Genetic modulation of protein expression in rat brain
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40124499
PubMed Central
PMC11930185
DOI
10.1016/j.isci.2025.112079
PII: S2589-0042(25)00339-6
Knihovny.cz E-zdroje
- Klíčová slova
- Biochemistry, Genetics, Neuroscience,
- Publikační typ
- časopisecké články MeSH
Genetic variations in protein expression are implicated in a broad spectrum of common diseases and complex traits but remain less explored compared to mRNA and classical phenotypes. This study systematically analyzed brain proteomes in a rat family using tandem mass tag (TMT)-based quantitative mass spectrometry. We quantified 8,119 proteins across two parental strains (SHR/Olalpcv and BN-Lx/Cub) and 29 HXB/BXH recombinant inbred (RI) strains, identifying 597 proteins with differential expression and 464 proteins linked to cis-acting quantitative trait loci (pQTLs). Proteogenomics identified 95 variant peptides, and sex-specific analyses revealed both shared and distinct cis-pQTLs. We improved the ability to pinpoint candidate genes underlying pQTLs by utilizing the rat pangenome and explored the connections between pQTLs in rats and human disorders. Collectively, this study highlights the value of large proteo-genetic datasets in elucidating protein modulation in the brain and its links to complex central nervous system (CNS) traits.
Department of Developmental Neurobiology St Jude Children's Research Hospital Memphis TN 38105 USA
Department of Neurology University of Tennessee Health Science Center Memphis TN 38163 USA
Department of Pharmaceutical Sciences University of Colorado Denver Aurora CO 80045 USA
Department of Structural Biology St Jude Children's Research Hospital Memphis TN 38105 USA
Human Technopole Viale Rita Levi Montalcini 20157 Milan Italy
Institute of Physiology of the Czech Academy of Sciences Prague 14200 Czech Republic
Zobrazit více v PubMed
Jacob H.J., Brown D.M., Bunker R.K., Daly M.J., Dzau V.J., Goodman A., Koike G., Kren V., Kurtz T., Lernmark A. A genetic linkage map of the laboratory rat, Rattus norvegicus. Nat. Genet. 1995;9:63–69. PubMed
Tao Y.T., Ding X.B., Jin J., Zhang H.B., Guo W.P., Ruan L., Yang Q.L., Chen P.C., Yao H., Chen X. Predicted rat interactome database and gene set linkage analysis. Database (Oxford); 2020. PubMed PMC
Szpirer C. Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes. J. Biomed. Sci. 2020;27:84. PubMed PMC
Civelek M., Lusis A.J. Systems genetics approaches to understand complex traits. Nat. Rev. Genet. 2014;15:34–48. PubMed PMC
Chen J., Zhao X., Cui L., He G., Wang X., Wang F., Duan S., He L., Li Q., Yu X., et al. Genetic regulatory subnetworks and key regulating genes in rat hippocampus perturbed by prenatal malnutrition: implications for major brain disorders. Aging (Albany NY) 2020;12:8434–8458. PubMed PMC
Yang J., Hu C., Hu H., Yu R., Xia Z., Ye X., Zhu J. QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics. 2008;24:721–723. PubMed
Ashbrook D.G., Arends D., Prins P., Mulligan M.K., Roy S., Williams E.G., Lutz C.M., Valenzuela A., Bohl C.J., Ingels J.F., et al. A platform for experimental precision medicine: The extended BXD mouse family. Cell Syst. 2021;12:235–247.e9. PubMed PMC
Trotter C., Kim H., Farage G., Prins P., Williams R.W., Broman K.W., Sen Ś. Speeding up eQTL scans in the BXD population using GPUs. G3 (Bethesda) 2021;11 PubMed PMC
Gusev A., Mancuso N., Won H., Kousi M., Finucane H.K., Reshef Y., Song L., Safi A., Schizophrenia Working Group of the Psychiatric Genomics Consortium. McCarroll S. Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat. Genet. 2018;50:538–548. PubMed PMC
Wang D., Liu S., Warrell J., Won H., Shi X., Navarro F.C.P., Clarke D., Gu M., Emani P., Yang Y.T., et al. Comprehensive functional genomic resource and integrative model for the human brain. Science. 2018;362 PubMed PMC
Wu L., Candille S.I., Choi Y., Xie D., Jiang L., Li-Pook-Than J., Tang H., Snyder M. Variation and genetic control of protein abundance in humans. Nature. 2013;499:79–82. PubMed PMC
Sun B.B., Maranville J.C., Peters J.E., Stacey D., Staley J.R., Blackshaw J., Burgess S., Jiang T., Paige E., Surendran P., et al. Genomic atlas of the human plasma proteome. Nature. 2018;558:73–79. PubMed PMC
Yang C., Farias F.H.G., Ibanez L., Suhy A., Sadler B., Fernandez M.V., Wang F., Bradley J.L., Eiffert B., Bahena J.A., et al. Genomic atlas of the proteome from brain, CSF and plasma prioritizes proteins implicated in neurological disorders. Nat. Neurosci. 2021;24:1302–1312. PubMed PMC
Wingo T.S., Liu Y., Gerasimov E.S., Gockley J., Logsdon B.A., Duong D.M., Dammer E.B., Lori A., Kim P.J., Ressler K.J., et al. Brain proteome-wide association study implicates novel proteins in depression pathogenesis. Nat. Neurosci. 2021;24:810–817. PubMed PMC
Suhre K., McCarthy M.I., Schwenk J.M. Genetics meets proteomics: perspectives for large population-based studies. Nat. Rev. Genet. 2021;22:19–37. PubMed
Li L., Niu M., Erickson A., Luo J., Rowbotham K., Guo K., Huang H., Li Y., Jiang Y., Hur J., et al. SMAP is a pipeline for sample matching in proteogenomics. Nat. Commun. 2022;13 PubMed PMC
Wu Y., Williams E.G., Dubuis S., Mottis A., Jovaisaite V., Houten S.M., Argmann C.A., Faridi P., Wolski W., Kutalik Z., et al. Multilayered genetic and omics dissection of mitochondrial activity in a mouse reference population. Cell. 2014;158:1415–1430. PubMed PMC
Williams E.G., Wu Y., Jha P., Dubuis S., Blattmann P., Argmann C.A., Houten S.M., Amariuta T., Wolski W., Zamboni N., et al. Systems proteomics of liver mitochondria function. Science. 2016;352 PubMed PMC
Williams E.G., Pfister N., Roy S., Statzer C., Haverty J., Ingels J., Bohl C., Hasan M., Čuklina J., Bühlmann P., et al. Multiomic profiling of the liver across diets and age in a diverse mouse population. Cell Syst. 2022;13:43–57.e6. PubMed PMC
Chick J.M., Munger S.C., Simecek P., Huttlin E.L., Choi K., Gatti D.M., Raghupathy N., Svenson K.L., Churchill G.A., Gygi S.P. Defining the consequences of genetic variation on a proteome-wide scale. Nature. 2016;534:500–505. PubMed PMC
Keele G.R., Zhang T., Pham D.T., Vincent M., Bell T.A., Hock P., Shaw G.D., Paulo J.A., Munger S.C., de Villena F.P.M., et al. Regulation of protein abundance in genetically diverse mouse populations. Cell Genom. 2021;1 PubMed PMC
Hubner N., Wallace C.A., Zimdahl H., Petretto E., Schulz H., Maciver F., Mueller M., Hummel O., Monti J., Zidek V., et al. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat. Genet. 2005;37:243–253. PubMed
Printz M.P., Jirout M., Jaworski R., Alemayehu A., Kren V. Genetic Models in Applied Physiology. HXB/BXH rat recombinant inbred strain platform: a newly enhanced tool for cardiovascular, behavioral, and developmental genetics and genomics. J. Appl. Physiol. 2003;94:2510–2522. PubMed
Luo J., Li L., Niu M., Kong D., Jiang Y., Poudel S., Shieh A.W., Cheng L., Giase G., Grennan K., et al. Genetic regulation of human brain proteome reveals proteins implicated in psychiatric disorders. Mol. Psychiatry. 2024;29:3330–3343. PubMed PMC
Adriaens M.E., Lodder E.M., Moreno-Moral A., Šilhavý J., Heinig M., Glinge C., Belterman C., Wolswinkel R., Petretto E., Pravenec M., et al. Systems Genetics Approaches in Rat Identify Novel Genes and Gene Networks Associated With Cardiac Conduction. J. Am. Heart Assoc. 2018;7 PubMed PMC
Aitman T.J., Critser J.K., Cuppen E., Dominiczak A., Fernandez-Suarez X.M., Flint J., Gauguier D., Geurts A.M., Gould M., Harris P.C., et al. Progress and prospects in rat genetics: a community view. Nat. Genet. 2008;40:516–522. PubMed
Atanur S.S., Diaz A.G., Maratou K., Sarkis A., Rotival M., Game L., Tschannen M.R., Kaisaki P.J., Otto G.W., Ma M.C.J., et al. Genome sequencing reveals loci under artificial selection that underlie disease phenotypes in the laboratory rat. Cell. 2013;154:691–703. PubMed PMC
Tabakoff B., Saba L., Printz M., Flodman P., Hodgkinson C., Goldman D., Koob G., Richardson H.N., Kechris K., Bell R.L., et al. Genetical genomic determinants of alcohol consumption in rats and humans. BMC Biol. 2009;7:70. PubMed PMC
Lusk R., Hoffman P.L., Mahaffey S., Rosean S., Smith H., Silhavy J., Pravenec M., Tabakoff B., Saba L.M. Beyond Genes: Inclusion of Alternative Splicing and Alternative Polyadenylation to Assess the Genetic Architecture of Predisposition to Voluntary Alcohol Consumption in Brain of the HXB/BXH Recombinant Inbred Rat Panel. Front. Genet. 2022;13 PubMed PMC
Saba L.M., Hoffman P.L., Homanics G.E., Mahaffey S., Daulatabad S.V., Janga S.C., Tabakoff B. A long non-coding RNA (Lrap) modulates brain gene expression and levels of alcohol consumption in rats. Gene Brain Behav. 2021;20 PubMed PMC
Simonis M., Atanur S.S., Linsen S., Guryev V., Ruzius F.P., Game L., Lansu N., de Bruijn E., van Heesch S., Jones S.J.M., et al. Genetic basis of transcriptome differences between the founder strains of the rat HXB/BXH recombinant inbred panel. Genome Biol. 2012;13:r31. PubMed PMC
Senko A.N., Overall R.W., Silhavy J., Mlejnek P., Malínská H., Hüttl M., Marková I., Fabel K.S., Lu L., Stuchlik A., et al. Systems genetics in the rat HXB/BXH family identifies Tti2 as a pleiotropic quantitative trait gene for adult hippocampal neurogenesis and serum glucose. PLoS Genet. 2022;18 PubMed PMC
Bettenworth D., Bokemeyer A., Baker M., Mao R., Parker C.E., Nguyen T., Ma C., Panés J., Rimola J., Fletcher J.G., et al. Assessment of Crohn's disease-associated small bowel strictures and fibrosis on cross-sectional imaging: a systematic review. Gut. 2019;68:1115–1126. PubMed PMC
Gordon I.O., Bettenworth D., Bokemeyer A., Srivastava A., Rosty C., de Hertogh G., Robert M.E., Valasek M.A., Mao R., Kurada S., et al. Histopathology Scoring Systems of Stenosis Associated With Small Bowel Crohn's Disease: A Systematic Review. Gastroenterology. 2020;158:137–150.e1. PubMed PMC
Low T.Y., van Heesch S., van den Toorn H., Giansanti P., Cristobal A., Toonen P., Schafer S., Hübner N., van Breukelen B., Mohammed S., et al. Quantitative and qualitative proteome characteristics extracted from in-depth integrated genomics and proteomics analysis. Cell Rep. 2013;5:1469–1478. PubMed
Mulligan M.K., Mozhui K., Prins P., Williams R.W. GeneNetwork: A Toolbox for Systems Genetics. Methods Mol. Biol. 2017;1488:75–120. PubMed PMC
Anderson K.R., Harris J.A., Ng L., Prins P., Memar S., Ljungquist B., Fürth D., Williams R.W., Ascoli G.A., Dumitriu D. Highlights from the Era of Open Source Web-Based Tools. J. Neurosci. 2021;41:927–936. PubMed PMC
Sloan Z., Arends D., Broman K.W., Centeno A., Furlotte N., Nijveen H., Yan L., Zhou X., Williams R.W., Prins P. GeneNetwork: framework for web-based genetics. J. Open Source Softw. 2016;1:25.
Ritchie M.E., Phipson B., Wu D., Hu Y., Law C.W., Shi W., Smyth G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43 PubMed PMC
Saba L.M., Flink S.C., Vanderlinden L.A., Israel Y., Tampier L., Colombo G., Kiianmaa K., Bell R.L., Printz M.P., Flodman P., et al. The sequenced rat brain transcriptome--its use in identifying networks predisposing alcohol consumption. FEBS J. 2015;282:3556–3578. PubMed PMC
Li Y., Wang X., Cho J.H., Shaw T.I., Wu Z., Bai B., Wang H., Zhou S., Beach T.G., Wu G., et al. JUMPg: An Integrative Proteogenomics Pipeline Identifying Unannotated Proteins in Human Brain and Cancer Cells. J. Proteome Res. 2016;15:2309–2320. PubMed PMC
Ng P.C., Henikoff S. Predicting deleterious amino acid substitutions. Genome Res. 2001;11:863–874. PubMed PMC
de Jong T.V., Pan Y., Rastas P., Munro D., Tutaj M., Akil H., Benner C., Chen D., Chitre A.S., Chow W., et al. A revamped rat reference genome improves the discovery of genetic diversity in laboratory rats. Cell Genom. 2024;4 PubMed PMC
Morrissey C., Grieve I.C., Heinig M., Atanur S., Petretto E., Pravenec M., Hubner N., Aitman T.J. Integrated genomic approaches to identification of candidate genes underlying metabolic and cardiovascular phenotypes in the spontaneously hypertensive rat. Physiol. Genom. 2011;43:1207–1218. PubMed PMC
Cheng Y., Sun D., Zhu B., Zhou W., Lv C., Kou F., Wei H. Integrative Metabolic and Proteomic Profiling of the Brainstem in Spontaneously Hypertensive Rats. J. Proteome Res. 2020;19:4114–4124. PubMed
Chen Y., Wu L., Liu J., Ma L., Zhang W. Adenine nucleotide translocase: Current knowledge in post-translational modifications, regulations and pathological implications for human diseases. FASEB J. 2023;37 PubMed
Zhou X., Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 2012;44:821–824. PubMed PMC
Alnouti Y., Klaassen C.D. Tissue distribution, ontogeny, and regulation of aldehyde dehydrogenase (Aldh) enzymes mRNA by prototypical microsomal enzyme inducers in mice. Toxicol. Sci. 2008;101:51–64. PubMed
Vasiliou V., Pappa A., Petersen D.R. Role of aldehyde dehydrogenases in endogenous and xenobiotic metabolism. Chem. Biol. Interact. 2000;129:1–19. PubMed
Singh S., Brocker C., Koppaka V., Chen Y., Jackson B.C., Matsumoto A., Thompson D.C., Vasiliou V. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress. Free Radic. Biol. Med. 2013;56:89–101. PubMed PMC
Marchitti S.A., Brocker C., Stagos D., Vasiliou V. Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expet Opin. Drug Metabol. Toxicol. 2008;4:697–720. PubMed PMC
Rotondo F., Ho-Palma A.C., Remesar X., Fernández-López J.A., Romero M.D.M., Alemany M. Effect of sex on glucose handling by adipocytes isolated from rat subcutaneous, mesenteric and perigonadal adipose tissue. PeerJ. 2018;6 PubMed PMC
Tan B., Long X., Nakshatri H., Nephew K.P., Bigsby R.M. Striatin-3 gamma inhibits estrogen receptor activity by recruiting a protein phosphatase. J. Mol. Endocrinol. 2008;40:199–210. PubMed
Chen Z., Huang J., Feng Y., Li Z., Jiang Y. Profiling of specific long non-coding RNA signatures identifies ST8SIA6-AS1 AS a novel target for breast cancer. J. Gene Med. 2021;23 PubMed
Ziebarth J.D., Bhattacharya A., Cui Y. Bayesian Network Webserver: a comprehensive tool for biological network modeling. Bioinformatics. 2013;29:2801–2803. PubMed
Ziebarth J.D., Cui Y. Precise Network Modeling of Systems Genetics Data Using the Bayesian Network Webserver. Methods Mol. Biol. 2017;1488:319–335. PubMed
Garrison E., Guarracino A., Heumos S., Villani F., Bao Z., Tattini L., Hagmann J., Vorbrugg S., Marco-Sola S., Kubica C., et al. Building pangenome graphs. Nat. Methods. 2024;21:2008–2012. doi: 10.1038/s41592-024-02430-3. PubMed DOI
Garrison E., Guarracino A. Unbiased pangenome graphs. Bioinformatics. 2023;39 PubMed PMC
Guarracino A., Heumos S., Nahnsen S., Prins P., Garrison E. ODGI: understanding pangenome graphs. Bioinformatics. 2022;38:3319–3326. PubMed PMC
McBrayer S.K., Mayers J.R., DiNatale G.J., Shi D.D., Khanal J., Chakraborty A.A., Sarosiek K.A., Briggs K.J., Robbins A.K., Sewastianik T., et al. Transaminase Inhibition by 2-Hydroxyglutarate Impairs Glutamate Biosynthesis and Redox Homeostasis in Glioma. Cell. 2018;175:101–116.e25. PubMed PMC
Hillier J., Allcott G.J., Guest L.A., Heaselgrave W., Tonks A., Conway M.E., Cherry A.L., Coles S.J. The BCAT1 CXXC Motif Provides Protection against ROS in Acute Myeloid Leukaemia Cells. Antioxidants. 2022;11 PubMed PMC
Francois L., Boskovic P., Knerr J., He W., Sigismondo G., Schwan C., More T.H., Schlotter M., Conway M.E., Krijgsveld J., et al. BCAT1 redox function maintains mitotic fidelity. Cell Rep. 2022;41 PubMed
Milton P.P.S.R., Barbeira A., Liang Y., Owen M., Bastarache L., Park Y.S., Consortium G.T.E., Wen X., Im H.K. PhenomeXcan Mapping the genome to the phenome through the transcriptome. Sci. Adv. 2020;6 PubMed PMC
Hermsen R., de Ligt J., Spee W., Blokzijl F., Schäfer S., Adami E., Boymans S., Flink S., van Boxtel R., van der Weide R.H., et al. Genomic landscape of rat strain and substrain variation. BMC Genom. 2015;16:357. PubMed PMC
Chen Z., Chen W., Li Y., Moos M., Jr., Xiao D., Wang C. Single-nucleus chromatin accessibility and RNA sequencing reveal impaired brain development in prenatally e-cigarette exposed neonatal rats. iScience. 2022;25 PubMed PMC
Newman A.M., Steen C.B., Liu C.L., Gentles A.J., Chaudhuri A.A., Scherer F., Khodadoust M.S., Esfahani M.S., Luca B.A., Steiner D., et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 2019;37:773–782. PubMed PMC
Wang J., Roeder K., Devlin B. Bayesian estimation of cell type-specific gene expression with prior derived from single-cell data. Genome Res. 2021;31:1807–1818. PubMed PMC
Liao W.W., Asri M., Ebler J., Doerr D., Haukness M., Hickey G., Lu S., Lucas J.K., Monlong J., Abel H.J., et al. A draft human pangenome reference. Nature. 2023;617:312–324. PubMed PMC
Guarracino A., Buonaiuto S., de Lima L.G., Potapova T., Rhie A., Koren S., Rubinstein B., Fischer C., Human Pangenome Reference Consortium. Gerton J.L. Recombination between heterologous human acrocentric chromosomes. Nature. 2023;617:335–343. PubMed PMC
Deutsch E.W., Bandeira N., Perez-Riverol Y., Sharma V., Carver J.J., Mendoza L., Kundu D.J., Wang S., Bandla C., Kamatchinathan S., et al. The ProteomeXchange consortium at 10 years: 2023 update. Nucleic Acids Res. 2023;51:D1539–D1548. PubMed PMC
Ross R.A., Spengler B.A., Biedler J.L. Coordinate morphological and biochemical interconversion of human neuroblastoma cells. J. Natl. Cancer Inst. 1983;71:741–747. PubMed
Biedler J.L., Roffler-Tarlov S., Schachner M., Freedman L.S. Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res. 1978;38:3751–3757. PubMed
Szklarczyk D., Gable A.L., Nastou K.C., Lyon D., Kirsch R., Pyysalo S., Doncheva N.T., Legeay M., Fang T., Bork P., et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49:D605–D612. PubMed PMC
Wang K., Li M., Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38 PubMed PMC
Yu G., Wang L.G., Han Y., He Q.Y. clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters. Omics-a J. Integ. Biol. 2012;16:284–287. PubMed PMC
Wang X., Li Y., Wu Z., Wang H., Tan H., Peng J. JUMP: a tag-based database search tool for peptide identification with high sensitivity and accuracy. Mol. Cell. Proteomics. 2014;13:3663–3673. PubMed PMC
Wang G., Sarkar A., Carbonetto P., Stephens M. A simple new approach to variable selection in regression, with application to genetic fine mapping. J. R. Stat. Soc. Series B Stat. Methodol. 2020;82:1273–1300. PubMed PMC
Demichev V., Messner C.B., Vernardis S.I., Lilley K.S., Ralser M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods. 2020;17:41–44. PubMed PMC
UniProt Consortium UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023;51:D523–D531. PubMed PMC
Wesierska M., Dockery C., Fenton A.A. Beyond memory, navigation, and inhibition: behavioral evidence for hippocampus-dependent cognitive coordination in the rat. J. Neurosci. 2005;25:2413–2419. PubMed PMC
Kubik S., Fenton A.A. Behavioral evidence that segregation and representation are dissociable hippocampal functions. J. Neurosci. 2005;25:9205–9212. PubMed PMC
Stuchlik A., Petrasek T., Prokopova I., Holubová K., Hatalová H., Valeš K., Kubík Š., Dockery C., Wesierska M. Place avoidance tasks as tools in the behavioral neuroscience of learning and memory. Physiol. Res. 2013;62:S1–S19. PubMed
Kubík S., Stuchlík A., Fenton A.A. Evidence for hippocampal role in place avoidance other than merely memory storage. Physiol. Res. 2006;55:445–452. PubMed
Stuchlik A., Petrasek T., Vales K. Dopamine D2 receptors and alpha1-adrenoceptors synergistically modulate locomotion and behavior of rats in a place avoidance task. Behav. Brain Res. 2008;189:139–144. PubMed
Stuchlik A., Vales K. Baclofen dose-dependently disrupts learning in a place avoidance task requiring cognitive coordination. Physiol. Behav. 2009;97:507–511. PubMed
Bai B., Tan H., Pagala V.R., High A.A., Ichhaporia V.P., Hendershot L., Peng J. Deep Profiling of Proteome and Phosphoproteome by Isobaric Labeling, Extensive Liquid Chromatography, and Mass Spectrometry. Methods Enzymol. 2017;585:377–395. PubMed PMC
Pagala V.R., High A.A., Wang X., Tan H., Kodali K., Mishra A., Kavdia K., Xu Y., Wu Z., Peng J. Quantitative protein analysis by mass spectrometry. Methods Mol. Biol. 2015;1278:281–305. PubMed
Xu P., Duong D.M., Peng J. Systematical optimization of reverse-phase chromatography for shotgun proteomics. J. Proteome Res. 2009;8:3944–3950. PubMed PMC
Wang H., Yang Y., Li Y., Bai B., Wang X., Tan H., Liu T., Beach T.G., Peng J., Wu Z. Systematic optimization of long gradient chromatography mass spectrometry for deep analysis of brain proteome. J. Proteome Res. 2015;14:829–838. PubMed PMC
Peng J., Elias J.E., Thoreen C.C., Licklider L.J., Gygi S.P. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J. Proteome Res. 2003;2:43–50. PubMed
Hughes C.S., Moggridge S., Müller T., Sorensen P.H., Morin G.B., Krijgsveld J. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat. Protoc. 2019;14:68–85. PubMed
Jirout M., Krenová D., Kren V., Breen L., Pravenec M., Schork N.J., Printz M.P. A new framework marker-based linkage map and SDPs for the rat HXB/BXH strain set. Mamm. Genome. 2003;14:537–546. PubMed
Niu M., Cho J.H., Kodali K., Pagala V., High A.A., Wang H., Wu Z., Li Y., Bi W., Zhang H., et al. Extensive Peptide Fractionation and y(1) Ion-Based Interference Detection Method for Enabling Accurate Quantification by Isobaric Labeling and Mass Spectrometry. Anal. Chem. 2017;89:2956–2963. PubMed PMC
Sadrara M., Khorrami M.K. Principal component analysis-multivariate adaptive regression splines (PCA-MARS) and back propagation-artificial neural network (BP-ANN) methods for predicting the efficiency of oxidative desulfurization systems using ATR-FTIR spectroscopy. Spectrochim. Acta Mol. Biomol. Spectrosc. 2023;300 PubMed
Shang L., Smith J.A., Zhao W., Kho M., Turner S.T., Mosley T.H., Kardia S.L.R., Zhou X. Genetic Architecture of Gene Expression in European and African Americans: An eQTL Mapping Study in GENOA. Am. J. Hum. Genet. 2020;106:496–512. PubMed PMC
Jansen R., Hottenga J.J., Nivard M.G., Abdellaoui A., Laport B., de Geus E.J., Wright F.A., Penninx B.W.J.H., Boomsma D.I. Conditional eQTL analysis reveals allelic heterogeneity of gene expression. Hum. Mol. Genet. 2017;26:1444–1451. PubMed PMC
Pickrell J.K., Marioni J.C., Pai A.A., Degner J.F., Engelhardt B.E., Nkadori E., Veyrieras J.B., Stephens M., Gilad Y., Pritchard J.K. Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature. 2010;464:768–772. PubMed PMC
Barreiro L.B., Tailleux L., Pai A.A., Gicquel B., Marioni J.C., Gilad Y. Deciphering the genetic architecture of variation in the immune response to Mycobacterium tuberculosis infection. Proc. Natl. Acad. Sci. USA. 2012;109:1204–1209. PubMed PMC
Guarracino A., Mwaniki N., Marco-Sola S., Garrison E. wfmash: whole-chromosome pairwise alignment using the hierarchical wavefront algorithm (v0.10.4) Zenodo. 2023 doi: 10.5281/zenodo.13629309. DOI
Hickey G., Heller D., Monlong J. Genotyping structural variants in pangenome graphs using the vg toolkit. Genome Biol. 2020;21:35. PubMed PMC
Wick R.R., Schultz M.B., Zobel J., Holt K.E. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics. 2015;31:3350–3352. PubMed PMC