Systems genetics in the rat HXB/BXH family identifies Tti2 as a pleiotropic quantitative trait gene for adult hippocampal neurogenesis and serum glucose
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
P30 DA044223
NIDA NIH HHS - United States
R01 GM123489
NIGMS NIH HHS - United States
PubMed
35377872
PubMed Central
PMC9060359
DOI
10.1371/journal.pgen.1009638
PII: PGENETICS-D-21-00750
Knihovny.cz E-zdroje
- MeSH
- fenotyp MeSH
- glukosa * genetika metabolismus MeSH
- hipokampus metabolismus MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- neurogeneze * genetika MeSH
- potkani inbrední BN MeSH
- potkani inbrední SHR MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glukosa * MeSH
- Tti2 protein, rat MeSH Prohlížeč
Neurogenesis in the adult hippocampus contributes to learning and memory in the healthy brain but is dysregulated in metabolic and neurodegenerative diseases. The molecular relationships between neural stem cell activity, adult neurogenesis, and global metabolism are largely unknown. Here we applied unbiased systems genetics methods to quantify genetic covariation among adult neurogenesis and metabolic phenotypes in peripheral tissues of a genetically diverse family of rat strains, derived from a cross between the spontaneously hypertensive (SHR/OlaIpcv) strain and Brown Norway (BN-Lx/Cub). The HXB/BXH family is a very well established model to dissect genetic variants that modulate metabolic and cardiovascular diseases and we have accumulated deep phenome and transcriptome data in a FAIR-compliant resource for systematic and integrative analyses. Here we measured rates of precursor cell proliferation, survival of new neurons, and gene expression in the hippocampus of the entire HXB/BXH family, including both parents. These data were combined with published metabolic phenotypes to detect a neurometabolic quantitative trait locus (QTL) for serum glucose and neuronal survival on Chromosome 16: 62.1-66.3 Mb. We subsequently fine-mapped the key phenotype to a locus that includes the Telo2-interacting protein 2 gene (Tti2)-a chaperone that modulates the activity and stability of PIKK kinases. To verify the hypothesis that differences in neurogenesis and glucose levels are caused by a polymorphism in Tti2, we generated a targeted frameshift mutation on the SHR/OlaIpcv background. Heterozygous SHR-Tti2+/- mutants had lower rates of hippocampal neurogenesis and hallmarks of dysglycemia compared to wild-type littermates. Our findings highlight Tti2 as a causal genetic link between glucose metabolism and structural brain plasticity. In humans, more than 800 genomic variants are linked to TTI2 expression, seven of which have associations to protein and blood stem cell factor concentrations, blood pressure and frontotemporal dementia.
CRTD Center for Regenerative Therapies Dresden Technische Universität Dresden Germany
German Center for Neurodegenerative Diseases Dresden Germany
Institute for Clinical and Experimental Medicine Prague Czech Republic
Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Panza F, Solfrizzi V, Logroscino G, Maggi S, Santamato A, Seripa D, et al.. Current epidemiological approaches to the metabolic-cognitive syndrome. Journal of Alzheimer’s Disease. IOS Press; 2012. doi: 10.3233/JAD-2012-111496 PubMed DOI
Watanabe K, Stringer S, Frei O, Umićević Mirkov M, de Leeuw C, Polderman TJC, et al.. A global overview of pleiotropy and genetic architecture in complex traits. Nat Genet. 2019;51: 1339–1348. doi: 10.1038/s41588-019-0481-0 PubMed DOI
Lumsden AL, Mulugeta A, Zhou A, Hyppönen E. Apolipoprotein E (APOE) genotype-associated disease risks: a phenome-wide, registry-based, case-control study utilising the UK Biobank. EBioMedicine. 2020;59. doi: 10.1016/j.ebiom.2020.102954 PubMed DOI PMC
Nikpay M, Mohammadzadeh S. Phenome-wide screening for traits causally associated with the risk of coronary artery disease. J Hum Genet. 2020;65: 371–380. doi: 10.1038/s10038-019-0716-z PubMed DOI
Andreassen OA, Djurovic S, Thompson WK, Schork AJ, Kendler KS, O’Donovan MC, et al.. Improved detection of common variants associated with schizophrenia by leveraging pleiotropy with cardiovascular-disease risk factors. Am J Hum Genet. 2013;92: 197–209. doi: 10.1016/j.ajhg.2013.01.001 PubMed DOI PMC
Zhang T, Goodman M, Zhu F, Healy B, Carruthers R, Chitnis T, et al.. Phenome-wide examination of comorbidity burden and multiple sclerosis disease severity. Neurol Neuroimmunol neuroinflammation. 2020;7. doi: 10.1212/NXI.0000000000000864 PubMed DOI PMC
Thomassen JQ, Tolstrup JS, Benn M, Frikke-Schmidt R. Type-2 diabetes and risk of dementia: Observational and Mendelian randomisation studies in 1 million individuals. Epidemiol Psychiatr Sci. 2020;29. doi: 10.1017/S2045796020000347 PubMed DOI PMC
Mollon J, Curran JE, Mathias SR, Knowles EEM, Carlisle P, Fox PT, et al.. Neurocognitive impairment in type 2 diabetes: evidence for shared genetic aetiology. Diabetologia. 2020;63: 977–986. doi: 10.1007/s00125-020-05101-y PubMed DOI PMC
Stearns FW. One hundred years of pleiotropy: A retrospective. Genetics. Genetics; 2010. pp. 767–773. doi: 10.1534/genetics.110.122549 PubMed DOI PMC
Geiler-Samerotte KA, Li S, Lazaris C, Taylor A, Ziv N, Ramjeawan C, et al.. Extent and context dependence of pleiotropy revealed by high-throughput single-cell phenotyping. PLoS Biol. 2020;18. doi: 10.1371/journal.pbio.3000836 PubMed DOI PMC
White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, et al.. XGenome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes. Cell. 2013;154: 452. doi: 10.1016/j.cell.2013.06.022 PubMed DOI PMC
McGuigan K, Collet JM, McGraw EA, Ye YH, Allen SL, Chenoweth SF, et al.. The nature and extent of mutational pleiotropy in gene expression of male Drosophila serrata. Genetics. 2014;196: 911–921. doi: 10.1534/genetics.114.161232 PubMed DOI PMC
Wagner GP, Zhang J. The pleiotropic structure of the genotype-phenotype map: The evolvability of complex organisms. Nature Reviews Genetics. Nat Rev Genet; 2011. pp. 204–213. doi: 10.1038/nrg2949 PubMed DOI
Wang X, Pandey AK, Mulligan MK, Williams EG, Mozhui K, Li Z, et al.. Joint mouse-human phenome-wide association to test gene function and disease risk. Nat Commun. 2016;7. doi: 10.1038/ncomms10464 PubMed DOI PMC
Sivakumaran S, Agakov F, Theodoratou E, Prendergast JG, Zgaga L, Manolio T, et al.. Abundant pleiotropy in human complex diseases and traits. Am J Hum Genet. 2011;89: 607–618. doi: 10.1016/j.ajhg.2011.10.004 PubMed DOI PMC
Pickrell JK, Berisa T, Liu JZ, Ségurel L, Tung JY, Hinds DA. Detection and interpretation of shared genetic influences on 42 human traits. Nat Genet. 2016;48: 709–717. doi: 10.1038/ng.3570 PubMed DOI PMC
Shikov AE, Skitchenko RK, Predeus A V., Barbitoff YA. Phenome-wide functional dissection of pleiotropic effects highlights key molecular pathways for human complex traits. Sci Rep. 2020;10: 1–10. doi: 10.1038/s41598-019-56847-4 PubMed DOI PMC
Jordan DM, Verbanck M, Do R. HOPS: A quantitative score reveals pervasive horizontal pleiotropy in human genetic variation is driven by extreme polygenicity of human traits and diseases. Genome Biol. 2019;20. doi: 10.1186/s13059-019-1628-0 PubMed DOI PMC
Chesmore K, Bartlett J, Williams SM. The ubiquity of pleiotropy in human disease. Hum Genet. 2018;137: 39–44. doi: 10.1007/s00439-017-1854-z PubMed DOI
Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, et al.. An atlas of genetic correlations across human diseases and traits. Nat Genet 2015 4711. 2015;47: 1236–1241. doi: 10.1038/ng.3406 PubMed DOI PMC
Toda T, Gage FH. Review: adult neurogenesis contributes to hippocampal plasticity. Cell and Tissue Research. Springer Verlag; 2018. pp. 693–709. doi: 10.1007/s00441-017-2735-4 PubMed DOI
Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, et al.. XDynamics of hippocampal neurogenesis in adult humans. Cell. 2013;153: 1219. doi: 10.1016/j.cell.2013.05.002 PubMed DOI PMC
Knobloch M, Jessberger S. Metabolism and neurogenesis. Current Opinion in Neurobiology. Elsevier Ltd; 2017. pp. 45–52. doi: 10.1016/j.conb.2016.11.006 PubMed DOI
Kempermann G, Chesler EJ, Lu L, Williams RW, Gage FH. Natural variation and genetic covariance in adult hippocampal neurogenesis. Proc Natl Acad Sci U S A. 2006;103: 780–785. doi: 10.1073/pnas.0510291103 PubMed DOI PMC
Kempermann G, Kuhn HG, Gage FH. Genetic influence on neurogenesis in the dentate gyrus of adult mice. Proc Natl Acad Sci U S A. 1997;94: 10409–10414. doi: 10.1073/pnas.94.19.10409 PubMed DOI PMC
Printz MP, Jirout M, Jaworski R, Alemayehu A, Kren V. Invited review: HXB/BXH rat recombinant inbred strain platform: A newly enhanced tool for cardiovascular, behavioral, and developmental genetics and genomics. Journal of Applied Physiology. American Physiological Society; 2003. pp. 2510–2522. doi: 10.1152/japplphysiol.00064.2003 PubMed DOI
Liska F, Peterkovaa R, Peterka M, Landa V, Zõadek V, Mlejnek P, et al.. Targeting of the Plzf gene in the rat by transcription activator-like Effector nuclease results in caudal regression syndrome in spontaneously hypertensive rats. PLoS One. 2016;11. doi: 10.1371/journal.pone.0164206 PubMed DOI PMC
Mondon CE, Reaven GM. Evidence of abnormalities of insulin metabolism in rats with spontaneous hypertension. Metabolism. 1988;37: 303–305. doi: 10.1016/0026-0495(88)90127-8 PubMed DOI
Pravenec M, Zídek V, Landa V, Šimáková M, Mlejnek P, Kazdová L, et al.. Genetic Analysis of “Metabolic Syndrome” in the Spontaneously Hypertensive Rat. Physiol Res. 2004;53: 15–22. Available: http://www.biomed.cas.cz/physiolres PubMed
Pravenec M. Use of rat genomics for investigating the metabolic syndrome. Methods Mol Biol. 2010;597: 415–426. doi: 10.1007/978-1-60327-389-3_28 PubMed DOI
Terry A V., Hernandez CM, Buccafusco JJ, Gattu M. Deficits in spatial learning and nicotinic-acetylcholine receptors in older, spontaneously hypertensive rats. Neuroscience. 2000;101: 357–368. doi: 10.1016/s0306-4522(00)00377-8 PubMed DOI
Grünblatt E, Bartl J, Iuhos D-I, Knezovic A, Trkulja V, Riederer P, et al.. Characterization of cognitive deficits in spontaneously hypertensive rats, accompanied by brain insulin receptor dysfunction. J Mol Psychiatry. 2015;3. doi: 10.1186/s40303-015-0010-8 PubMed DOI PMC
Sabbatini M, Strocchi P, Vitaioli L, Amenta F. The hippocampus in spontaneously hypertensive rats: A quantitative microanatomical study. Neuroscience. 2000;100: 251–258. doi: 10.1016/s0306-4522(00)00297-9 PubMed DOI
Mignini F, Vitaioli L, Sabbatini M, Tomassoni D, Amenta F. The cerebral cortex of spontaneously hypertensive rats: A quantitative microanatomical study. Clinical and Experimental Hypertension. Clin Exp Hypertens; 2004. pp. 287–303. doi: 10.1081/ceh-120034135 PubMed DOI
Tabakoff B, Smith H, Vanderlinden LA, Hoffman PL, Saba LM. Networking in Biology: The Hybrid Rat Diversity Panel. Methods in Molecular Biology. Humana Press Inc.; 2019. pp. 213–231. doi: 10.1007/978-1-4939-9581-3_10 PubMed DOI
Wilkinson MD, Dumontier M, Aalbersberg IjJ, Appleton G, Axton M, Baak A, et al.. Comment: The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3: 1–9. doi: 10.1038/sdata.2016.18 PubMed DOI PMC
Mulligan MK, Mozhui K, Prins P, Williams RW. Genenetwork: A toolbox for systems genetics. Methods in Molecular Biology. Humana Press Inc.; 2017. pp. 75–120. doi: 10.1007/978-1-4939-6427-7_4 PubMed DOI PMC
Aitman TJ, Critser JK, Cuppen E, Dominiczak A, Fernandez-Suarez XM, Flint J, et al.. Progress and prospects in rat genetics: A community view. Nature Genetics. Nat Genet; 2008. pp. 516–522. doi: 10.1038/ng.147 PubMed DOI
Morrissey C, Grieve IC, Heinig M, Atanur S, Petretto E, Pravenec M, et al.. Integrated genomic approaches to identification of candidate genes underlying metabolic and cardiovascular phenotypes in the spontaneously hypertensive rat. Physiol Genomics. 2011;43: 1207–1218. doi: 10.1152/physiolgenomics.00210.2010 PubMed DOI PMC
Hubner N, Wallace CA, Zimdahl H, Petretto E, Schulz H, Maciver F, et al.. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat Genet. 2005;37: 243–253. doi: 10.1038/ng1522 PubMed DOI
Petretto E, Mangion J, Dickens NJ, Cook SA, Kumaran MK, Lu H, et al.. Heritability and tissue specificity of expression quantitative trait loci. PLoS Genet. 2006;2: 1625–1633. doi: 10.1371/journal.pgen.0020172 PubMed DOI PMC
Adriaens ME, Lodder EM, Moreno-Moral A, Silhavý J, Heinig M, Glinge C, et al.. Systems genetics approaches in rat identify novel genes and gene networks associated with cardiac conduction. J Am Heart Assoc. 2018;7. doi: 10.1161/JAHA.118.009243 PubMed DOI PMC
Heinig M, Petretto E, Wallace C, Bottolo L, Rotival M, Lu H, et al.. A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk. Nature. 2010;467: 460–464. doi: 10.1038/nature09386 PubMed DOI PMC
Pravenec M, Churchill PC, Churchill MC, Viklicky O, Kazdova L, Aitman TJ, et al.. Identification of renal Cd36 as a determinant of blood pressure and risk for hypertension. Nat Genet. 2008;40: 952–954. doi: 10.1038/ng.164 PubMed DOI
Atanur SS, Birol I, Guryev V, Hirst M, Hummel O, Morrissey C, et al.. The genome sequence of the spontaneously hypertensive rat: Analysis and functional significance. Genome Res. 2010;20: 791–803. doi: 10.1101/gr.103499.109 PubMed DOI PMC
Simonis M, Atanur SS, Linsen S, Guryev V, Ruzius FP, Game L, et al.. Genetic basis of transcriptome differences between the founder strains of the rat HXB/BXH recombinant inbred panel. Genome Biol. 2012;13. doi: 10.1186/gb-2012-13-4-r31 PubMed DOI PMC
Nadeau JH, Burrage LC, Restivo J, Pao YH, Churchill G, Hoit BD. Pleiotropy, homeostasis, and functional networks based on assays of cardiovascular traits in genetically randomized populations. Genome Res. 2003;13: 2082–2091. doi: 10.1101/gr.1186603 PubMed DOI PMC
Kempermann G, Gast D, Kronenberg G, Yamaguchi M, Gage FH. Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development. Development; 2003. pp. 391–399. doi: 10.1242/dev.00203 PubMed DOI
Zocher S, Schilling S, Grzyb AN, Adusumilli VS, Lopes JB, Günther S, et al.. Early-life environmental enrichment generates persistent individualized behavior in mice. Sci Adv. 2020;6. doi: 10.1126/sciadv.abb1478 PubMed DOI PMC
Li R, Tsaih SW, Shockley K, Stylianou IM, Wergedal J, Paigen B, et al.. Structural model analysis of multiple quantitative traits. PLoS Genet. 2006;2: 1046–1057. doi: 10.1371/journal.pgen.0020114 PubMed DOI PMC
Abiola O, Angel JM, Avner P, Bachmanov AA, Belknap JK, Bennett B, et al.. The nature and identification of quantitative trait loci: A community’s view. Nature Reviews Genetics. Nat Rev Genet; 2003. pp. 911–916. doi: 10.1038/nrg1206 PubMed DOI PMC
Lander E, Kruglyak L. Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nat Genet. 1995;11: 241–247. doi: 10.1038/ng1195-241 PubMed DOI
Leduc MS, Blair RH, Verdugo RA, Tsaih SW, Walsh K, Churchill GA, et al.. Using bioinformatics and systems genetics to dissect HDL-cholesterol genetics in an MRL/MpJ x SM/J intercross. J Lipid Res. 2012;53: 1163–1175. doi: 10.1194/jlr.M025833 PubMed DOI PMC
Leduc MS, Hageman RS, Verdugo RA, Tsaih SW, Walsh K, Churchill GA, et al.. Integration of QTL and bioinformatic tools to identify candidate genes for triglycerides in mice. J Lipid Res. 2011;52: 1672–1682. doi: 10.1194/jlr.M011130 PubMed DOI PMC
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al.. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7: 248–249. doi: 10.1038/nmeth0410-248 PubMed DOI PMC
Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31: 3812–3814. doi: 10.1093/nar/gkg509 PubMed DOI PMC
Sugimoto K. Branching the Tel2 pathway for exact fit on phosphatidylinositol 3-kinase-related kinases. Current Genetics. Springer Verlag; 2018. pp. 965–970. doi: 10.1007/s00294-018-0817-9 PubMed DOI PMC
Ardlie KG, DeLuca DS, Segrè A V., Sullivan TJ, Young TR, Gelfand ET, et al.. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science (80-). 2015;348: 648–660. doi: 10.1126/science.1262110 PubMed DOI PMC
Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-Associated SNPs Are More Likely to Be eQTLs: Annotation to Enhance Discovery from GWAS. Gibson G, editor. PLoS Genet. 2010;6: e1000888. doi: 10.1371/journal.pgen.1000888 PubMed DOI PMC
Hurov KE, Cotta-Ramusino C, Elledge SJ. A genetic screen identifies the Triple T complex required for DNA damage signaling and ATM and ATR stability. Genes Dev. 2010;24: 1939–1950. doi: 10.1101/gad.1934210 PubMed DOI PMC
Hořejší Z, Takai H, Adelman CA, Collis SJ, Flynn H, Maslen S, et al.. CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability. Mol Cell. 2010;39: 839–850. doi: 10.1016/j.molcel.2010.08.037 PubMed DOI
Takai H, Xie Y, De Lange T, Pavletich NP. Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes. Genes Dev. 2010;24: 2019–2030. doi: 10.1101/gad.1956410 PubMed DOI PMC
Kim Y, Park J, Joo SY, Kim B-G, Jo A, Lee H, et al.. Structure of the Human TELO2-TTI1-TTI2 Complex. J Mol Biol. 2022;434: 167370. doi: 10.1016/j.jmb.2021.167370 PubMed DOI
Pal M, Muñoz-Hernandez H, Bjorklund D, Zhou L, Degliesposti G, Skehel JM, et al.. Structure of the TELO2-TTI1-TTI2 complex and its function in TOR recruitment to the R2TP chaperone. Cell Rep. 2021;36. doi: 10.1016/J.CELREP.2021.109317 PubMed DOI PMC
Stirling PC, Bloom MS, Solanki-Patil T, Smith S, Sipahimalani P, Li Z, et al.. The complete spectrum of yeast chromosome instability genes identifies candidate cin cancer genes and functional roles for astra complex components. PLoS Genet. 2011;7. doi: 10.1371/journal.pgen.1002057 PubMed DOI PMC
Takai H, Wang RC, Takai KK, Yang H, de Lange T. Tel2 Regulates the Stability of PI3K-Related Protein Kinases. Cell. 2007;131: 1248–1259. doi: 10.1016/j.cell.2007.10.052 PubMed DOI
Kaizuka T, Hara T, Oshiro N, Kikkawa U, Yonezawa K, Takehana K, et al.. Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J Biol Chem. 2010;285: 20109–20116. doi: 10.1074/jbc.M110.121699 PubMed DOI PMC
Yamashita A. Role of SMG-1-mediated Upf1 phosphorylation in mammalian nonsense-mediated mRNA decay. Genes to Cells. Genes Cells; 2013. pp. 161–175. doi: 10.1111/gtc.12033 PubMed DOI
Cimprich KA, Cortez D. ATR: An essential regulator of genome integrity. Nature Reviews Molecular Cell Biology. Nat Rev Mol Cell Biol; 2008. pp. 616–627. doi: 10.1038/nrm2450 PubMed DOI PMC
Shimobayashi M, Hall MN. Making new contacts: The mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol. 2014;15: 155–162. doi: 10.1038/nrm3757 PubMed DOI
Murr R, Vaissière T, Sawan C, Shukla V, Herceg Z. Orchestration of chromatin-based processes: Mind the TRRAP. Oncogene. Oncogene; 2007. pp. 5358–5372. doi: 10.1038/sj.onc.1210605 PubMed DOI
Abraham RT. PI 3-kinase related kinases: “Big” players in stress-induced signaling pathways. DNA Repair. Elsevier; 2004. pp. 883–887. doi: 10.1016/j.dnarep.2004.04.002 PubMed DOI
Hoffman KS, Duennwald ML, Karagiannis J, Genereaux J, McCarton AS, Brandl CJ. Saccharomyces cerevisiae Tti2 regulates PIKK proteins and stress response. G3 Genes, Genomes, Genet. 2016;6: 1649–1659. doi: 10.1534/g3.116.029520 PubMed DOI PMC
Garcia N, Messing J. TTT and PIKK complex genes reverted to single copy following polyploidization and retain function despite massive retrotransposition in maize. Front Plant Sci. 2017;8. doi: 10.3389/fpls.2017.00008 PubMed DOI PMC
Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiological Reviews. American Physiological Society; 2018. pp. 2133–2223. doi: 10.1152/physrev.00063.2017 PubMed DOI PMC
Shan T, Zhang P, Jiang Q, Xiong Y, Wang Y, Kuang S. Adipocyte-specific deletion of mTOR inhibits adipose tissue development and causes insulin resistance in mice. Diabetologia. 2016;59: 1995–2004. doi: 10.1007/s00125-016-4006-4 PubMed DOI PMC
Kumar A, Harris TE, Keller SR, Choi KM, Magnuson MA, Lawrence JC. Muscle-Specific Deletion of Rictor Impairs Insulin-Stimulated Glucose Transport and Enhances Basal Glycogen Synthase Activity. Mol Cell Biol. 2008;28: 61–70. doi: 10.1128/MCB.01405-07 PubMed DOI PMC
Kumar A, Lawrence JC, Jung DY, Ko HJ, Keller SR, Kim JK, et al.. Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism. Diabetes. 2010;59: 1397–1406. doi: 10.2337/db09-1061 PubMed DOI PMC
Takagi M, Uno H, Nishi R, Sugimoto M, Hasegawa S, Piao J, et al.. ATM Regulates Adipocyte Differentiation and Contributes to Glucose Homeostasis. Cell Rep. 2015;10: 957–967. doi: 10.1016/j.celrep.2015.01.027 PubMed DOI
Mao Z, Zhang W. Role of mTOR in glucose and lipid metabolism. International Journal of Molecular Sciences. MDPI AG; 2018. doi: 10.3390/ijms19072043 PubMed DOI PMC
Langouët M, Saadi A, Rieunier G, Moutton S, Siquier-Pernet K, Fernet M, et al.. Mutation in TTI2 reveals a role for triple T complex in human brain development. Hum Mutat. 2013;34: 1472–1476. doi: 10.1002/humu.22399 PubMed DOI
Mainardi M, Fusco S, Grassi C. Modulation of hippocampal neural plasticity by glucose-related signaling. Neural Plasticity. Hindawi Publishing Corporation; 2015. doi: 10.1155/2015/657928 PubMed DOI PMC
Fernandez AM, Torres-Alemán I. The many faces of insulin-like peptide signalling in the brain. Nature Reviews Neuroscience. Nat Rev Neurosci; 2012. pp. 225–239. doi: 10.1038/nrn3209 PubMed DOI
van Praag X, Fleshner M, Schwartz MW, Mattson MP. Exercise, energy intake, glucose homeostasis, and the brain. J Neurosci. 2014;34: 15139–15149. doi: 10.1523/JNEUROSCI.2814-14.2014 PubMed DOI PMC
Rafalski VA, Brunet A. Energy metabolism in adult neural stem cell fate. Progress in Neurobiology. Prog Neurobiol; 2011. pp. 182–203. doi: 10.1016/j.pneurobio.2010.10.007 PubMed DOI
Marissal-Arvy N, Campas MN, Semont A, Ducroix-Crepy C, Beauvieux MC, Brossaud J, et al.. Insulin treatment partially prevents cognitive and hippocampal alterations as well as glucocorticoid dysregulation in early-onset insulin-deficient diabetic rats. Psychoneuroendocrinology. 2018;93: 72–81. doi: 10.1016/j.psyneuen.2018.04.016 PubMed DOI
Sun P, Knezovic A, Parlak M, Cuber J, Karabeg M, Deckert J, et al.. Long-Term Effects of Intracerebroventricular Streptozotocin Treatment on Adult Neurogenesis in the Rat Hippocampus. Curr Alzheimer Res. 2015;12: 772–784. doi: 10.2174/1567205012666150710112147 PubMed DOI
Stranahan AM, Arumugam T V., Cutler RG, Lee K, Egan JM, Mattson MP. Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci. 2008;11: 309–317. doi: 10.1038/nn2055 PubMed DOI PMC
Zhang WJ, Tan YF, Yue JTY, Vranic M, Wojtowicz JM. Impairment of hippocampal neurogenesis in streptozotocin-treated diabetic rats. Acta Neurol Scand. 2008;117: 205–210. doi: 10.1111/j.1600-0404.2007.00928.x PubMed DOI
Lee J, Seroogy KB, Mattson MP. Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. J Neurochem. 2002;80: 539–547. doi: 10.1046/j.0022-3042.2001.00747.x PubMed DOI
Park HR, Park M, Choi J, Park KY, Chung HY, Lee J. A high-fat diet impairs neurogenesis: Involvement of lipid peroxidation and brain-derived neurotrophic factor. Neurosci Lett. 2010;482: 235–239. doi: 10.1016/j.neulet.2010.07.046 PubMed DOI
Klein C, Jonas W, Iggena D, Empl L, Rivalan M, Wiedmer P, et al.. Exercise prevents high-fat diet-induced impairment of flexible memory expression in the water maze and modulates adult hippocampal neurogenesis in mice. Neurobiol Learn Mem. 2016;131: 26–35. doi: 10.1016/j.nlm.2016.03.002 PubMed DOI
Ziegler A, Bader P, McWalter K, Douglas G, Houdayer C, Bris C, et al.. Confirmation that variants in TTI2 are responsible for autosomal recessive intellectual disability. Clin Genet. 2019;96: 354–358. doi: 10.1111/cge.13603 PubMed DOI
Wang R, Han S, Liu H, Khan A, Xiaerbati H, Yu X, et al.. Novel compound heterozygous mutations in tti2 cause syndromic intellectual disability in a chinese family. Front Genet. 2019;10. doi: 10.3389/fgene.2019.00010 PubMed DOI PMC
Picher-Martel V, Labrie Y, Rivest S, Lace B, Chrestian N. Whole-exome sequencing identifies homozygous mutation in TTI2 in a child with primary microcephaly: A case report. BMC Neurol. 2020;20. doi: 10.1186/s12883-019-1550-9 PubMed DOI PMC
You J, Sobreira NL, Gable DL, Jurgens J, Grange DK, Belnap N, et al.. A Syndromic Intellectual Disability Disorder Caused by Variants in TELO2, a Gene Encoding a Component of the TTT Complex. Am J Hum Genet. 2016;98: 909–918. doi: 10.1016/j.ajhg.2016.03.014 PubMed DOI PMC
Moosa S, Altmüller J, Lyngbye T, Christensen R, Li Y, Nürnberg P, et al.. Novel compound heterozygous mutations in TELO2 in a patient with severe expression of You-Hoover-Fong syndrome. Mol Genet Genomic Med. 2017;5: 580–584. doi: 10.1002/mgg3.287 PubMed DOI PMC
Choy KR, Watters DJ. Neurodegeneration in ataxia-telangiectasia: Multiple roles of ATM kinase in cellular homeostasis. Developmental Dynamics. John Wiley and Sons Inc.; 2018. pp. 33–46. doi: 10.1002/dvdy.24522 PubMed DOI
Shiloh Y, Ziv Y. The ATM protein kinase: Regulating the cellular response to genotoxic stress, and more. Nature Reviews Molecular Cell Biology. Nat Rev Mol Cell Biol; 2013. pp. 197–210. doi: 10.1038/nrm3546 PubMed DOI
O’Driscoll M, Ruiz-Perez VL, Woods CG, Jeggo PA, Goodship JA. A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat Genet. 2003;33: 497–501. doi: 10.1038/ng1129 PubMed DOI
Branzei D, Foiani M. Regulation of DNA repair throughout the cell cycle. Nature Reviews Molecular Cell Biology. Nature Publishing Group; 2008. pp. 297–308. doi: 10.1038/nrm2351 PubMed DOI
Enriquez-Rios V, Dumitrache LC, Downing SM, Li Y, Brown EJ, Russell HR, et al.. DNA-PKcs, ATM, and ATR interplay maintains genome integrity during neurogenesis. J Neurosci. 2017;37: 893–905. doi: 10.1523/JNEUROSCI.4213-15.2016 PubMed DOI PMC
Allen DM, Van Praag H, Ray J, Weaver Z, Winrow CJ, Carter TA, et al.. Ataxia telangiectasia mutated is essential during adult neurogenesis. Genes Dev. 2001;15: 554–566. doi: 10.1101/gad.869001 PubMed DOI PMC
Lee Y, Shull ERP, Frappart PO, Katyal S, Enriquez-Rios V, Zhao J, et al.. ATR maintains select progenitors during nervous system development. EMBO J. 2012;31: 1177–1189. doi: 10.1038/emboj.2011.493 PubMed DOI PMC
Coufal NG, Garcia-Perez JL, Peng GE, Marchetto MCN, Muotri AR, Mu Y, et al.. Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells. Proc Natl Acad Sci U S A. 2011;108: 20382–20387. doi: 10.1073/pnas.1100273108 PubMed DOI PMC
Singer T, McConnell MJ, Marchetto MCN, Coufal NG, Gage FH. LINE-1 retrotransposons: Mediators of somatic variation in neuronal genomes? Trends Neurosci. 2010;33: 345–354. doi: 10.1016/j.tins.2010.04.001 PubMed DOI PMC
Garza-Lombó C, Gonsebatt ME. Mammalian target of rapamycin: Its role in early neural development and in adult and aged brain function. Frontiers in Cellular Neuroscience. Frontiers Media S.A.; 2016. doi: 10.3389/fncel.2016.00157 PubMed DOI PMC
Ka M, Condorelli G, Woodgett JR, Kim WY. mTOR regulates brain morphogenesis by mediating GSK3 signaling. Dev. 2014;141: 4076–4086. doi: 10.1242/dev.108282 PubMed DOI PMC
Hartman NW, Lin T V., Zhang L, Paquelet GE, Feliciano DM, Bordey A. MTORC1 Targets the Translational Repressor 4E-BP2, but Not S6 Kinase 1/2, to Regulate Neural Stem Cell Self-Renewal InVivo. Cell Rep. 2013;5: 433–444. doi: 10.1016/j.celrep.2013.09.017 PubMed DOI
Cochard LM, Levros LC, Joppé SE, Pratesi F, Aumont A, Fernandes KJL. Manipulation of EGFR-Induced Signaling for the Recruitment of Quiescent Neural Stem Cells in the Adult Mouse Forebrain. Front Neurosci. 2021;15. doi: 10.3389/fnins.2021.621076 PubMed DOI PMC
Raman L, Kong X, Kernie SG. Pharmacological inhibition of the mTOR pathway impairs hippocampal development in mice. Neurosci Lett. 2013;541: 9–14. doi: 10.1016/j.neulet.2013.01.045 PubMed DOI
Zhang T, Ding H, Wang Y, Yuan Z, Zhang Y, Chen G, et al.. Akt3-mTOR regulates hippocampal neurogenesis in adult mouse. J Neurochem. 2021;159: 498–511. doi: 10.1111/jnc.15441 PubMed DOI
Åberg MAI, Åberg ND, Palmer TD, Alborn AM, Carlsson-Skwirut C, Bang P, et al.. IGF-I has a direct proliferative effect in adult hippocampal progenitor cells. Mol Cell Neurosci. 2003;24: 23–40. doi: 10.1016/s1044-7431(03)00082-4 PubMed DOI
Trejo JL, Carro E, Torres-Alemán I. Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci. 2001;21: 1628–1634. doi: 10.1523/JNEUROSCI.21-05-01628.2001 PubMed DOI PMC
Lichtenwalner RJ, Forbes ME, Bennett SA, Lynch CD, Sonntag WE, Riddle DR. Intracerebroventricular infusion of insulin-like growth factor-I ameliorates the age-related decline in hippocampal neurogenesis. Neuroscience. 2001;107: 603–613. doi: 10.1016/s0306-4522(01)00378-5 PubMed DOI
Cheng CM, Cohen M, Tseng V, Bondy CA. Endogenous IGF1 enhances cell survival in the postnatal dentate gyrus. J Neurosci Res. 2001;64: 341–347. doi: 10.1002/jnr.1084 PubMed DOI
Agis-Balboa RC, Fischer A. Generating new neurons to circumvent your fears: The role of IGF signaling. Cellular and Molecular Life Sciences. Cell Mol Life Sci; 2014. pp. 21–42. doi: 10.1007/s00018-013-1316-2 PubMed DOI PMC
Chaker Z, Aïd S, Berry H, Holzenberger M. Suppression of IGF-I signals in neural stem cells enhances neurogenesis and olfactory function during aging. Aging Cell. 2015;14: 847–856. doi: 10.1111/acel.12365 PubMed DOI PMC
Kuwabara T, Kagalwala MN, Onuma Y, Ito Y, Warashina M, Terashima K, et al.. Insulin biosynthesis in neuronal progenitors derived from adult hippocampus and the olfactory bulb. EMBO Mol Med. 2011;3: 742–754. doi: 10.1002/emmm.201100177 PubMed DOI PMC
Van Brocklyn JR, Williams JB. The control of the balance between ceramide and sphingosine-1-phosphate by sphingosine kinase: Oxidative stress and the seesaw of cell survival and death. Comparative Biochemistry and Physiology—B Biochemistry and Molecular Biology. Elsevier Inc.; 2012. pp. 26–36. doi: 10.1016/j.cbpb.2012.05.006 PubMed DOI
Ghasemi R, Dargahi L, Ahmadiani A. Integrated sphingosine-1 phosphate signaling in the central nervous system: From physiological equilibrium to pathological damage. Pharmacological Research. Academic Press; 2016. pp. 156–164. doi: 10.1016/j.phrs.2015.11.006 PubMed DOI
Karunakaran I, van Echten-Deckert G. Sphingosine 1-phosphate–A double edged sword in the brain. Biochimica et Biophysica Acta—Biomembranes. Elsevier B.V.; 2017. pp. 1573–1582. doi: 10.1016/j.bbamem.2017.03.008 PubMed DOI
Kanno T, Nishizaki T, Proia RL, Kajimoto T, Jahangeer S, Okada T, et al.. Regulation of synaptic strength by sphingosine 1-phosphate in the hippocampus. Neuroscience. 2010;171: 973–980. doi: 10.1016/j.neuroscience.2010.10.021 PubMed DOI
Martin JL, Lin MZ, McGowan EM, Baxter RC. Potentiation of growth factor signaling by insulin-like growth factor-binding protein-3 in breast epithelial cells requires sphingosine kinase activity. J Biol Chem. 2009;284: 25542–25552. doi: 10.1074/jbc.M109.007120 PubMed DOI PMC
Jęśko H, Stępień A, Lukiw WJ, Strosznajder RP. The Cross-Talk Between Sphingolipids and Insulin-Like Growth Factor Signaling: Significance for Aging and Neurodegeneration. Molecular Neurobiology. Humana Press Inc.; 2019. pp. 3501–3521. doi: 10.1007/s12035-018-1286-3 PubMed DOI PMC
Paliouras GN, Hamilton LK, Aumont A, Joppé SE, Barnab-Heider F, Fernandes KJL. Mammalian target of rapamycin signaling is a key regulator of the transit-amplifying progenitor pool in the adult and aging forebrain. J Neurosci. 2012;32: 15012–15026. doi: 10.1523/JNEUROSCI.2248-12.2012 PubMed DOI PMC
Akagawa R, Nabeshima YI, Kawauchi T. Alternative Functions of Cell Cycle-Related and DNA Repair Proteins in Post-mitotic Neurons. Front Cell Dev Biol. 2021;9. doi: 10.3389/fcell.2021.753175 PubMed DOI PMC
Williams RW, Rakic P. Three-dimensional counting: an accurate and direct method to estimate numbers of cells in sectioned material. J Comp Neurol. 1988;278: 344–352. doi: 10.1002/cne.902780305 PubMed DOI
Sandberg R, Larsson O. Improved precision and accuracy for microarrays using updated probe set definitions. BMC Bioinformatics. 2007;8. doi: 10.1186/1471-2105-8-8 PubMed DOI PMC
Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al.. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4: 249–264. doi: 10.1093/biostatistics/4.2.249 PubMed DOI
Gautier L, Cope L, Bolstad BM, Irizarry RA. Affy—Analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20: 307–315. doi: 10.1093/bioinformatics/btg405 PubMed DOI
Mhyre TR, Chesler EJ, Thiruchelvam M, Lungu C, Cory-Slechta DA, Fry JD, et al.. Heritability, correlations and in silico mapping of locomotor behavior and neurochemistry in inbred strains of mice. Genes, Brain Behav. 2005;4: 209–228. doi: 10.1111/j.1601-183X.2004.00102.x PubMed DOI
Bates D, Mächler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67: 1–48. doi: 10.18637/jss.v067.i01 DOI
Saar K, Beck A, Bihoreau MT, Birney E, Brocklebank D, Chen Y, et al.. SNP and haplotype mapping for genetic analysis in the rat. Nat Genet. 2008;40: 560–566. doi: 10.1038/ng.124 PubMed DOI PMC
Wang J, Williams RW, Manly KF. WebQTL: Web-Based Complex Trait Analysis. Neuroinformatics. Neuroinformatics; 2003. pp. 299–308. doi: 10.1385/NI:1:4:299 PubMed DOI
Broman KW, Sen S. A guide to QTL mapping with R/qtl. 2009.
Langfelder P, Horvath S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9: 559. doi: 10.1186/1471-2105-9-559 PubMed DOI PMC
Sen Ś, Satagopan JM, Broman KW, Churchill GA. R/qtlDesign: inbred line cross experimental design. Mamm Genome. 2007;18: 87. doi: 10.1007/s00335-006-0090-y PubMed DOI PMC
Smith JR, Hayman GT, Wang SJ, Laulederkind SJF, Hoffman MJ, Kaldunski ML, et al.. The Year of the Rat: The Rat Genome Database at 20: A multi-species knowledgebase and analysis platform. Nucleic Acids Res. 2020;48: D731–D742. doi: 10.1093/nar/gkz1041 PubMed DOI PMC
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al.. Primer3-new capabilities and interfaces. Nucleic Acids Res. 2012;40: e115. doi: 10.1093/nar/gks596 PubMed DOI PMC
Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34: 525–527. doi: 10.1038/nbt.3519 PubMed DOI
Cunningham F, Achuthan P, Akanni W, Allen J, Amode MR, Armean IM, et al.. Ensembl 2019. Nucleic Acids Res. 2019;47: D745–D751. doi: 10.1093/nar/gky1113 PubMed DOI PMC
Pimentel H, Bray NL, Puente S, Melsted P, Pachter L. Differential analysis of RNA-seq incorporating quantification uncertainty. Nat Methods. 2017;14: 687–690. doi: 10.1038/nmeth.4324 PubMed DOI
Krämer A, Green J, Pollard J, Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2014;30: 523–530. doi: 10.1093/bioinformatics/btt703 PubMed DOI PMC
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2002. Available: https://www.r-project.org/.
Fox J. An R Companion to Applied Regression. Third. Sage, Thousand Oaks CA; 2019. Available: https://socialsciences.mcmaster.ca/jfox/Books/Companion/
Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biometrical Journal. Biom J; 2008. pp. 346–363. doi: 10.1002/bimj.200810425 PubMed DOI
Wickham H. ggplot2—Elegant Graphics for Data Analysis. Springer; 2016. Available: https://www.springer.com/de/book/9780387981413