Genetic modulation of protein expression in rat brain

. 2025 Mar 21 ; 28 (3) : 112079. [epub] 20250221

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40124499
Odkazy

PubMed 40124499
PubMed Central PMC11930185
DOI 10.1016/j.isci.2025.112079
PII: S2589-0042(25)00339-6
Knihovny.cz E-zdroje

Genetic variations in protein expression are implicated in a broad spectrum of common diseases and complex traits but remain less explored compared to mRNA and classical phenotypes. This study systematically analyzed brain proteomes in a rat family using tandem mass tag (TMT)-based quantitative mass spectrometry. We quantified 8,119 proteins across two parental strains (SHR/Olalpcv and BN-Lx/Cub) and 29 HXB/BXH recombinant inbred (RI) strains, identifying 597 proteins with differential expression and 464 proteins linked to cis-acting quantitative trait loci (pQTLs). Proteogenomics identified 95 variant peptides, and sex-specific analyses revealed both shared and distinct cis-pQTLs. We improved the ability to pinpoint candidate genes underlying pQTLs by utilizing the rat pangenome and explored the connections between pQTLs in rats and human disorders. Collectively, this study highlights the value of large proteo-genetic datasets in elucidating protein modulation in the brain and its links to complex central nervous system (CNS) traits.

Zobrazit více v PubMed

Jacob H.J., Brown D.M., Bunker R.K., Daly M.J., Dzau V.J., Goodman A., Koike G., Kren V., Kurtz T., Lernmark A. A genetic linkage map of the laboratory rat, Rattus norvegicus. Nat. Genet. 1995;9:63–69. PubMed

Tao Y.T., Ding X.B., Jin J., Zhang H.B., Guo W.P., Ruan L., Yang Q.L., Chen P.C., Yao H., Chen X. Predicted rat interactome database and gene set linkage analysis. Database (Oxford); 2020. PubMed PMC

Szpirer C. Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes. J. Biomed. Sci. 2020;27:84. PubMed PMC

Civelek M., Lusis A.J. Systems genetics approaches to understand complex traits. Nat. Rev. Genet. 2014;15:34–48. PubMed PMC

Chen J., Zhao X., Cui L., He G., Wang X., Wang F., Duan S., He L., Li Q., Yu X., et al. Genetic regulatory subnetworks and key regulating genes in rat hippocampus perturbed by prenatal malnutrition: implications for major brain disorders. Aging (Albany NY) 2020;12:8434–8458. PubMed PMC

Yang J., Hu C., Hu H., Yu R., Xia Z., Ye X., Zhu J. QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics. 2008;24:721–723. PubMed

Ashbrook D.G., Arends D., Prins P., Mulligan M.K., Roy S., Williams E.G., Lutz C.M., Valenzuela A., Bohl C.J., Ingels J.F., et al. A platform for experimental precision medicine: The extended BXD mouse family. Cell Syst. 2021;12:235–247.e9. PubMed PMC

Trotter C., Kim H., Farage G., Prins P., Williams R.W., Broman K.W., Sen Ś. Speeding up eQTL scans in the BXD population using GPUs. G3 (Bethesda) 2021;11 PubMed PMC

Gusev A., Mancuso N., Won H., Kousi M., Finucane H.K., Reshef Y., Song L., Safi A., Schizophrenia Working Group of the Psychiatric Genomics Consortium. McCarroll S. Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat. Genet. 2018;50:538–548. PubMed PMC

Wang D., Liu S., Warrell J., Won H., Shi X., Navarro F.C.P., Clarke D., Gu M., Emani P., Yang Y.T., et al. Comprehensive functional genomic resource and integrative model for the human brain. Science. 2018;362 PubMed PMC

Wu L., Candille S.I., Choi Y., Xie D., Jiang L., Li-Pook-Than J., Tang H., Snyder M. Variation and genetic control of protein abundance in humans. Nature. 2013;499:79–82. PubMed PMC

Sun B.B., Maranville J.C., Peters J.E., Stacey D., Staley J.R., Blackshaw J., Burgess S., Jiang T., Paige E., Surendran P., et al. Genomic atlas of the human plasma proteome. Nature. 2018;558:73–79. PubMed PMC

Yang C., Farias F.H.G., Ibanez L., Suhy A., Sadler B., Fernandez M.V., Wang F., Bradley J.L., Eiffert B., Bahena J.A., et al. Genomic atlas of the proteome from brain, CSF and plasma prioritizes proteins implicated in neurological disorders. Nat. Neurosci. 2021;24:1302–1312. PubMed PMC

Wingo T.S., Liu Y., Gerasimov E.S., Gockley J., Logsdon B.A., Duong D.M., Dammer E.B., Lori A., Kim P.J., Ressler K.J., et al. Brain proteome-wide association study implicates novel proteins in depression pathogenesis. Nat. Neurosci. 2021;24:810–817. PubMed PMC

Suhre K., McCarthy M.I., Schwenk J.M. Genetics meets proteomics: perspectives for large population-based studies. Nat. Rev. Genet. 2021;22:19–37. PubMed

Li L., Niu M., Erickson A., Luo J., Rowbotham K., Guo K., Huang H., Li Y., Jiang Y., Hur J., et al. SMAP is a pipeline for sample matching in proteogenomics. Nat. Commun. 2022;13 PubMed PMC

Wu Y., Williams E.G., Dubuis S., Mottis A., Jovaisaite V., Houten S.M., Argmann C.A., Faridi P., Wolski W., Kutalik Z., et al. Multilayered genetic and omics dissection of mitochondrial activity in a mouse reference population. Cell. 2014;158:1415–1430. PubMed PMC

Williams E.G., Wu Y., Jha P., Dubuis S., Blattmann P., Argmann C.A., Houten S.M., Amariuta T., Wolski W., Zamboni N., et al. Systems proteomics of liver mitochondria function. Science. 2016;352 PubMed PMC

Williams E.G., Pfister N., Roy S., Statzer C., Haverty J., Ingels J., Bohl C., Hasan M., Čuklina J., Bühlmann P., et al. Multiomic profiling of the liver across diets and age in a diverse mouse population. Cell Syst. 2022;13:43–57.e6. PubMed PMC

Chick J.M., Munger S.C., Simecek P., Huttlin E.L., Choi K., Gatti D.M., Raghupathy N., Svenson K.L., Churchill G.A., Gygi S.P. Defining the consequences of genetic variation on a proteome-wide scale. Nature. 2016;534:500–505. PubMed PMC

Keele G.R., Zhang T., Pham D.T., Vincent M., Bell T.A., Hock P., Shaw G.D., Paulo J.A., Munger S.C., de Villena F.P.M., et al. Regulation of protein abundance in genetically diverse mouse populations. Cell Genom. 2021;1 PubMed PMC

Hubner N., Wallace C.A., Zimdahl H., Petretto E., Schulz H., Maciver F., Mueller M., Hummel O., Monti J., Zidek V., et al. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat. Genet. 2005;37:243–253. PubMed

Printz M.P., Jirout M., Jaworski R., Alemayehu A., Kren V. Genetic Models in Applied Physiology. HXB/BXH rat recombinant inbred strain platform: a newly enhanced tool for cardiovascular, behavioral, and developmental genetics and genomics. J. Appl. Physiol. 2003;94:2510–2522. PubMed

Luo J., Li L., Niu M., Kong D., Jiang Y., Poudel S., Shieh A.W., Cheng L., Giase G., Grennan K., et al. Genetic regulation of human brain proteome reveals proteins implicated in psychiatric disorders. Mol. Psychiatry. 2024;29:3330–3343. PubMed PMC

Adriaens M.E., Lodder E.M., Moreno-Moral A., Šilhavý J., Heinig M., Glinge C., Belterman C., Wolswinkel R., Petretto E., Pravenec M., et al. Systems Genetics Approaches in Rat Identify Novel Genes and Gene Networks Associated With Cardiac Conduction. J. Am. Heart Assoc. 2018;7 PubMed PMC

Aitman T.J., Critser J.K., Cuppen E., Dominiczak A., Fernandez-Suarez X.M., Flint J., Gauguier D., Geurts A.M., Gould M., Harris P.C., et al. Progress and prospects in rat genetics: a community view. Nat. Genet. 2008;40:516–522. PubMed

Atanur S.S., Diaz A.G., Maratou K., Sarkis A., Rotival M., Game L., Tschannen M.R., Kaisaki P.J., Otto G.W., Ma M.C.J., et al. Genome sequencing reveals loci under artificial selection that underlie disease phenotypes in the laboratory rat. Cell. 2013;154:691–703. PubMed PMC

Tabakoff B., Saba L., Printz M., Flodman P., Hodgkinson C., Goldman D., Koob G., Richardson H.N., Kechris K., Bell R.L., et al. Genetical genomic determinants of alcohol consumption in rats and humans. BMC Biol. 2009;7:70. PubMed PMC

Lusk R., Hoffman P.L., Mahaffey S., Rosean S., Smith H., Silhavy J., Pravenec M., Tabakoff B., Saba L.M. Beyond Genes: Inclusion of Alternative Splicing and Alternative Polyadenylation to Assess the Genetic Architecture of Predisposition to Voluntary Alcohol Consumption in Brain of the HXB/BXH Recombinant Inbred Rat Panel. Front. Genet. 2022;13 PubMed PMC

Saba L.M., Hoffman P.L., Homanics G.E., Mahaffey S., Daulatabad S.V., Janga S.C., Tabakoff B. A long non-coding RNA (Lrap) modulates brain gene expression and levels of alcohol consumption in rats. Gene Brain Behav. 2021;20 PubMed PMC

Simonis M., Atanur S.S., Linsen S., Guryev V., Ruzius F.P., Game L., Lansu N., de Bruijn E., van Heesch S., Jones S.J.M., et al. Genetic basis of transcriptome differences between the founder strains of the rat HXB/BXH recombinant inbred panel. Genome Biol. 2012;13:r31. PubMed PMC

Senko A.N., Overall R.W., Silhavy J., Mlejnek P., Malínská H., Hüttl M., Marková I., Fabel K.S., Lu L., Stuchlik A., et al. Systems genetics in the rat HXB/BXH family identifies Tti2 as a pleiotropic quantitative trait gene for adult hippocampal neurogenesis and serum glucose. PLoS Genet. 2022;18 PubMed PMC

Bettenworth D., Bokemeyer A., Baker M., Mao R., Parker C.E., Nguyen T., Ma C., Panés J., Rimola J., Fletcher J.G., et al. Assessment of Crohn's disease-associated small bowel strictures and fibrosis on cross-sectional imaging: a systematic review. Gut. 2019;68:1115–1126. PubMed PMC

Gordon I.O., Bettenworth D., Bokemeyer A., Srivastava A., Rosty C., de Hertogh G., Robert M.E., Valasek M.A., Mao R., Kurada S., et al. Histopathology Scoring Systems of Stenosis Associated With Small Bowel Crohn's Disease: A Systematic Review. Gastroenterology. 2020;158:137–150.e1. PubMed PMC

Low T.Y., van Heesch S., van den Toorn H., Giansanti P., Cristobal A., Toonen P., Schafer S., Hübner N., van Breukelen B., Mohammed S., et al. Quantitative and qualitative proteome characteristics extracted from in-depth integrated genomics and proteomics analysis. Cell Rep. 2013;5:1469–1478. PubMed

Mulligan M.K., Mozhui K., Prins P., Williams R.W. GeneNetwork: A Toolbox for Systems Genetics. Methods Mol. Biol. 2017;1488:75–120. PubMed PMC

Anderson K.R., Harris J.A., Ng L., Prins P., Memar S., Ljungquist B., Fürth D., Williams R.W., Ascoli G.A., Dumitriu D. Highlights from the Era of Open Source Web-Based Tools. J. Neurosci. 2021;41:927–936. PubMed PMC

Sloan Z., Arends D., Broman K.W., Centeno A., Furlotte N., Nijveen H., Yan L., Zhou X., Williams R.W., Prins P. GeneNetwork: framework for web-based genetics. J. Open Source Softw. 2016;1:25.

Ritchie M.E., Phipson B., Wu D., Hu Y., Law C.W., Shi W., Smyth G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43 PubMed PMC

Saba L.M., Flink S.C., Vanderlinden L.A., Israel Y., Tampier L., Colombo G., Kiianmaa K., Bell R.L., Printz M.P., Flodman P., et al. The sequenced rat brain transcriptome--its use in identifying networks predisposing alcohol consumption. FEBS J. 2015;282:3556–3578. PubMed PMC

Li Y., Wang X., Cho J.H., Shaw T.I., Wu Z., Bai B., Wang H., Zhou S., Beach T.G., Wu G., et al. JUMPg: An Integrative Proteogenomics Pipeline Identifying Unannotated Proteins in Human Brain and Cancer Cells. J. Proteome Res. 2016;15:2309–2320. PubMed PMC

Ng P.C., Henikoff S. Predicting deleterious amino acid substitutions. Genome Res. 2001;11:863–874. PubMed PMC

de Jong T.V., Pan Y., Rastas P., Munro D., Tutaj M., Akil H., Benner C., Chen D., Chitre A.S., Chow W., et al. A revamped rat reference genome improves the discovery of genetic diversity in laboratory rats. Cell Genom. 2024;4 PubMed PMC

Morrissey C., Grieve I.C., Heinig M., Atanur S., Petretto E., Pravenec M., Hubner N., Aitman T.J. Integrated genomic approaches to identification of candidate genes underlying metabolic and cardiovascular phenotypes in the spontaneously hypertensive rat. Physiol. Genom. 2011;43:1207–1218. PubMed PMC

Cheng Y., Sun D., Zhu B., Zhou W., Lv C., Kou F., Wei H. Integrative Metabolic and Proteomic Profiling of the Brainstem in Spontaneously Hypertensive Rats. J. Proteome Res. 2020;19:4114–4124. PubMed

Chen Y., Wu L., Liu J., Ma L., Zhang W. Adenine nucleotide translocase: Current knowledge in post-translational modifications, regulations and pathological implications for human diseases. FASEB J. 2023;37 PubMed

Zhou X., Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 2012;44:821–824. PubMed PMC

Alnouti Y., Klaassen C.D. Tissue distribution, ontogeny, and regulation of aldehyde dehydrogenase (Aldh) enzymes mRNA by prototypical microsomal enzyme inducers in mice. Toxicol. Sci. 2008;101:51–64. PubMed

Vasiliou V., Pappa A., Petersen D.R. Role of aldehyde dehydrogenases in endogenous and xenobiotic metabolism. Chem. Biol. Interact. 2000;129:1–19. PubMed

Singh S., Brocker C., Koppaka V., Chen Y., Jackson B.C., Matsumoto A., Thompson D.C., Vasiliou V. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress. Free Radic. Biol. Med. 2013;56:89–101. PubMed PMC

Marchitti S.A., Brocker C., Stagos D., Vasiliou V. Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expet Opin. Drug Metabol. Toxicol. 2008;4:697–720. PubMed PMC

Rotondo F., Ho-Palma A.C., Remesar X., Fernández-López J.A., Romero M.D.M., Alemany M. Effect of sex on glucose handling by adipocytes isolated from rat subcutaneous, mesenteric and perigonadal adipose tissue. PeerJ. 2018;6 PubMed PMC

Tan B., Long X., Nakshatri H., Nephew K.P., Bigsby R.M. Striatin-3 gamma inhibits estrogen receptor activity by recruiting a protein phosphatase. J. Mol. Endocrinol. 2008;40:199–210. PubMed

Chen Z., Huang J., Feng Y., Li Z., Jiang Y. Profiling of specific long non-coding RNA signatures identifies ST8SIA6-AS1 AS a novel target for breast cancer. J. Gene Med. 2021;23 PubMed

Ziebarth J.D., Bhattacharya A., Cui Y. Bayesian Network Webserver: a comprehensive tool for biological network modeling. Bioinformatics. 2013;29:2801–2803. PubMed

Ziebarth J.D., Cui Y. Precise Network Modeling of Systems Genetics Data Using the Bayesian Network Webserver. Methods Mol. Biol. 2017;1488:319–335. PubMed

Garrison E., Guarracino A., Heumos S., Villani F., Bao Z., Tattini L., Hagmann J., Vorbrugg S., Marco-Sola S., Kubica C., et al. Building pangenome graphs. Nat. Methods. 2024;21:2008–2012. doi: 10.1038/s41592-024-02430-3. PubMed DOI

Garrison E., Guarracino A. Unbiased pangenome graphs. Bioinformatics. 2023;39 PubMed PMC

Guarracino A., Heumos S., Nahnsen S., Prins P., Garrison E. ODGI: understanding pangenome graphs. Bioinformatics. 2022;38:3319–3326. PubMed PMC

McBrayer S.K., Mayers J.R., DiNatale G.J., Shi D.D., Khanal J., Chakraborty A.A., Sarosiek K.A., Briggs K.J., Robbins A.K., Sewastianik T., et al. Transaminase Inhibition by 2-Hydroxyglutarate Impairs Glutamate Biosynthesis and Redox Homeostasis in Glioma. Cell. 2018;175:101–116.e25. PubMed PMC

Hillier J., Allcott G.J., Guest L.A., Heaselgrave W., Tonks A., Conway M.E., Cherry A.L., Coles S.J. The BCAT1 CXXC Motif Provides Protection against ROS in Acute Myeloid Leukaemia Cells. Antioxidants. 2022;11 PubMed PMC

Francois L., Boskovic P., Knerr J., He W., Sigismondo G., Schwan C., More T.H., Schlotter M., Conway M.E., Krijgsveld J., et al. BCAT1 redox function maintains mitotic fidelity. Cell Rep. 2022;41 PubMed

Milton P.P.S.R., Barbeira A., Liang Y., Owen M., Bastarache L., Park Y.S., Consortium G.T.E., Wen X., Im H.K. PhenomeXcan Mapping the genome to the phenome through the transcriptome. Sci. Adv. 2020;6 PubMed PMC

Hermsen R., de Ligt J., Spee W., Blokzijl F., Schäfer S., Adami E., Boymans S., Flink S., van Boxtel R., van der Weide R.H., et al. Genomic landscape of rat strain and substrain variation. BMC Genom. 2015;16:357. PubMed PMC

Chen Z., Chen W., Li Y., Moos M., Jr., Xiao D., Wang C. Single-nucleus chromatin accessibility and RNA sequencing reveal impaired brain development in prenatally e-cigarette exposed neonatal rats. iScience. 2022;25 PubMed PMC

Newman A.M., Steen C.B., Liu C.L., Gentles A.J., Chaudhuri A.A., Scherer F., Khodadoust M.S., Esfahani M.S., Luca B.A., Steiner D., et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 2019;37:773–782. PubMed PMC

Wang J., Roeder K., Devlin B. Bayesian estimation of cell type-specific gene expression with prior derived from single-cell data. Genome Res. 2021;31:1807–1818. PubMed PMC

Liao W.W., Asri M., Ebler J., Doerr D., Haukness M., Hickey G., Lu S., Lucas J.K., Monlong J., Abel H.J., et al. A draft human pangenome reference. Nature. 2023;617:312–324. PubMed PMC

Guarracino A., Buonaiuto S., de Lima L.G., Potapova T., Rhie A., Koren S., Rubinstein B., Fischer C., Human Pangenome Reference Consortium. Gerton J.L. Recombination between heterologous human acrocentric chromosomes. Nature. 2023;617:335–343. PubMed PMC

Deutsch E.W., Bandeira N., Perez-Riverol Y., Sharma V., Carver J.J., Mendoza L., Kundu D.J., Wang S., Bandla C., Kamatchinathan S., et al. The ProteomeXchange consortium at 10 years: 2023 update. Nucleic Acids Res. 2023;51:D1539–D1548. PubMed PMC

Ross R.A., Spengler B.A., Biedler J.L. Coordinate morphological and biochemical interconversion of human neuroblastoma cells. J. Natl. Cancer Inst. 1983;71:741–747. PubMed

Biedler J.L., Roffler-Tarlov S., Schachner M., Freedman L.S. Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res. 1978;38:3751–3757. PubMed

Szklarczyk D., Gable A.L., Nastou K.C., Lyon D., Kirsch R., Pyysalo S., Doncheva N.T., Legeay M., Fang T., Bork P., et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49:D605–D612. PubMed PMC

Wang K., Li M., Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38 PubMed PMC

Yu G., Wang L.G., Han Y., He Q.Y. clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters. Omics-a J. Integ. Biol. 2012;16:284–287. PubMed PMC

Wang X., Li Y., Wu Z., Wang H., Tan H., Peng J. JUMP: a tag-based database search tool for peptide identification with high sensitivity and accuracy. Mol. Cell. Proteomics. 2014;13:3663–3673. PubMed PMC

Wang G., Sarkar A., Carbonetto P., Stephens M. A simple new approach to variable selection in regression, with application to genetic fine mapping. J. R. Stat. Soc. Series B Stat. Methodol. 2020;82:1273–1300. PubMed PMC

Demichev V., Messner C.B., Vernardis S.I., Lilley K.S., Ralser M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods. 2020;17:41–44. PubMed PMC

UniProt Consortium UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023;51:D523–D531. PubMed PMC

Wesierska M., Dockery C., Fenton A.A. Beyond memory, navigation, and inhibition: behavioral evidence for hippocampus-dependent cognitive coordination in the rat. J. Neurosci. 2005;25:2413–2419. PubMed PMC

Kubik S., Fenton A.A. Behavioral evidence that segregation and representation are dissociable hippocampal functions. J. Neurosci. 2005;25:9205–9212. PubMed PMC

Stuchlik A., Petrasek T., Prokopova I., Holubová K., Hatalová H., Valeš K., Kubík Š., Dockery C., Wesierska M. Place avoidance tasks as tools in the behavioral neuroscience of learning and memory. Physiol. Res. 2013;62:S1–S19. PubMed

Kubík S., Stuchlík A., Fenton A.A. Evidence for hippocampal role in place avoidance other than merely memory storage. Physiol. Res. 2006;55:445–452. PubMed

Stuchlik A., Petrasek T., Vales K. Dopamine D2 receptors and alpha1-adrenoceptors synergistically modulate locomotion and behavior of rats in a place avoidance task. Behav. Brain Res. 2008;189:139–144. PubMed

Stuchlik A., Vales K. Baclofen dose-dependently disrupts learning in a place avoidance task requiring cognitive coordination. Physiol. Behav. 2009;97:507–511. PubMed

Bai B., Tan H., Pagala V.R., High A.A., Ichhaporia V.P., Hendershot L., Peng J. Deep Profiling of Proteome and Phosphoproteome by Isobaric Labeling, Extensive Liquid Chromatography, and Mass Spectrometry. Methods Enzymol. 2017;585:377–395. PubMed PMC

Pagala V.R., High A.A., Wang X., Tan H., Kodali K., Mishra A., Kavdia K., Xu Y., Wu Z., Peng J. Quantitative protein analysis by mass spectrometry. Methods Mol. Biol. 2015;1278:281–305. PubMed

Xu P., Duong D.M., Peng J. Systematical optimization of reverse-phase chromatography for shotgun proteomics. J. Proteome Res. 2009;8:3944–3950. PubMed PMC

Wang H., Yang Y., Li Y., Bai B., Wang X., Tan H., Liu T., Beach T.G., Peng J., Wu Z. Systematic optimization of long gradient chromatography mass spectrometry for deep analysis of brain proteome. J. Proteome Res. 2015;14:829–838. PubMed PMC

Peng J., Elias J.E., Thoreen C.C., Licklider L.J., Gygi S.P. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J. Proteome Res. 2003;2:43–50. PubMed

Hughes C.S., Moggridge S., Müller T., Sorensen P.H., Morin G.B., Krijgsveld J. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat. Protoc. 2019;14:68–85. PubMed

Jirout M., Krenová D., Kren V., Breen L., Pravenec M., Schork N.J., Printz M.P. A new framework marker-based linkage map and SDPs for the rat HXB/BXH strain set. Mamm. Genome. 2003;14:537–546. PubMed

Niu M., Cho J.H., Kodali K., Pagala V., High A.A., Wang H., Wu Z., Li Y., Bi W., Zhang H., et al. Extensive Peptide Fractionation and y(1) Ion-Based Interference Detection Method for Enabling Accurate Quantification by Isobaric Labeling and Mass Spectrometry. Anal. Chem. 2017;89:2956–2963. PubMed PMC

Sadrara M., Khorrami M.K. Principal component analysis-multivariate adaptive regression splines (PCA-MARS) and back propagation-artificial neural network (BP-ANN) methods for predicting the efficiency of oxidative desulfurization systems using ATR-FTIR spectroscopy. Spectrochim. Acta Mol. Biomol. Spectrosc. 2023;300 PubMed

Shang L., Smith J.A., Zhao W., Kho M., Turner S.T., Mosley T.H., Kardia S.L.R., Zhou X. Genetic Architecture of Gene Expression in European and African Americans: An eQTL Mapping Study in GENOA. Am. J. Hum. Genet. 2020;106:496–512. PubMed PMC

Jansen R., Hottenga J.J., Nivard M.G., Abdellaoui A., Laport B., de Geus E.J., Wright F.A., Penninx B.W.J.H., Boomsma D.I. Conditional eQTL analysis reveals allelic heterogeneity of gene expression. Hum. Mol. Genet. 2017;26:1444–1451. PubMed PMC

Pickrell J.K., Marioni J.C., Pai A.A., Degner J.F., Engelhardt B.E., Nkadori E., Veyrieras J.B., Stephens M., Gilad Y., Pritchard J.K. Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature. 2010;464:768–772. PubMed PMC

Barreiro L.B., Tailleux L., Pai A.A., Gicquel B., Marioni J.C., Gilad Y. Deciphering the genetic architecture of variation in the immune response to Mycobacterium tuberculosis infection. Proc. Natl. Acad. Sci. USA. 2012;109:1204–1209. PubMed PMC

Guarracino A., Mwaniki N., Marco-Sola S., Garrison E. wfmash: whole-chromosome pairwise alignment using the hierarchical wavefront algorithm (v0.10.4) Zenodo. 2023 doi: 10.5281/zenodo.13629309. DOI

Hickey G., Heller D., Monlong J. Genotyping structural variants in pangenome graphs using the vg toolkit. Genome Biol. 2020;21:35. PubMed PMC

Wick R.R., Schultz M.B., Zobel J., Holt K.E. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics. 2015;31:3350–3352. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...