Inhibition of Lipid Accumulation in Skeletal Muscle and Liver Cells: A Protective Mechanism of Bilirubin Against Diabetes Mellitus Type 2

. 2020 ; 11 () : 636533. [epub] 20210125

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33569010

Grantová podpora
P 29608 Austrian Science Fund FWF - Austria

Ectopic lipid accumulation in skeletal muscle and liver drives the pathogenesis of diabetes mellitus type 2 (DMT2). Mild hyperbilirubinaemia has been repeatedly suggested to play a role in the prevention of DMT2 and is known for its capacity to shape an improved lipid phenotype in humans and in animals. To date, the effect of bilirubin on lipid accumulation in tissues that are prone to ectopic lipid deposition is unclear. Therefore, we analyzed the effect of bilirubin on lipid accumulation in skeletal muscle and liver cell lines. C2C12 skeletal mouse muscle and HepG2 human liver cells were treated with physiological concentrations of free fatty acids (FFA) (0.5 mM and 1 mM) and unconjugated bilirubin (UCB) (17.1 and 55 µM). The intracellular presence of UCB upon exogenous UCB administration was confirmed by HPLC and the lipid accumulation was assessed by using Nile red. Exposure of both cell lines to UCB significantly reduced lipid accumulation by up to 23% (p ≤ 0.001) in HepG2 and by up to 17% (p ≤ 0.01) in C2C12 cells at 0.5 and 5 h under hypoglycaemic conditions. Simultaneously, UCB slightly increased FFA uptake in HepG2 cells after 0.5 and 5 h and in C2C12 cells after 12 h as confirmed by gas chromatographic analyses of the remaining FFA content in the incubation media. The effects of UCB on lipid accumulation and uptake were abolished in the presence of higher glucose concentrations. Monitoring the uptake of a radiolabeled glucose analogue [18F]FDG: (2-deoxy-2-[18F]fluoro-D-glucose) into both cell types further indicated higher glucose consumption in the presence of UCB. In conclusion, our findings show that UCB considerably decreases lipid accumulation in skeletal muscle and liver cells within a short incubation time of max. 5 h which suggests that mildly elevated bilirubin levels could lower ectopic lipid deposition, a major key element in the pathogenesis of DMT2.

Zobrazit více v PubMed

Abbasi A., Deetman P. E., Corpeleijn E., Gansevoort R. T., Gans R. O., Hillege H. L., et al. (2015). Bilirubin as a potential causal factor in type 2 diabetes risk: a Mendelian randomization study. Diabetes. 64 (4), 1459–1469. 10.2337/db14-0228 PubMed DOI PMC

Balber T., Benčurová K., Kiefer F. W., Kulterer O. C., Klebermass E. M., Egger G., et al. (2019). In vitro radiopharmaceutical evidence for MCHR1 binding sites in murine Brown adipocytes. Front. Endocrinol. 10 (324), 324 10.3389/fendo.2019.00324 PubMed DOI PMC

Calderhead D. M., Kitagawa K., Lienhard G. E., Gould G. W. (1990). Translocation of the brain-type glucose transporter largely accounts for insulin stimulation of glucose transport in BC3H-1 myocytes. Biochem. J. 269 (3), 597–601. 10.1042/bj2690597 PubMed DOI PMC

Dong H., Huang H., Yun X., Kim D. S., Yue Y., Wu H., et al. 2014). Bilirubin increases insulin sensitivity in leptin-receptor deficient and diet-induced obese mice through suppression of ER stress and chronic inflammation. Endocrinology. 155 (3), 818–828. 10.1210/en.2013-1667 PubMed DOI PMC

Folch J., Lees M., Sloane Stanley G. (1957). A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226 (1), 497–509. PubMed

Goodpaster B. H., Wolf D. (2004). Skeletal muscle lipid accumulation in obesity, insulin resistance, and type 2 diabetes. Pediatr. Diabetes. 5 (4), 219–226. 10.1111/j.1399-543X.2004.00071.x PubMed DOI

Gordon D. M., Neifer K. L., Hamoud A.-R. A., Hawk C. F., Nestor-Kalinoski A. L., Miruzzi S. A., et al. (2020). Bilirubin remodels murine white adipose tissue by reshaping mitochondrial activity and the coregulator profile of peroxisome proliferator-activated receptor α. J. Biol. Chem. 295 (29), 9804–9822. 10.1074/jbc.RA120.013700 PubMed DOI PMC

Hinds T. D., Jr, Hosick P. A., Chen S., Tukey R. H., Hankins M. W., Nestor-Kalinoski A., et al. (2017). Mice with hyperbilirubinemia due to Gilbert’s syndrome polymorphism are resistant to hepatic steatosis by decreased serine 73 phosphorylation of PPARα. Am. J. Physiol. Endocrinol. Metab. 312 (4), E244–E252. 10.1152/ajpendo.00396.2016 PubMed DOI PMC

Hodson L., Skeaff C. M., Fielding B. A. (2008). Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog. Lipid Res. 47 (5), 348–380. 10.1016/j.plipres.2008.03.003 PubMed DOI

International Diabetes Federation (2019). IDF diabetes atlas. 9th Edn Available at: https://www.diabetesatlas.org/en/resources/ (Accessed October 10, 2020).

Kersten S., Seydoux J., Peters J. M., Gonzalez F. J., Desvergne B., Wahli W. (1999). Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J. Clin. Invest. 103 (11), 1489–1498. 10.1172/JCI6223 PubMed DOI PMC

Khoei N. S., Grindel A., Wallner M., Mölzer C., Doberer D., Marculescu R., et al. (2018). Mild hyperbilirubinaemia as an endogenous mitigator of overweight and obesity: implications for improved metabolic health. Atherosclerosis. 269, 306–311. 10.1016/j.atherosclerosis.2017.12.021 PubMed DOI

Liu J., Dong H., Zhang Y., Cao M., Song L., Pan Q., et al. (2015). Bilirubin increases insulin sensitivity by regulating cholesterol metabolism, adipokines and PPARγ levels. Sci. Rep. 5 (1), 9886 10.1038/srep09886 PubMed DOI PMC

Metcalfe L., Schmitz A., Pelka J. (1966). Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal. Chem. 38 (3), 514–515. 10.1021/ac60235a044 DOI

Mölzer C., Wallner M., Kern C., Tosevska A., Schwarz U., Zadnikar R., et al. (2016). Features of an altered AMPK metabolic pathway in Gilbert’s Syndrome, and its role in metabolic health. Sci. Rep. 6, 30051 10.1038/srep30051 PubMed DOI PMC

Moore M. C., Cherrington A. D., Wasserman D. H. (2003). Regulation of hepatic and peripheral glucose disposal. Best Pract. Res. Clin. Endocrinol. Metabol. 17 (3), 343–364. 10.1016/s1521-690x(03)00036-8 PubMed DOI

Nano J., Muka T., Cepeda M., Voortman T., Dhana K., Brahimaj A., et al. (2016). Association of circulating total bilirubin with the metabolic syndrome and type 2 diabetes: a systematic review and meta-analysis of observational evidence. Diabetes Metab. 42 (6), 389–397. 10.1016/j.diabet.2016.06.002 PubMed DOI

Shulman G. I. (2000). Cellular mechanisms of insulin resistance. J. Clin. Invest. 106 (2), 171–176. 10.1172/JCI10583 PubMed DOI PMC

Stec D. E., John K., Trabbic C. J., Luniwal A., Hankins M. W., Baum J., et al. (2016). Bilirubin binding to PPARα inhibits lipid accumulation. PLoS One. 11 (4), e0153427 10.1371/journal.pone.0153427 PubMed DOI PMC

Svedberg J., Björntorp P., Smith U., Lönnroth P. (1990). Free-fatty acid inhibition of insulin binding, degradation, and action in isolated rat hepatocytes. Diabetes. 39 (5), 570–574. 10.2337/diab.39.5.570 PubMed DOI

Takanaga H., Chaudhuri B., Frommer W. B. (2008). GLUT1 and GLUT9 as major contributors to glucose influx in HepG2 cells identified by a high sensitivity intramolecular FRET glucose sensor. Biochim. Biophys. Acta. 1778 (4), 1091–1099. 10.1016/j.bbamem.2007.11.015 PubMed DOI PMC

Towler M. C., Hardie D. G. (2007). AMP-activated protein kinase in metabolic control and insulin signaling. Circ. Res. 100 (3), 328–341. 10.1161/01.RES.0000256090.42690.05 PubMed DOI

Vítek L. (2012). The role of bilirubin in diabetes, metabolic syndrome, and cardiovascular diseases. Front. Pharmacol. 3, 55 10.3389/fphar.2012.00055 PubMed DOI PMC

Wagner K. H., Shiels R. G., Lang C. A., Seyed Khoei N., Bulmer A. C. (2018). Diagnostic criteria and contributors to Gilbert's syndrome, Crit. Rev. Clin. Lab Sci. 55 (2), 129–139. 10.1080/10408363.2018.1428526 PubMed DOI

Wagner K. H., Wallner M., Mölzer C., Gazzin S., Bulmer A. C., Tiribelli C., et al. (2015). Looking to the horizon: the role of bilirubin in the development and prevention of age-related chronic diseases. Clin. Sci. 129 (1), 1–25. 10.1042/CS20140566 PubMed DOI

Wallner M., Marculescu R., Doberer D., Wolzt M., Wagner O., Vitek L., et al. (2013). Protection from age-related increase in lipid biomarkers and inflammation contributes to cardiovascular protection in Gilbert’s syndrome. Clin. Sci. 125 (5), 257–264. 10.1042/CS20120661 PubMed DOI

Weber K., Ridderskamp D., Alfert M., Hoyer S., Wiesner R. J. (2002). Cultivation in glucose-deprived medium stimulates mitochondrial biogenesis and oxidative metabolism in HepG2 hepatoma cells. Biol. Chem. 383 (2), 283–290. 10.1515/BC.2002.030 PubMed DOI

Wiebe L. I. (2001). FDG metabolism: quaecumque sunt vera. J. Nucl. Med. 42 (11), 1679–1681. PubMed

Yang M., Ni C., Chang B., Jiang Z., Zhu Y., Tang Y., et al. (2019). Association between serum total bilirubin levels and the risk of type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 152, 23–28. 10.1016/j.diabres.2019.04.033 PubMed DOI

Zelenka J., Lenícek M., Muchová L., Jirsa M., Kudla M., Balaž P., et al. (2008). Highly sensitive method for quantitative determination of bilirubin in biological fluids and tissues. J. Chromatogr. B. 867 (1), 37–42. 10.1016/j.jchromb.2008.03.005 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...