Serum Bilirubin and Markers of Oxidative Stress and Inflammation in a Healthy Population and in Patients with Various Forms of Atherosclerosis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MH CZ-DRO-VFN64165
Ministry of Health
NPO EXCELES CarDia LX22NPO5104
Ministry of Education Youth and Sports
Cooperatio Program, research area DIAG,
Charles University
PubMed
36358491
PubMed Central
PMC9686784
DOI
10.3390/antiox11112118
PII: antiox11112118
Knihovny.cz E-zdroje
- Klíčová slova
- atherogenesis, atherosclerosis, bilirubin, inflammation, oxidative stress,
- Publikační typ
- časopisecké články MeSH
Oxidative stress and inflammation contribute significantly to atherogenesis. We and others have demonstrated that mildly elevated serum bilirubin levels protect against coronary and peripheral atherosclerosis, most likely due to the antioxidant and anti-inflammatory activities of bilirubin. The aim of the present study was to assess serum bilirubin and the markers of oxidative stress and inflammation in both healthy subjects and patients with various forms of atherosclerosis. The study was performed in patients with premature myocardial infarction (n = 129), chronic ischemic heart disease (n = 43), peripheral artery disease (PAD, n = 69), and healthy subjects (n = 225). In all subjects, standard serum biochemistry, UGT1A1 genotypes, total antioxidant status (TAS), and concentrations of various pro- and anti-inflammatory chemokines were determined. Compared to controls, all atherosclerotic groups had significantly lower serum bilirubin and TAS, while having much higher serum high-sensitivity C-reactive protein (hsCRP) and most of the analyzed proinflammatory cytokines (p < 0.05 for all comparisons). Surprisingly, the highest inflammation, and the lowest antioxidant status, together with the lowest serum bilirubin, was observed in PAD patients, and not in premature atherosclerosis. In conclusion, elevated serum bilirubin is positively correlated with TAS, and negatively related to inflammatory markers. Compared to healthy subjects, patients with atherosclerosis have a much higher degree of oxidative stress and inflammation.
Zobrazit více v PubMed
Vitek L. Bilirubin and atherosclerotic diseases. Physiol. Res. 2017;66:S11–S20. doi: 10.33549/physiolres.933581. PubMed DOI
Novotny L., Vitek L. Inverse relationship between serum bilirubin and atherosclerosis in men: A meta-analysis of published studies. Exp. Biol. Med. 2003;228:568–571. doi: 10.1177/15353702-0322805-29. PubMed DOI
Vitek L., Novotny L., Sperl M., Holaj R., Spacil J. The inverse association of elevated serum bilirubin levels with subclinical carotid atherosclerosis. Cerebrovasc. Dis. 2006;21:408–414. doi: 10.1159/000091966. PubMed DOI
Breimer L.H., Wannamethee G., Ebrahim S., Shaper A.G. Serum bilirubin and risk of ischemic heart disease in middle-aged British men. Clin. Chem. 1995;41:1504–1508. doi: 10.1093/clinchem/41.10.1504. PubMed DOI
Schwertner H.A., Fischer J.R. Comparison of various lipid, lipoprotein, and bilirubin combinations as risk factors for predicting coronary artery disease. Atherosclerosis. 2000;150:381–387. doi: 10.1016/S0021-9150(99)00387-1. PubMed DOI
Vitek L., Ostrow J.D. Bilirubin chemistry and metabolism; harmful and protective aspects. Curr. Pharm. Des. 2009;15:2869–2883. doi: 10.2174/138161209789058237. PubMed DOI
Yang X., Li Y., Li Y., Ren X., Zhang X., Hu D., Gao Y., Xing Y., Shang H. Oxidative stress-mediated atherosclerosis: Mechanisms and therapies. Front. Physiol. 2017;8:600. doi: 10.3389/fphys.2017.00600. PubMed DOI PMC
Jangi S., Otterbein L., Robson S. The molecular basis for the immunomodulatory activities of unconjugated bilirubin. Int. J. Biochem. Cell Biol. 2013;45:2843–2851. doi: 10.1016/j.biocel.2013.09.014. PubMed DOI
Libby P., Ridker P.M., Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105:1135–1143. doi: 10.1161/hc0902.104353. PubMed DOI
Malekmohammad K., Bezsonov E.E., Rafieian-Kopaei M. Role of lipid accumulation and inflammation in atherosclerosis: Focus on molecular and cellular mechanisms. Front. Cardiovasc. Med. 2021;8:707529. doi: 10.3389/fcvm.2021.707529. PubMed DOI PMC
Tangeten C., Zouaoui Boudjeltia K., Delporte C., Van Antwerpen P., Korpak K. Unexpected role of MPO-oxidized LDLs in atherosclerosis: In between inflammation and its resolution. Antioxidants. 2022;11:874. doi: 10.3390/antiox11050874. PubMed DOI PMC
Boudjeltia K.Z., Legssyer I., Van Antwerpen P., Kisoka R.L., Babar S., Moguilevsky N., Delree P., Ducobu J., Remacle C., Vanhaeverbeek M., et al. Triggering of inflammatory response by myeloperoxidase-oxidized LDL. Biochem. Cell Biol. 2006;84:805–812. doi: 10.1139/o06-061. PubMed DOI
Jiang H., Zhou Y., Nabavi S.M., Sahebkar A., Little P.J., Xu S., Weng J., Ge J. Mechanisms of oxidized LDL-mediated endothelial dysfunction and its consequences for the development of atherosclerosis. Front. Cardiovasc. Med. 2022;9:925923. doi: 10.3389/fcvm.2022.925923. PubMed DOI PMC
Dichtl W., Nilsson L., Goncalves I., Ares M.P., Banfi C., Calara F., Hamsten A., Eriksson P., Nilsson J. Very low-density lipoprotein activates nuclear factor-kappaB in endothelial cells. Circ. Res. 1999;84:1085–1094. doi: 10.1161/01.RES.84.9.1085. PubMed DOI
Yudkin J.S., Stehouwer C.D., Emeis J.J., Coppack S.W. C-reactive protein in healthy subjects: Associations with obesity, insulin resistance, and endothelial dysfunction: A potential role for cytokines originating from adipose tissue? Arterioscler. Thromb. Vasc. Biol. 1999;19:972–978. doi: 10.1161/01.ATV.19.4.972. PubMed DOI
Mannes P.Z., Tavakoli S. Imaging immunometabolism in atherosclerosis. J. Nucl. Med. 2021;62:896–902. doi: 10.2967/jnumed.120.245407. PubMed DOI PMC
Vitek L. Bilirubin as a signaling molecule. Med. Res. Rev. 2020;40:1335–1351. doi: 10.1002/med.21660. PubMed DOI
Vitek L., Tiribelli C. Bilirubin: The yellow hormone? J. Hepatol. 2021;75:1485–1490. doi: 10.1016/j.jhep.2021.06.010. PubMed DOI
Jiraskova A., Lenicek M., Vitek L. Simultaneous genotyping of microsatellite variations in HMOX1 and UGT1A1 genes using multicolored capillary electrophoresis. Clin. Biochem. 2010;43:697–699. doi: 10.1016/j.clinbiochem.2010.01.006. PubMed DOI
Vitek L., Bellarosa C., Tiribelli C. Induction of mild hyperbilirubinemia: Hype or real therapeutic opportunity? Clin. Pharmacol. Ther. 2019;106:568–575. doi: 10.1002/cpt.1341. PubMed DOI
Bulmer A.C., Blanchfield J.T., Toth I., Fassett R.G., Coombes J.S. Improved resistance to serum oxidation in Gilbert’s syndrome: A mechanism for cardiovascular protection. Atherosclerosis. 2008;199:390–396. doi: 10.1016/j.atherosclerosis.2007.11.022. PubMed DOI
Yesilova Z., Serdar M., Ercin C.N., Gunay A., Kilciler G., Hasimi A., Uygun A., Kurt I., Erbil M.K., Dagalp K. Decreased oxidation susceptibility of plasma low density lipoproteins in patients with Gilbert’s syndrome. J. Gastroenterol. Hepatol. 2008;23:1556–1560. doi: 10.1111/j.1440-1746.2008.05388.x. PubMed DOI
Vitek L., Jirsa M., Brodanova M., Kalab M., Marecek Z., Danzig V., Novotny L., Kotal P. Gilbert syndrome and ischemic heart disease: A protective effect of elevated bilirubin levels. Atherosclerosis. 2002;160:449–456. doi: 10.1016/S0021-9150(01)00601-3. PubMed DOI
Vitek L., Novotny L., Zak A., Stankova B., Zima T., Polito A., Cesare G., Zerbinati C., Iuliano L. Relationship between serum bilirubin and uric acid to oxidative stress markers in Italian and Czech populations. J. Appl. Biomed. 2013;11:209–221. doi: 10.2478/v10136-012-0030-y. DOI
Woronyczova J., Novákova M., Lenicek M., Batovsky M., Bolek E., Cifkova R., Vitek L. Serum bilirubin concentrations and the prevalence of Gilbert syndrome in elite athletes. Sports Med. Open Access. 2022;8:84. doi: 10.1186/s40798-022-00463-6. PubMed DOI PMC
Gopinathan V., Miller N.J., Milner A.D., Rice-Evans C.A. Bilirubin and ascorbate antioxidant activity in neonatal plasma. FEBS Lett. 1994;349:197–200. doi: 10.1016/0014-5793(94)00666-0. PubMed DOI
Hammermann C., Goldstein R., Kaplan M., Eran M., Goldschmidt D., Eidelman A.I. Bilirubin in the premature: Toxic waste or natural defense? Clin. Chem. 1998;44:2551–2553. doi: 10.1093/clinchem/44.12.2551. PubMed DOI
Shekeeb S.M., Kumar P., Sharma N., Narang A., Prasad R. Evaluation of oxidant and antioxidant status in term neonates: A plausible protective role of bilirubin. Mol. Cell Biochem. 2008;317:51–59. doi: 10.1007/s11010-008-9807-4. PubMed DOI
Yeum K.J., Russell R.M., Krinsky N.I., Aldini G. Biomarkers of antioxidant capacity in the hydrophilic and lipophilic compartments of human plasma. Arch. Biochem. Biophys. 2004;430:97–103. doi: 10.1016/j.abb.2004.03.006. PubMed DOI
Sedlak T.W., Snyder S.H. Bilirubin benefits: Cellular protection by a biliverdin reductase antioxidant cycle. Pediatrics. 2004;113:1776–1782. doi: 10.1542/peds.113.6.1776. PubMed DOI
Tapan S., Karadurmus N., Dogru T., Ercin C.N., Tasci I., Bilgi C., Kurt I., Erbil M.K. Decreased small dense LDL levels in Gilbert’s syndrome. Clin. Biochem. 2011;44:300–303. doi: 10.1016/j.clinbiochem.2010.12.003. PubMed DOI
Boon A.C., Hawkins C.L., Bisht K., Coombes J.S., Bakrania B., Wagner K.H., Bulmer A.C. Reduced circulating oxidized LDL is associated with hypocholesterolemia and enhanced thiol status in Gilbert syndrome. Free Radic. Biol. Med. 2012;52:2120–2127. doi: 10.1016/j.freeradbiomed.2012.03.002. PubMed DOI PMC
Maruhashi T., Soga J., Fujimura N., Idei N., Mikami S., Iwamoto Y., Kajikawa M., Matsumoto T., Kihara Y., Chayama K., et al. Hyperbilirubinemia, Augmentation of Endothelial Function and Decrease in Oxidative Stress in Gilbert Syndrome. Circulation. 2012;126:598–603. doi: 10.1161/CIRCULATIONAHA.112.105775. PubMed DOI
Boren J., Chapman M.J., Krauss R.M., Packard C.J., Bentzon J.F., Binder C.J., Daemen M.J., Demer L.L., Hegele R.A., Nicholls S.J., et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2020;41:2313–2330. doi: 10.1093/eurheartj/ehz962. PubMed DOI PMC
Brown A.J., Jessup W. Oxysterols and atherosclerosis. Atherosclerosis. 1999;142:1–28. doi: 10.1016/S0021-9150(98)00196-8. PubMed DOI
Feng J.F., Lu L., Dai C.M., Wang D., Yang Y.H., Yang Y.W., Liu Y.S. Analysis of the diagnostic efficiency of serum oxidative stress parameters in patients with breast cancer at various clinical stages. Clin. Biochem. 2016;49:692–698. doi: 10.1016/j.clinbiochem.2016.02.005. PubMed DOI
Wu R., Feng J., Yang Y., Dai C., Lu A., Li J., Liao Y., Xiang M., Huang Q., Wang D., et al. Significance of serum total oxidant/antioxidant status in patients with colorectal cancer. PLoS ONE. 2017;12:e0170003. doi: 10.1371/journal.pone.0170003. PubMed DOI PMC
Veglia F., Cavalca V., Tremoli E. OXY-SCORE: A global index to improve evaluation of oxidative stress by combining pro- and antioxidant markers. Methods Mol. Biol. 2010;594:197–213. doi: 10.1007/978-1-60761-411-1_14. PubMed DOI
Danesh J., Wheeler J.G., Hirschfield G.M., Eda S., Eiriksdottir G., Rumley A., Lowe G.D., Pepys M.B., Gudnason V. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N. Engl. J. Med. 2004;350:1387–1397. doi: 10.1056/NEJMoa032804. PubMed DOI
Ridker P.M. High-sensitivity C-reactive protein: Potential adjunct for global risk assessment in the primary prevention of cardiovascular disease. Circulation. 2001;103:1813–1818. doi: 10.1161/01.CIR.103.13.1813. PubMed DOI
Yeniova A.O., Kucukazman M., Ata N., Dal K., Kefeli A., Basyigit S., Aktas B., Agladioglu K., Akin K.O., Ertugrul D.T., et al. High-sensitivity C-reactive protein is a strong predictor of non-alcoholic fatty liver disease. Hepatogastroenterology. 2014;61:422–425. PubMed
Lee J., Yoon K., Ryu S., Chang Y., Kim H.R. High-normal levels of hs-CRP predict the development of non-alcoholic fatty liver in healthy men. PLoS ONE. 2017;12:e0172666. doi: 10.1371/journal.pone.0172666. PubMed DOI PMC
Cardoso-Saldana G.C., Medina-Urrutia A.X., Posadas-Romero C., Juarez-Rojas J.G., Jorge-Galarza E., Vargas-Alarcon G., Posadas-Sanchez R. Fatty liver and abdominal fat relationships with high C-reactive protein in adults without coronary heart disease. Ann. Hepatol. 2015;14:658–665. doi: 10.1016/S1665-2681(19)30760-4. PubMed DOI
Ghule A., Kamble T.K., Talwar D., Kumar S., Acharya S., Wanjari A., Gaidhane S.A., Agrawal S. Association of serum high sensitivity C-reactive protein with pre-diabetes in rural population: A two-year cross-sectional study. Cureus. 2021;13:e19088. doi: 10.7759/cureus.19088. PubMed DOI PMC
Mahajan A., Tabassum R., Chavali S., Dwivedi O.P., Bharadwaj M., Tandon N., Bharadwaj D. High-sensitivity C-reactive protein levels and type 2 diabetes in urban North Indians. J. Clin. Endocrinol. Metab. 2009;94:2123–2127. doi: 10.1210/jc.2008-2754. PubMed DOI
Chen B., Cui Y., Lei M., Xu W., Yan Q., Zhang X., Qin M., Xu S. C-reactive protein levels in relation to incidence of hypertension in Chinese adults: Longitudinal analyses from the China Health and Nutrition Survey. Int. J. Hypertens. 2021;2021:3326349. doi: 10.1155/2021/3326349. PubMed DOI PMC
Qian X., He S., Wang J., Gong Q., An Y., Li H., Chen Y., Li G. Prediction of 10-year mortality using hs-CRP in Chinese people with hyperglycemia: Findings from the Da Qing diabetes prevention outcomes study. Diabetes Res. Clin. Pract. 2021;173:108668. doi: 10.1016/j.diabres.2021.108668. PubMed DOI
Petrtyl J., Dvorak K., Stritesky J., Lenicek M., Jiraskova A., Smid V., Haluzik M., Bruha R., Vitek L. Association of serum bilirubin and functional variants of heme oxygenase 1 and bilirubin UDP-glucuronosyl transferase genes in Czech adult patients with non-alcoholic fatty liver disease. Antioxidants. 2021;10:2000. doi: 10.3390/antiox10122000. PubMed DOI PMC
Vitek L. The role of bilirubin in diabetes, metabolic syndrome, and cardiovascular diseases. Front. Pharmacol. 2012;3:55. doi: 10.3389/fphar.2012.00055. PubMed DOI PMC
Hwang H.J., Lee S.W., Kim S.H. Relationship between bilirubin and C-reactive protein. Clin. Chem. Lab. Med. 2011;49:1823–1828. doi: 10.1515/cclm.2011.662. PubMed DOI
Yu K., Kim C., Sung E., Shin H., Lee H. Association of serum total bilirubin with serum high sensitivity C-reactive protein in middle-aged men. Korean J. Fam. Med. 2011;32:327–333. doi: 10.4082/kjfm.2011.32.6.327. PubMed DOI PMC
Zhang Z.Y., Bian L.Q., Kim S.J., Zhou C.C., Choi Y.H. Inverse relation of total serum bilirubin to coronary artery calcification score detected by multidetector computed tomography in males. Clin. Cardiol. 2012;35:301–306. doi: 10.1002/clc.21964. PubMed DOI PMC
Lippi G., Targher G. Further insights on the relationship between bilirubin and C-reactive protein. Clin. Chem. Lab. Med. 2012;50:2229–2230. doi: 10.1515/cclm-2012-0343. PubMed DOI
Deetman P.E., Bakker S.J., Dullaart R.P. High sensitive C-reactive protein and serum amyloid A are inversely related to serum bilirubin: Effect-modification by metabolic syndrome. Cardiovasc. Diabetol. 2013;12:166. doi: 10.1186/1475-2840-12-166. PubMed DOI PMC
Ghosh P., Dasgupta J., Mandal T., Bhattacharjee D. Correlation of serum bilirubin with inflammatory marker hsCRP in metabolic syndrome disorder. IOSR J. Biotechnol. Biochem. 2016;2:27–31.
Dullaart R.P., Gruppen E.G., Connelly M.A., Lefrandt J.D. A pro-inflammatory glycoprotein biomarker is associated with lower bilirubin in metabolic syndrome. Clin. Biochem. 2015;48:1045–1047. doi: 10.1016/j.clinbiochem.2015.06.016. PubMed DOI
Roy S., Banerjee U., Dasgupta A. Protective role of bilirubin against increase in hsCRP in different stages of hypothyroidism. Indian J. Clin. Biochem. 2016;31:43–49. doi: 10.1007/s12291-015-0495-z. PubMed DOI PMC
Yoshino S., Hamasaki S., Ishida S., Kataoka T., Yoshikawa A., Oketani N., Saihara K., Okui H., Shinsato T., Ichiki H., et al. Relationship between bilirubin concentration, coronary endothelial function, and inflammatory stress in overweight patients. J. Atheroscler. Thromb. 2011;18:403–412. doi: 10.5551/jat.6346. PubMed DOI
Duman H., Ozyurt S. Low serum bilirubin levels associated with subclinical atherosclerosis in patients with obstructive sleep apnea. Interv. Med. Appl. Sci. 2018;10:179–185. doi: 10.1556/1646.10.2018.39. PubMed DOI PMC
Tekeşin A., Tunç A. Evaluation of inflammatory markers in patients with migraine. Arch. Clin. Exp. Med. 2019;4:37–40. doi: 10.25000/acem.494415. DOI
Mazzone G.L., Rigato I., Ostrow J.D., Bossi F., Bortoluzzi A., Sukowati C.H.C., Tedesco F., Tiribelli C. Bilirubin inhibits the TNF alpha-related induction of three endothelial adhesion molecules. Biochem. Biophys. Res. Comm. 2009;386:338–344. doi: 10.1016/j.bbrc.2009.06.029. PubMed DOI
Li Y., Huang B., Ye T., Wang Y., Xia D., Qian J. Physiological concentrations of bilirubin control inflammatory response by inhibiting NF-kappaB and inflammasome activation. Int. Immunopharmacol. 2020;84:106520. doi: 10.1016/j.intimp.2020.106520. PubMed DOI
Zelenka J., Dvorak A., Alan L., Zadinova M., Haluzik M., Vitek L. Hyperbilirubinemia protects against aging-associated inflammation and metabolic deterioration. Oxidative Med. Cell. Longev. 2016;2016:6190609. doi: 10.1155/2016/6190609. PubMed DOI PMC
Tedgui A., Mallat Z. Cytokines in atherosclerosis: Pathogenic and regulatory pathways. Physiol. Rev. 2006;86:515–581. doi: 10.1152/physrev.00024.2005. PubMed DOI
Black S., Kushner I., Samols D. C-reactive protein. J. Biol. Chem. 2004;279:48487–48490. doi: 10.1074/jbc.R400025200. PubMed DOI
Mallat Z., Besnard S., Duriez M., Deleuze V., Emmanuel F., Bureau M.F., Soubrier F., Esposito B., Duez H., Fievet C., et al. Protective role of interleukin-10 in atherosclerosis. Circ. Res. 1999;85:e17–e24. doi: 10.1161/01.RES.85.8.e17. PubMed DOI
Sproston N.R., Ashworth J.J. Role of C-reactive protein at sites of inflammation and infection. Front. Immunol. 2018;9:754. doi: 10.3389/fimmu.2018.00754. PubMed DOI PMC
Badimon L., Pena E., Arderiu G., Padro T., Slevin M., Vilahur G., Chiva-Blanch G. C-reactive protein in atherothrombosis and angiogenesis. Front. Immunol. 2018;9:430. doi: 10.3389/fimmu.2018.00430. PubMed DOI PMC
McEver R.P. Selectins: Lectins that initiate cell adhesion under flow. Curr. Opin. Cell. Biol. 2002;14:581–586. doi: 10.1016/S0955-0674(02)00367-8. PubMed DOI
Dong Z.M., Chapman S.M., Brown A.A., Frenette P.S., Hynes R.O., Wagner D.D. The combined role of P- and E-selectins in atherosclerosis. J. Clin. Investig. 1998;102:145–152. doi: 10.1172/JCI3001. PubMed DOI PMC
Galkina E., Ley K. Vascular adhesion molecules in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2007;27:2292–2301. doi: 10.1161/ATVBAHA.107.149179. PubMed DOI
Vitek L. Bilirubin as a predictor of diseases of civilization. Is it time to establish decision limits for serum bilirubin concentrations? Arch. Biochem. Biophys. 2019;672:108062. doi: 10.1016/j.abb.2019.108062. PubMed DOI
Creeden J.F., Gordon D.M., Stec D.E., Hinds T.D., Jr. Bilirubin as a metabolic hormone: The physiological relevance of low levels. Am. J. Physiol. Endocrinol. Metab. 2021;320:E191–E207. doi: 10.1152/ajpendo.00405.2020. PubMed DOI PMC