA044223
NIDA NIH HHS - United States
R24 OD024617
NIH HHS - United States
R01 GM134366
NIGMS NIH HHS - United States
P50 DA037844
NIDA NIH HHS - United States
Wellcome Trust - United Kingdom
U01 DA051972
NIDA NIH HHS - United States
U01 DA050239
NIDA NIH HHS - United States
R01 DA048017
NIDA NIH HHS - United States
U01 DA047638
NIDA NIH HHS - United States
U01 DA051234
NIDA NIH HHS - United States
PubMed
38537634
PubMed Central
PMC11019364
DOI
10.1016/j.xgen.2024.100527
PII: S2666-979X(24)00069-7
Knihovny.cz E-zdroje
- Klíčová slova
- Rnor_6.0, genetic map, heterogeneous stock, hybrid rat diversity panel, inbred strains, mRatBN7.2, phylogenetic tree, rat, recombinant inbred, reference genome,
- MeSH
- anotace sekvence MeSH
- genetická variace genetika MeSH
- genom * genetika MeSH
- genomika * MeSH
- krysa rodu Rattus MeSH
- sekvenování celého genomu MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The seventh iteration of the reference genome assembly for Rattus norvegicus-mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared with its predecessor. Gene annotations are now more complete, improving the mapping precision of genomic, transcriptomic, and proteomics datasets. We jointly analyzed 163 short-read whole-genome sequencing datasets representing 120 laboratory rat strains and substrains using mRatBN7.2. We defined ∼20.0 million sequence variations, of which 18,700 are predicted to potentially impact the function of 6,677 genes. We also generated a new rat genetic map from 1,893 heterogeneous stock rats and annotated transcription start sites and alternative polyadenylation sites. The mRatBN7.2 assembly, along with the extensive analysis of genomic variations among rat strains, enhances our understanding of the rat genome, providing researchers with an expanded resource for studies involving rats.
Department of Animal Sciences Washington State University Pullman WA USA
Department of Human Genetics University of Michigan Ann Arbor MI USA
Department of Medicine University of California San Diego San Diego CA USA
Department of Physiology Medical College of Wisconsin Milwaukee WI USA
Department of Psychiatry University of California San Diego San Diego CA USA
Genome Structure and Ageing University of Groningen UMC Groningen the Netherlands
Institute of Biotechnology University of Helsinki Helsinki Finland
Institute of Physiology Czech Academy of Sciences Prague Czechia
Michigan Neuroscience Institute University of Michigan Ann Arbor MI USA
Zobrazit více v PubMed
Parker C.C., Chen H., Flagel S.B., Geurts A.M., Richards J.B., Robinson T.E., Solberg Woods L.C., Palmer A.A. Rats are the smart choice: Rationale for a renewed focus on rats in behavioral genetics. Neuropharmacology. 2014;76:250–258. PubMed PMC
Richter C.P. The effects of domestication and selection on the behavior of the Norway rat. J. Natl. Cancer Inst. 1954;15:727–738. PubMed
Hulme-Beaman A., Orton D., Cucchi T. The origins of the domesticate brown rat (Rattus norvegicus) and its pathways to domestication. Anim. Front. 2021;11:78–86. PubMed PMC
Modlinska K., Pisula W. The Norway rat, from an obnoxious pest to a laboratory pet. Elife. 2020;9 doi: 10.7554/eLife.50651. PubMed DOI PMC
Smith J.R., Hayman G.T., Wang S.-J., Laulederkind S.J.F., Hoffman M.J., Kaldunski M.L., Tutaj M., Thota J., Nalabolu H.S., Ellanki S.L.R., et al. The Year of the Rat: The Rat Genome Database at 20: a multi-species knowledgebase and analysis platform. Nucleic Acids Res. 2020;48:D731–D742. PubMed PMC
RRRC . 2021. Rat Resource & Research Center - Rat Models.https://www.rrrc.us/
Pravenec M., Klír P., Kren V., Zicha J., Kunes J. An analysis of spontaneous hypertension in spontaneously hypertensive rats by means of new recombinant inbred strains. J. Hypertens. 1989;7:217–221. PubMed
Voigt B., Kuramoto T., Mashimo T., Tsurumi T., Sasaki Y., Hokao R., Serikawa T. Evaluation of LEXF/FXLE rat recombinant inbred strains for genetic dissection of complex traits. Physiol. Genomics. 2008;32:335–342. PubMed
Tabakoff B., Smith H., Vanderlinden L.A., Hoffman P.L., Saba L.M. In: Rat Genomics. Hayman G., Smith J., Dwinell M., Shimoyama M., editors. Humana; 2019. Networking in Biology: The Hybrid Rat Diversity Panel; pp. 213–231. PubMed
Hansen C., Spuhler K. Development of the National Institutes of Health genetically heterogeneous rat stock. Alcohol Clin. Exp. Res. 1984;8:477–479. PubMed
Rat Genome Sequencing and Mapping Consortium Combined sequence-based and genetic mapping analysis of complex traits in outbred rats. Nat. Genet. 2013;45:767–775. PubMed PMC
Woods L.C.S., Mott R. In: Systems Genetics. Schughart K., Williams R., editors. Humana Press; 2017. Heterogeneous Stock Populations for Analysis of Complex Traits; pp. 31–44. PubMed PMC
Solberg Woods L.C., Palmer A.A. In: Rat Genomics. Hayman G., Smith J., Dwinell M., Shimoyama M., editors. Humana; 2019. Using Heterogeneous Stocks for Fine-Mapping Genetically Complex Traits; pp. 233–247. PubMed PMC
Chitre A.S., Polesskaya O., Holl K., Gao J., Cheng R., Bimschleger H., Garcia Martinez A., George T., Gileta A.F., Han W., et al. Genome-Wide Association Study in 3,173 Outbred Rats Identifies Multiple Loci for Body Weight, Adiposity, and Fasting Glucose. Obesity. 2020;28:1964–1973. PubMed PMC
Gunturkun M.H., Wang T., Chitre A.S., Garcia Martinez A., Holl K., St Pierre C., Bimschleger H., Gao J., Cheng R., Polesskaya O., et al. Genome-Wide Association Study on Three Behaviors Tested in an Open Field in Heterogeneous Stock Rats Identifies Multiple Loci Implicated in Psychiatric Disorders. Front. Psychiatry. 2022;13 PubMed PMC
Kaldunski M.L., Smith J.R., Hayman G.T., Brodie K., De Pons J.L., Demos W.M., Gibson A.C., Hill M.L., Hoffman M.J., Lamers L., et al. The Rat Genome Database (RGD) facilitates genomic and phenotypic data integration across multiple species for biomedical research. Mamm. Genome. 2022;33:66–80. PubMed PMC
Gibbs R.A., Weinstock G.M., Metzker M.L., Muzny D.M., Sodergren E.J., Scherer S., Scott G., Steffen D., Worley K.C., Burch P.E., et al. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 2004;428:493–521. PubMed
Worley K.C., Weinstock G.M., Gibbs R.A. Rats in the genomic era. Physiol. Genomics. 2008;32:273–282. PubMed
Twigger S.N., Pruitt K.D., Fernández-Suárez X.M., Karolchik D., Worley K.C., Maglott D.R., Brown G., Weinstock G., Gibbs R.A., Kent J., et al. What everybody should know about the rat genome and its online resources. Nat. Genet. 2008;40:523–527. PubMed PMC
van Heesch S., Kloosterman W.P., Lansu N., Ruzius F.-P., Levandowsky E., Lee C.C., Zhou S., Goldstein S., Schwartz D.C., Harkins T.T., et al. Improving mammalian genome scaffolding using large insert mate-pair next-generation sequencing. BMC Genom. 2013;14:257. PubMed PMC
Tutaj M., Smith J.R., Bolton E.R. In: Rat Genomics. Hayman G., Smith J., Dwinell M., Shimoyama M., editors. Humana; 2019. Rat Genome Assemblies, Annotation, and Variant Repository; pp. 43–70. PubMed
Ramdas S., Ozel A.B., Treutelaar M.K., Holl K., Mandel M., Woods L.C.S., Li J.Z. Extended regions of suspected mis-assembly in the rat reference genome. Sci. Data. 2019;6:39. PubMed PMC
Howe K., Dwinell M., Shimoyama M., Corton C., Betteridge E., Dove A., Quail M.A., Smith M., Saba L., Williams R.W., et al. The genome sequence of the Norway rat, Rattus norvegicus Berkenhout 1769. Wellcome Open Res. 2021;6:118. PubMed PMC
Howe K., Chow W., Collins J., Pelan S., Pointon D.-L., Sims Y., Torrance J., Tracey A., Wood J. Significantly improving the quality of genome assemblies through curation. GigaScience. 2021;10 doi: 10.1093/gigascience/giaa153. PubMed DOI PMC
Mikheenko A., Prjibelski A., Saveliev V., Antipov D., Gurevich A. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics. 2018;34:i142–i150. PubMed PMC
Poplin R., Chang P.-C., Alexander D., Schwartz S., Colthurst T., Ku A., Newburger D., Dijamco J., Nguyen N., Afshar P.T., et al. A universal SNP and small-indel variant caller using deep neural networks. Nat. Biotechnol. 2018;36:983–987. doi: 10.1038/nbt.4235. PubMed DOI
Yun T., Li H., Chang P.-C., Lin M.F., Carroll A., McLean C.Y. Accurate, scalable cohort variant calls using DeepVariant and GLnexus. Bioinformatics. 2021;36:5582–5589. doi: 10.1093/bioinformatics/btaa1081. PubMed DOI PMC
Manni M., Berkeley M.R., Seppey M., Simão F.A., Zdobnov E.M. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol. Biol. Evol. 2021;38:4647–4654. PubMed PMC
Zhou X., Li R., Michal J.J., Wu X.-L., Liu Z., Zhao H., Xia Y., Du W., Wildung M.R., Pouchnik D.J., et al. Accurate Profiling of Gene Expression and Alternative Polyadenylation with Whole Transcriptome Termini Site Sequencing (WTTS-Seq) Genetics. 2016;203:683–697. PubMed PMC
Munro D., Wang T., Chitre A.S., Polesskaya O., Ehsan N., Gao J., Gusev A., Woods L.C.S., Saba L.M., Chen H., et al. The regulatory landscape of multiple brain regions in outbred heterogeneous stock rats. Nucleic Acids Res. 2022;50:10882–10895. doi: 10.1093/nar/gkac912. PubMed DOI PMC
Martín-Gálvez D., Dunoyer de Segonzac D., Ma M.C.J., Kwitek A.E., Thybert D., Flicek P. Genome variation and conserved regulation identify genomic regions responsible for strain specific phenotypes in rat. BMC Genom. 2017;18:986. PubMed PMC
Ma M.C.J., Atanur S.S., Aitman T.J., Kwitek A.E. Genomic structure of nucleotide diversity among Lyon rat models of metabolic syndrome. BMC Genom. 2014;15:197. PubMed PMC
Buniello A., MacArthur J.A.L., Cerezo M., Harris L.W., Hayhurst J., Malangone C., McMahon A., Morales J., Mountjoy E., Sollis E., et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019;47:D1005–D1012. PubMed PMC
Koren S., Phillippy A.M., Simpson J.T., Loman N.J., Loose M. Reply to “Errors in long-read assemblies can critically affect protein prediction.”. Nat. Biotechnol. 2019;37:127–128. PubMed
Watson M., Warr A. Errors in long-read assemblies can critically affect protein prediction. Nat. Biotechnol. 2019;37:124–126. PubMed
Sacristán-Horcajada E., González-de la Fuente S., Peiró-Pastor R., Carrasco-Ramiro F., Amils R., Requena J.M., Berenguer J., Aguado B. ARAMIS: From systematic errors of NGS long reads to accurate assemblies. Brief. Bioinform. 2021;22 doi: 10.1093/bib/bbab170. PubMed DOI PMC
Rhie A., McCarthy S.A., Fedrigo O., Damas J., Formenti G., Koren S., Uliano-Silva M., Chow W., Fungtammasan A., Kim J., et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature. 2021;592:737–746. PubMed PMC
Chin C.-S., Peluso P., Sedlazeck F.J., Nattestad M., Concepcion G.T., Clum A., Dunn C., O’Malley R., Figueroa-Balderas R., Morales-Cruz A., et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods. 2016;13:1050–1054. PubMed PMC
de Jong T.V., Chen H., Brashear W.A., Kochan K.J., Hillhouse A.E., Zhu Y., Dhande I.S., Hudson E.A., Sumlut M.H., Smith M.L., et al. mRatBN7.2: familiar and unfamiliar features of a new rat genome reference assembly. Physiol. Genomics. 2022;54:251–260. PubMed PMC
Nurk S., Koren S., Rhie A., Rautiainen M., Bzikadze A.V., Mikheenko A., Vollger M.R., Altemose N., Uralsky L., Gershman A., et al. The complete sequence of a human genome. Science. 2022;376:44–53. PubMed PMC
Atanur S.S., Diaz A.G., Maratou K., Sarkis A., Rotival M., Game L., Tschannen M.R., Kaisaki P.J., Otto G.W., Ma M.C.J., et al. Genome sequencing reveals loci under artificial selection that underlie disease phenotypes in the laboratory rat. Cell. 2013;154:691–703. PubMed PMC
Hermsen R., de Ligt J., Spee W., Blokzijl F., Schäfer S., Adami E., Boymans S., Flink S., van Boxtel R., van der Weide R.H., et al. Genomic landscape of rat strain and substrain variation. BMC Genom. 2015;16:357. PubMed PMC
Supernat A., Vidarsson O.V., Steen V.M., Stokowy T. Comparison of three variant callers for human whole genome sequencing. Sci. Rep. 2018;8 PubMed PMC
Ashbrook D.G., Arends D., Prins P., Mulligan M.K., Roy S., Williams E.G., Lutz C.M., Valenzuela A., Bohl C.J., Ingels J.F., et al. A platform for experimental precision medicine: The extended BXD mouse family. Cell Syst. 2021;12:235–247.e9. PubMed PMC
Ashbrook D.G., Sasani T., Maksimov M., Gunturkun M.H., Ma N., Villani F., Ren Y., Rothschild D., Chen H., Lu L., et al. Private and sub-family specific mutations of founder haplotypes in the BXD family reveal phenotypic consequences relevant to health and disease. bioRxiv. 2022 doi: 10.1101/2022.04.21.489063. Preprint at. DOI
Pattee J., Vanderlinden L.A., Mahaffey S., Hoffman P., Tabakoff B., Saba L.M. Evaluation and characterization of expression quantitative trait analysis methods in the Hybrid Rat Diversity Panel. Front. Genet. 2022;13 PubMed PMC
Senko A.N., Overall R.W., Silhavy J., Mlejnek P., Malínská H., Hüttl M., Marková I., Fabel K.S., Lu L., Stuchlik A., et al. Systems genetics in the rat HXB/BXH family identifies Tti2 as a pleiotropic quantitative trait gene for adult hippocampal neurogenesis and serum glucose. PLoS Genet. 2022;18 PubMed PMC
Bryant C.D., Smith D.J., Kantak K.M., Nowak T.S., Jr., Williams R.W., Damaj M.I., Redei E.E., Chen H., Mulligan M.K. Facilitating Complex Trait Analysis via Reduced Complexity Crosses. Trends Genet. 2020;36:549–562. PubMed PMC
Witte F., Ruiz-Orera J., Mattioli C.C., Blachut S., Adami E., Schulz J.F., Schneider-Lunitz V., Hummel O., Patone G., Mücke M.B., et al. A trans locus causes a ribosomopathy in hypertrophic hearts that affects mRNA translation in a protein length-dependent fashion. Genome Biol. 2021;22:191. PubMed PMC
Pravenec M., Kožich V., Krijt J., Sokolová J., Zídek V., Landa V., Mlejnek P., Šilhavý J., Šimáková M., Škop V., et al. Genetic Variation in Renal Expression of Folate Receptor 1 (Folr1) Gene Predisposes Spontaneously Hypertensive Rats to Metabolic Syndrome. Hypertension. 2016;67:335–341. PubMed
Pravenec M., Churchill P.C., Churchill M.C., Viklicky O., Kazdova L., Aitman T.J., Petretto E., Hubner N., Wallace C.A., Zimdahl H., et al. Identification of renal Cd36 as a determinant of blood pressure and risk for hypertension. Nat. Genet. 2008;40:952–954. PubMed
Heinig M., Petretto E., Wallace C., Bottolo L., Rotival M., Lu H., Li Y., Sarwar R., Langley S.R., Bauerfeind A., et al. A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk. Nature. 2010;467:460–464. PubMed PMC
Lu L.M., Shisa H., Tanuma J., Hiai H. Propylnitrosourea-induced T-lymphomas in LEXF RI strains of rats: genetic analysis. Br. J. Cancer. 1999;80:855–861. PubMed PMC
Hubner N., Wallace C.A., Zimdahl H., Petretto E., Schulz H., Maciver F., Mueller M., Hummel O., Monti J., Zidek V., et al. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat. Genet. 2005;37:243–253. PubMed
Holl K., He H., Wedemeyer M., Clopton L., Wert S., Meckes J.K., Cheng R., Kastner A., Palmer A.A., Redei E.E., Solberg Woods L.C. Heterogeneous stock rats: a model to study the genetics of despair-like behavior in adolescence. Genes Brain Behav. 2018;17:139–148. PubMed PMC
Keele G.R., Prokop J.W., He H., Holl K., Littrell J., Deal A., Francic S., Cui L., Gatti D.M., Broman K.W., et al. Genetic Fine-Mapping and Identification of Candidate Genes and Variants for Adiposity Traits in Outbred Rats. Obesity. 2018;26:213–222. PubMed PMC
Solberg Woods L.C., Holl K.L., Oreper D., Xie Y., Tsaih S.-W., Valdar W. Fine-mapping diabetes-related traits, including insulin resistance, in heterogeneous stock rats. Physiol. Genomics. 2012;44:1013–1026. PubMed PMC
Lemen P.M., Hatoum A.S., Dickson P.E., Mittleman G., Agrawal A., Reiner B.C., Berrettini W., Ashbrook D., Gunturkun H., Mulligan M.K., et al. Opiate responses are controlled by interactions of Oprm1 and Fgf12 loci in the murine BXD family: Correspondence to human GWAS finding. bioRxiv. 2022 doi: 10.1101/2022.03.11.483993. Preprint at. DOI
Lusis A.J., Seldin M.M., Allayee H., Bennett B.J., Civelek M., Davis R.C., Eskin E., Farber C.R., Hui S., Mehrabian M., et al. The Hybrid Mouse Diversity Panel: a resource for systems genetics analyses of metabolic and cardiovascular traits. J. Lipid Res. 2016;57:925–942. PubMed PMC
Ulusoy S., Ozkan G., Alkanat M., Mungan S., Yuluğ E., Orem A. Perspective on rhabdomyolysis-induced acute kidney injury and new treatment options. Am. J. Nephrol. 2013;38:368–378. PubMed
Kang K., Nan C., Fei D., Meng X., Liu W., Zhang W., Jiang L., Zhao M., Pan S., Zhao M. Heme oxygenase 1 modulates thrombomodulin and endothelial protein C receptor levels to attenuate septic kidney injury. Shock. 2013;40:136–143. PubMed
Yuan G., Deng J., Wang T., Zhao C., Xu X., Wang P., Voltz J.W., Edin M.L., Xiao X., Chao L., et al. Tissue kallikrein reverses insulin resistance and attenuates nephropathy in diabetic rats by activation of phosphatidylinositol 3-kinase/protein kinase B and adenosine 5’-monophosphate-activated protein kinase signaling pathways. Endocrinology. 2007;148:2016–2026. PubMed PMC
Osipova E., Barsacchi R., Brown T., Sadanandan K., Gaede A.H., Monte A., Jarrells J., Moebius C., Pippel M., Altshuler D.L., et al. Loss of a gluconeogenic muscle enzyme contributed to adaptive metabolic traits in hummingbirds. Science. 2023;379:185–190. PubMed
Obeidat M. ’en, Zhou G., Li X., Hansel N.N., Rafaels N., Mathias R., Ruczinski I., Beaty T.H., Barnes K.C., Paré P.D., Sin D.D. The genetics of smoking in individuals with chronic obstructive pulmonary disease. Respir. Res. 2018;19:59. PubMed PMC
Canzian F. Phylogenetics of the laboratory rat Rattus norvegicus. Genome Res. 1997;7:262–267. PubMed
Mashimo T., Voigt B., Tsurumi T., Naoi K., Nakanishi S., Yamasaki K.-I., Kuramoto T., Serikawa T. A set of highly informative rat simple sequence length polymorphism (SSLP) markers and genetically defined rat strains. BMC Genet. 2006;7:19. PubMed PMC
Chen N.-C., Solomon B., Mun T., Iyer S., Langmead B. Reference flow: reducing reference bias using multiple population genomes. Genome Biol. 2021;22:8. PubMed PMC
Munger S.C., Raghupathy N., Choi K., Simons A.K., Gatti D.M., Hinerfeld D.A., Svenson K.L., Keller M.P., Attie A.D., Hibbs M.A., et al. RNA-Seq alignment to individualized genomes improves transcript abundance estimates in multiparent populations. Genetics. 2014;198:59–73. PubMed PMC
Eizenga J.M., Novak A.M., Sibbesen J.A., Heumos S., Ghaffaari A., Hickey G., Chang X., Seaman J.D., Rounthwaite R., Ebler J., et al. Pangenome Graphs. Annu. Rev. Genomics Hum. Genet. 2020;21:139–162. PubMed PMC
Villani F., Guarracino A., Ward R.R., Green T., Emms M., Pravenec M., Prins P., Garrison E., Williams R.W., Chen H., Colonna V. Pangenome reconstruction in rats enhances genotype-phenotype mapping and novel variant discovery. bioRxiv. 2024 doi: 10.1101/2024.01.10.575041. Preprint at. DOI
Kalbfleisch T.S., Hussien AbouEl Ela N.A., Li K., Brashear W.A., Kochan K.J., Hillhouse A.E., Zhu Y., Dhande I.S., Kline E.J., Hudson E.A., et al. The Assembled Genome of the Stroke-Prone Spontaneously Hypertensive Rat. Hypertension. 2023;80:138–146. PubMed PMC
Rastas P. Lep-Anchor: automated construction of linkage map anchored haploid genomes. Bioinformatics. 2020;36:2359–2364. PubMed
Kivikoski M., Rastas P., Löytynoja A., Merilä J. Automated improvement of stickleback reference genome assemblies with Lep-Anchor software. Mol. Ecol. Resour. 2021;21:2166–2176. PubMed
ENCODE Project Consortium An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74. PubMed PMC
Duttke S.H., Montilla-Perez P., Chang M.W., Li H., Chen H., Carrette L.L.G., de Guglielmo G., George O., Palmer A.A., Benner C., Telese F. Glucocorticoid Receptor-Regulated Enhancers Play a Central Role in the Gene Regulatory Networks Underlying Drug Addiction. Front. Neurosci. 2022;16 PubMed PMC
O’Leary N.A., Wright M.W., Brister J.R., Ciufo S., Haddad D., McVeigh R., Rajput B., Robbertse B., Smith-White B., Ako-Adjei D., et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–D745. PubMed PMC
Kalikar S., Jain C., Vasimuddin M., Misra S. Accelerating minimap2 for long-read sequencing applications on modern CPUs. Nat. Comput. Sci. 2022;2:78–83. PubMed
Li H., Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–595. PubMed PMC
Poplin R., Ruano-Rubio V., DePristo M.A., Fennell T.J., Carneiro M.O., Van der Auwera G.A., Kling D.E., Gauthier L.D., Levy-Moonshine A., Roazen D., et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv. 2018 doi: 10.1101/201178. Preprint at. DOI
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–3100. PubMed PMC
Jeffares D.C., Jolly C., Hoti M., Speed D., Shaw L., Rallis C., Balloux F., Dessimoz C., Bähler J., Sedlazeck F.J. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat. Commun. 2017;8 PubMed PMC
Cingolani P., Platts A., Wang L.L., Coon M., Nguyen T., Wang L., Land S.J., Lu X., Ruden D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6:80–92. PubMed PMC
Tarailo-Graovac M., Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinformatics. 2009;25:4.10.1–4.10.14. PubMed
Gunturkun M.H., Flashner E., Wang T., Mulligan M.K., Williams R.W., Prins P., Chen H. GeneCup: mining PubMed and GWAS catalog for gene–keyword relationships. G3 (Bethesda). 2022;12:jkac059. PubMed PMC
Hinrichs A.S., Karolchik D., Baertsch R., Barber G.P., Bejerano G., Clawson H., Diekhans M., Furey T.S., Harte R.A., Hsu F., et al. The UCSC Genome Browser Database: update 2006. Nucleic Acids Res. 2006;34:D590–D598. PubMed PMC
Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A.R., Bender D., Maller J., Sklar P., de Bakker P.I.W., Daly M.J., Sham P.C. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007;81:559–575. PubMed PMC
Rastas P. Lep-MAP3: robust linkage mapping even for low-coverage whole genome sequencing data. Bioinformatics. 2017;33:3726–3732. PubMed
Danecek P., Bonfield J.K., Liddle J., Marshall J., Ohan V., Pollard M.O., Whitwham A., Keane T., McCarthy S.A., Davies R.M., et al. Twelve years of SAMtools and BCFtools. GigaScience. 2021;10 doi: 10.1093/gigascience/giab008. PubMed DOI PMC
Tamura K., Stecher G., Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021;38:3022–3027. PubMed PMC
Yu G., Smith D.K., Zhu H., Guan Y., Lam T.T.-Y. Ggtree : An r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 2017;8:28–36.
Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. PubMed PMC
Duttke S.H., Chang M.W., Heinz S., Benner C. Identification and dynamic quantification of regulatory elements using total RNA. Genome Res. 2019;29:1836–1846. PubMed PMC
Delaneau O., Ongen H., Brown A.A., Fort A., Panousis N.I., Dermitzakis E.T. A complete tool set for molecular QTL discovery and analysis. Nat. Commun. 2017;8 PubMed PMC
UniProt Consortium UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:D506–D515. PubMed PMC
Gileta A.F., Gao J., Chitre A.S., Bimschleger H.V., St Pierre C.L., Gopalakrishnan S., Palmer A.A. Adapting Genotyping-by-Sequencing and Variant Calling for Heterogeneous Stock Rats. G3 (Bethesda) 2020;10:2195–2205. PubMed PMC
Zhou J.L., de Guglielmo G., Ho A.J., Kallupi M., Li H.-R., Chitre A.S., Carrette L.L.G., George O., Palmer A.A., McVicker G., Telese F. Cocaine addiction-like behaviors are associated with long-term changes in gene regulation, energy metabolism, and GABAergic inhibition within the amygdala. bioRxiv. 2022 doi: 10.1101/2022.09.08.506493. Preprint at. DOI
Jeffs B., Negrin C.D., Graham D., Clark J.S., Anderson N.H., Gauguier D., Dominiczak A.F. Applicability of a “speed” congenic strategy to dissect blood pressure quantitative trait loci on rat chromosome 2. Hypertension. 2000;35:179–187. PubMed
Aken B.L., Ayling S., Barrell D., Clarke L., Curwen V., Fairley S., Fernandez Banet J., Billis K., García Girón C., Hourlier T., et al. The Ensembl Gene Annotation System. Database. 2016;2016 doi: 10.1093/database/baw093. PubMed DOI PMC
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. PubMed
Kozomara A., Birgaoanu M., Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47:D155–D162. PubMed PMC
Gruber A.R., Lorenz R., Bernhart S.H., Neuböck R., Hofacker I.L. The Vienna RNA Websuite. Nucleic Acids Res. 2008;36:W70–W74. PubMed PMC
Kalvari I., Argasinska J., Quinones-Olvera N., Nawrocki E.P., Rivas E., Eddy S.R., Bateman A., Finn R.D., Petrov A.I. Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res. 2018;46:D335–D342. PubMed PMC
Nawrocki E.P., Eddy S.R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013;29:2933–2935. PubMed PMC
McGarvey K.M., Goldfarb T., Cox E., Farrell C.M., Gupta T., Joardar V.S., Kodali V.K., Murphy M.R., O’Leary N.A., Pujar S., et al. Mouse genome annotation by the RefSeq project. Mamm. Genome. 2015;26:379–390. PubMed PMC