Dysregulation of Microtubule Nucleating Proteins in Cancer Cells

. 2021 Nov 11 ; 13 (22) : . [epub] 20211111

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34830792

Grantová podpora
19-20716S Czech Science Foundation
21-30281S Czech Science Foundation
LTAUSA19118 Ministry of Education Youth and Sports
RVO 68378050 IMG CAS Institutional Research Support

In cells, microtubules typically nucleate from microtubule organizing centers, such as centrosomes. γ-Tubulin, which forms multiprotein complexes, is essential for nucleation. The γ-tubulin ring complex (γ-TuRC) is an efficient microtubule nucleator that requires additional centrosomal proteins for its activation and targeting. Evidence suggests that there is a dysfunction of centrosomal microtubule nucleation in cancer cells. Despite decades of molecular analysis of γ-TuRC and its interacting factors, the mechanisms of microtubule nucleation in normal and cancer cells remains obscure. Here, we review recent work on the high-resolution structure of γ-TuRC, which brings new insight into the mechanism of microtubule nucleation. We discuss the effects of γ-TuRC protein dysregulation on cancer cell behavior and new compounds targeting γ-tubulin. Drugs inhibiting γ-TuRC functions could represent an alternative to microtubule targeting agents in cancer chemotherapy.

Zobrazit více v PubMed

Mitchison T., Kirschner M. Dynamic instability of microtubule growth. Nature. 1984;312:237–242. doi: 10.1038/312237a0. PubMed DOI

Nogales E., Wang H.W. Structural mechanisms underlying nucleotide-dependent self-assembly of tubulin and its relatives. Curr. Opin. Struct. Biol. 2006;16:221–229. doi: 10.1016/j.sbi.2006.03.005. PubMed DOI

Akhmanova A., Steinmetz M.O. Control of microtubule organization and dynamics: Two ends in the limelight. Nat. Rev. Mol. Cell Biol. 2015;16:711–726. doi: 10.1038/nrm4084. PubMed DOI

Dráber P., Dráberová E. Microtubules. In: Kavallaris M., editor. Cytoskeleton and Human Disease. Humana Press; New York, NY, USA: 2012. pp. 29–54.

Woodruff J.B., Wueseke O., Hyman A.A. Pericentriolar material structure and dynamics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014;369:20130459. doi: 10.1098/rstb.2013.0459. PubMed DOI PMC

Fry A.M., Sampson J., Shak C., Shackleton S. Recent advances in pericentriolar material organization: Ordered layers and scaffolding gels. F1000Research. 2017;6:1622. doi: 10.12688/f1000research.11652.1. PubMed DOI PMC

Arquint C., Gabryjonczyk A.M., Nigg E.A. Centrosomes as signalling centres. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014;369:20130464. doi: 10.1098/rstb.2013.0464. PubMed DOI PMC

Farina F., Gaillard J., Guerin C., Coute Y., Sillibourne J., Blanchoin L., Théry M. The centrosome is an actin-organizing centre. Nat. Cell Biol. 2016;18:65–75. doi: 10.1038/ncb3285. PubMed DOI PMC

Inoue D., Obino D., Pineau J., Farina F., Gaillard J., Guerin C., Blanchoin L., Lennon-Dumenil A.M., Théry M. Actin filaments regulate microtubule growth at the centrosome. EMBO J. 2019;38:e99630. doi: 10.15252/embj.201899630. PubMed DOI PMC

Oakley B.R., Paolillo V., Zheng Y. γ-Tubulin complexes in microtubule nucleation and beyond. Mol. Biol. Cell. 2015;26:2957–2962. doi: 10.1091/mbc.E14-11-1514. PubMed DOI PMC

Petry S., Vale R.D. Microtubule nucleation at the centrosome and beyond. Nat. Cell Biol. 2015;17:1089–1093. doi: 10.1038/ncb3220. PubMed DOI

Sulimenko V., Hájková Z., Klebanovych A., Dráber P. Regulation of microtubule nucleation mediated by γ-tubulin complexes. Protoplasma. 2017;254:1187–1199. doi: 10.1007/s00709-016-1070-z. PubMed DOI

Wu J., Akhmanova A. Microtubule-organizing centers. Annu. Rev. Cell Dev. Biol. 2017;33:51–75. doi: 10.1146/annurev-cellbio-100616-060615. PubMed DOI

Nigg E.A. Centrosome aberrations: Cause or consequence of cancer progression? Nat. Rev. Cancer. 2002;27:1554–1561. doi: 10.1038/nrc924. PubMed DOI

Godinho S.A., Picone R., Burute M., Dagher R., Su Y., Leung C.T., Polyak K., Brugge J.S., Théry M., Pellman D. Oncogene-like induction of cellular invasion from centrosome amplification. Nature. 2014;510:167–171. doi: 10.1038/nature13277. PubMed DOI PMC

Marteil G., Guerrero A., Vieira A.F., de Almeida B.P., Machado P., Mendonca S., Mesquita M., Villarreal B., Fonseca I., Francia M.E., et al. Over-elongation of centrioles in cancer promotes centriole amplification and chromosome missegregation. Nat. Commun. 2018;9:1258. doi: 10.1038/s41467-018-03641-x. PubMed DOI PMC

Mittal K., Kaur J., Jaczko M., Wei G., Toss M.S., Rakha E.A., Janssen E.A.M., Søiland H., Kucuk O., Reid M.D., et al. Centrosome amplification: A quantifiable cancer cell trait with prognostic value in solid malignancies. Cancer Metastasis Rev. 2021;40:319–339. doi: 10.1007/s10555-020-09937-z. PubMed DOI PMC

Goundiam O., Basto R. Centrosomes in disease: How the same music can sound so different? Curr. Opin. Struct. Biol. 2021;66:74–82. doi: 10.1016/j.sbi.2020.09.011. PubMed DOI

Nováková M., Dráberová E., Schürmann W., Czihak G., Viklický V., Dráber P. γ-Tubulin redistribution in taxol-treated mitotic cells probed by monoclonal antibodies. Cell Motil. Cytoskel. 1996;33:38–51. doi: 10.1002/(SICI)1097-0169(1996)33:1<38::AID-CM5>3.0.CO;2-E. PubMed DOI

Ludueña R.F. Are tubulin isotypes functionally significant? Mol. Biol. Cell. 1993;4:445–457. doi: 10.1091/mbc.4.5.445. PubMed DOI PMC

Ludueña R.F. A hypothesis on the origin and evolution of tubulin. Int. Rev. Cell. Mol. Biol. 2013;302:41–185. doi: 10.1016/B978-0-12-407699-0.00002-9. PubMed DOI

Roll-Mecak A. The tubulin code in microtubule dynamics and information encoding. Dev. Cell. 2020;54:7–20. doi: 10.1016/j.devcel.2020.06.008. PubMed DOI PMC

Gadadhar S., Bodakuntla S., Natarajan K., Janke C. The tubulin code at a glance. J. Cell Sci. 2017;130:1347–1353. doi: 10.1242/jcs.199471. PubMed DOI

Janke C., Magiera M.M. The tubulin code and its role in controlling microtubule properties and functions. Nat. Rev. Mol. Cell Biol. 2020;21:307–326. doi: 10.1038/s41580-020-0214-3. PubMed DOI

Wolff A., Denoulet P., Jeantet C. High level of tubulin microheterogeneity in the mouse brain. Neurosci. Lett. 1982;31:323–328. doi: 10.1016/0304-3940(82)90041-6. PubMed DOI

Linhartová I., Dráber P., Dráberová E., Viklický V. Immunological discrimination of b-tubulin isoforms in developing mouse brain. Posttranslational modification of non-class III β-tubulins. Biochem. J. 1992;288:919–924. doi: 10.1042/bj2880919. PubMed DOI PMC

Bodakuntla S., Jijumon A.S., Villablanca C., Gonzalez-Billault C., Janke C. Microtubule-associated proteins: Structuring the cytoskeleton. Trends Cell Biol. 2019;29:804–819. doi: 10.1016/j.tcb.2019.07.004. PubMed DOI

Portran D., Schaedel L., Xu Z., Thery M., Nachury M.V. Tubulin acetylation protects long-lived microtubules against mechanical ageing. Nat. Cell Biol. 2017;19:391–398. doi: 10.1038/ncb3481. PubMed DOI PMC

Valenstein M.L., Roll-Mecak A. Graded control of microtubule severing by tubulin glutamylation. Cell. 2016;164:911–921. doi: 10.1016/j.cell.2016.01.019. PubMed DOI PMC

Kavallaris M. Microtubules and resistance to tubulin-binding agents. Nat. Rev. Cancer. 2010;10:194–204. doi: 10.1038/nrc2803. PubMed DOI

Ludueña R.F., Banerjee A. The isotypes of tubulin: Distribution and functional significance. In: Fojo T., editor. The Role of Microtubules in Cell Biology, Neurobiology and Oncology. Humana Press; Totowa, NJ, USA: 2008. pp. 123–175.

Kanakkanthara A., Miller J.H. βIII-tubulin overexpression in cancer: Causes, consequences, and potential therapies. Biochim. Biophys. Acta Rev. Cancer. 2021;1876:188607. doi: 10.1016/j.bbcan.2021.188607. PubMed DOI

Kops G.J., Weaver B.A., Cleveland D.W. On the road to cancer: Aneuploidy and the mitotic checkpoint. Nat. Rev. Cancer. 2005;5:773–785. doi: 10.1038/nrc1714. PubMed DOI

Katsetos C.D., Dráber P. Tubulins as therapeutic targets in cancer: From bench to bedside. Curr. Pharm. Design. 2012;18:2778–2792. doi: 10.2174/138161212800626193. PubMed DOI

Dumontet C., Jordan M.A. Microtubule-binding agents: A dynamic field of cancer therapeutics. Nat. Rev. Drug Discov. 2010;9:790–803. doi: 10.1038/nrd3253. PubMed DOI PMC

Steinmetz M.O., Prota A.E. Microtubule-targeting agents: Strategies to hijack the cytoskeleton. Trends Cell Biol. 2018;28:776–792. doi: 10.1016/j.tcb.2018.05.001. PubMed DOI

Mukhtar E., Adhami V.M., Mukhtar H. Targeting microtubules by natural agents for cancer therapy. Mol. Cancer Ther. 2014;13:275–284. doi: 10.1158/1535-7163.MCT-13-0791. PubMed DOI PMC

Parker A.L., Teo W.S., McCarroll J.A., Kavallaris M. An emerging role for tubulin isotypes in modulating cancer biology and chemotherapy resistance. Int. J. Mol. Sci. 2017;18:1434. doi: 10.3390/ijms18071434. PubMed DOI PMC

Oakley C.E., Oakley B.R. Identification of γ-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature. 1989;338:662–664. doi: 10.1038/338662a0. PubMed DOI

Stearns T., Evans L., Kirschner M. γ-Tubulin is highly conserved component of the centrosome. Cell. 1991;65:825–836. doi: 10.1016/0092-8674(91)90390-K. PubMed DOI

Dráberová E., Sulimenko V., Vinopal S., Sulimenko T., Sládková V., D’Agostino L., Sobol M., Hozák P., Křen L., Katsetos C.D., et al. Differential expression of human γ-tubulin isotypes during neuronal development and oxidative stress points to a γ-tubulin-2 prosurvival function. FASEB J. 2017;31:1828–1846. doi: 10.1096/fj.201600846RR. PubMed DOI

Ohashi T., Yamamoto T., Yamanashi Y., Ohsugi M. Human TUBG2 gene is expressed as two splice variant mRNA and involved in cell growth. FEBS Lett. 2016;590:1053–1063. doi: 10.1002/1873-3468.12163. PubMed DOI

Wise D.O., Krahe R., Oakley B.R. The γ-tubulin gene family in humans. Genomics. 2000;67:164–170. doi: 10.1006/geno.2000.6247. PubMed DOI

Yuba-Kubo A., Kubo A., Hata M., Tsukita S. Gene knockout analysis of two γ-tubulin isoforms in mice. Dev. Biol. 2005;282:361–373. doi: 10.1016/j.ydbio.2005.03.031. PubMed DOI

Vinopal S., Černohorská M., Sulimenko V., Sulimenko T., Vosecká V., Flemr M., Dráberová E., Dráber P. γ-Tubulin 2 nucleates microtubules and is downregulated in mouse early embryogenesis. PLoS ONE. 2012;7:e29919. doi: 10.1371/annotation/5dd084b1-20e6-4e1f-88e0-dfe05289da08. PubMed DOI PMC

Gombos L., Neuner A., Berynskyy M., Fava L.L., Wade R.C., Sachse C., Schiebel E. GTP regulates the microtubule nucleation activity of γ-tubulin. Nat. Cell Biol. 2013;15:1317–1327. doi: 10.1038/ncb2863. PubMed DOI

Alvarado-Kristensson M., Rodriguez M.J., Silio V., Valpuesta J.M., Carrera A.C. SADB phosphorylation of γ-tubulin regulates centrosome duplication. Nat. Cell Biol. 2009;11:1081–1092. doi: 10.1038/ncb1921. PubMed DOI

Sankaran S., Starita L.M., Groen A.C., Ko M.J., Parvin J.D. Centrosomal microtubule nucleation activity is inhibited by BRCA1-dependent ubiquitination. Mol. Cell Biol. 2005;25:8656–8668. doi: 10.1128/MCB.25.19.8656-8668.2005. PubMed DOI PMC

Yin C., Lui E.S.W., Jiang T., Qi R.Z. Proteolysis of γ-tubulin small complex proteins is mediated by the ubiquitin-proteasome system. FEBS Lett. 2021;595:1987–1996. doi: 10.1002/1873-3468.14146. PubMed DOI

Moritz M., Braunfeld M.B., Sedat J.W., Alberts B., Agard D.A. Microtubule nucleation by γ-tubulin-containing rings in the centrosome. Nature. 1995;378:638–640. doi: 10.1038/378638a0. PubMed DOI

Zheng Y., Alberts B., Mitchison T. Nucleation of microtubule assembly by a γ-tubulin-containing ring complex. Nature. 1995;378:578–583. doi: 10.1038/378578a0. PubMed DOI

Kollman J.M., Polka J.K., Zelter A., Davis T.N., Agard D.A. Microtubule nucleating γ-TuSC assembles structures with 13-fold microtubule-like symmetry. Nature. 2010;466:879–882. doi: 10.1038/nature09207. PubMed DOI PMC

Kollman J.M., Merdes A., Mourey L., Agard D.A. Microtubule nucleation by γ-tubulin complexes. Nat. Rev. Mol. Cell Biol. 2011;12:709–721. doi: 10.1038/nrm3209. PubMed DOI PMC

Gunawardane R.N., Martin O.C., Cao K., Zhang L., Dej K., Iwamatsu A., Zheng Y. Characterization and reconstitution of Drosophila γ-tubulin ring complex subunits. J. Cell Biol. 2000;151:1513–1524. doi: 10.1083/jcb.151.7.1513. PubMed DOI PMC

Consolati T., Locke J., Roostalu J., Chen Z.A., Gannon J., Asthana J., Lim W.M., Martino F., Cvetkovic M.A., Rappsilber J., et al. Microtubule nucleation properties of single human γTuRCs explained by their cryo-EM structure. Dev. Cell. 2020;53:603–617. doi: 10.1016/j.devcel.2020.04.019. PubMed DOI PMC

Liu P., Zupa E., Neuner A., Böhler A., Loerke J., Flemming D., Ruppert T., Rudack T., Peter C., Spahn C., et al. Insights into the assembly and activation of the microtubule nucleator γ-TuRC. Nature. 2020;578:467–471. doi: 10.1038/s41586-019-1896-6. PubMed DOI

Wieczorek M., Urnavicius L., Ti S.C., Molloy K.R., Chait B.T., Kapoor T.M. Asymmetric molecular architecture of the human γ-tubulin ring complex. Cell. 2020;180:165–175. doi: 10.1016/j.cell.2019.12.007. PubMed DOI PMC

Zimmermann F., Serna M., Ezquerra A., Fernandez-Leiro R., Llorca O., Lüders J. Assembly of the asymmetric human γ-tubulin ring complex by RUVBL1-RUVBL2 AAA ATPase. Sci. Adv. 2020;6:eabe0894. doi: 10.1126/sciadv.abe0894. PubMed DOI PMC

Wieczorek M., Huang T.L., Urnavicius L., Hsia K.C., Kapoor T.M. MZT proteins form multi-faceted structural modules in the γ-tubulin ring complex. Cell Rep. 2020;31:107791. doi: 10.1016/j.celrep.2020.107791. PubMed DOI PMC

Zupa E., Liu P., Würtz M., Schiebel E., Pfeffer S. The structure of the γ-TuRC: A 25-years-old molecular puzzle. Curr. Opin. Struct. Biol. 2021;66:15–21. doi: 10.1016/j.sbi.2020.08.008. PubMed DOI

Kollman J.M., Greenberg C.H., Li S., Moritz M., Zelter A., Fong K.K., Fernandez J.J., Sali A., Kilmartin J., Davis T.N., et al. Ring closure activates yeast γTuRC for species-specific microtubule nucleation. Nat. Struct. Mol. Biol. 2015;22:132–137. doi: 10.1038/nsmb.2953. PubMed DOI PMC

Choi Y.K., Liu P., Sze S.K., Dai C., Qi R.Z. CDK5RAP2 stimulates microtubule nucleation by the γ-tubulin ring complex. J. Cell Biol. 2010;191:1089–1095. doi: 10.1083/jcb.201007030. PubMed DOI PMC

Liu P., Choi Y.K., Qi R.Z. NME7 is a functional component of the γ-tubulin ring complex. Mol. Biol. Cell. 2014;25:2017–2025. doi: 10.1091/mbc.e13-06-0339. PubMed DOI PMC

Wang Z., Wu T., Shi L., Zhang L., Zheng W., Qu J.Y., Niu R., Qi R.Z. Conserved motif of CDK5RAP2 mediates its localization to centrosomes and the Golgi complex. J. Biol. Chem. 2010;285:22658–22665. doi: 10.1074/jbc.M110.105965. PubMed DOI PMC

Lüders J., Patel U.K., Stearns T. GCP-WD is a γ-tubulin targeting factor required for centrosomal and chromatin mediated microtubule nucleation. Nat. Cell Biol. 2006;8:137–147. doi: 10.1038/ncb1349. PubMed DOI

Zhang X., Chen Q., Feng J., Hou J., Yang F., Liu J., Jiang Q., Zhang C. Sequential phosphorylation of Nedd1 by Cdk1 and Plk1 is required for targeting of the γTuRC to the centrosome. J. Cell Sci. 2009;122:2240–2251. doi: 10.1242/jcs.042747. PubMed DOI

Takahashi M., Yamagiwa A., Nishimura T., Mukai H., Ono Y. Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring γ-tubulin ring complex. Mol. Biol. Cell. 2002;13:3235–3245. doi: 10.1091/mbc.e02-02-0112. PubMed DOI PMC

Zimmerman W.C., Sillibourne J., Rosa J., Doxsey S.J. Mitosis-specific anchoring of γ-tubulin complexes by pericentrin controls spindle organization and mitotic entry. Mol. Biol. Cell. 2004;15:3642–3657. doi: 10.1091/mbc.e03-11-0796. PubMed DOI PMC

Delgehyr N., Sillibourne J., Bornens M. Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function. J. Cell Sci. 2005;118:1565–1575. doi: 10.1242/jcs.02302. PubMed DOI

Gomez-Ferreria M.A., Rath U., Buster D.W., Chanda S.K., Caldwell J.S., Rines D.R., Sharp D.J. Human Cep192 is required for mitotic centrosome and spindle assembly. Curr. Biol. 2007;17:1960–1966. doi: 10.1016/j.cub.2007.10.019. PubMed DOI

Singh P., Thomas G.E., Gireesh K.K., Manna T.K. TACC3 protein regulates microtubule nucleation by affecting γ-tubulin ring complexes. J. Biol. Chem. 2014;289:31719–31735. doi: 10.1074/jbc.M114.575100. PubMed DOI PMC

Rajeev R., Singh P., Asmita A., Anand U., Manna T.K. Aurora A site specific TACC3 phosphorylation regulates astral microtubule assembly by stabilizing γ-tubulin ring complex. BMC Mol. Cell Biol. 2019;20:58. doi: 10.1186/s12860-019-0242-z. PubMed DOI PMC

Tovey C.A., Tubman C.E., Hamrud E., Zhu Z., Dyas A.E., Butterfield A.N., Fyfe A., Johnson E., Conduit P.T. γ-TuRC heterogeneity revealed by analysis of Mozart1. Curr. Biol. 2018;28:2314–2323. doi: 10.1016/j.cub.2018.05.044. PubMed DOI PMC

Schweizer N., Lüders J. From tip to toe-dressing centrioles in γTuRC. J. Cell Sci. 2021;134:jcs258397. doi: 10.1242/jcs.258397. PubMed DOI

Bouissou A., Verollet C., Sousa A., Sampaio P., Wright M., Sunkel C.E., Merdes A., Raynaud-Messina B. γ-Tubulin ring complexes regulate microtubule plus end dynamics. J. Cell Biol. 2009;187:327–334. doi: 10.1083/jcb.200905060. PubMed DOI PMC

Hendrickson T.W., Yao J., Bhadury S., Corbett A.H., Joshi H.C. Conditional mutations in γ-tubulin reveal its involvement in chromosome segregation and cytokinesis. Mol. Biol. Cell. 2001;12:2469–2481. doi: 10.1091/mbc.12.8.2469. PubMed DOI PMC

Nayak T., Edgerton-Morgan H., Horio T., Xiong Y., De Souza C.P., Osmani S.A., Oakley B.R. γ-Tubulin regulates the anaphase-promoting complex/cyclosome during interphase. J. Cell Biol. 2010;190:317–330. doi: 10.1083/jcb.201002105. PubMed DOI PMC

Hořejší B., Vinopal S., Sládková V., Dráberová E., Sulimenko V., Sulimenko T., Vosecká V., Philimonenko A., Hozák P., Katsetos C.D., et al. Nuclear γ-tubulin associates with nucleoli and interacts with tumor suppressor protein C53. J. Cell. Physiol. 2012;227:367–382. doi: 10.1002/jcp.22772. PubMed DOI

Höög G., Zarrizi R., von Stedingk K., Jonsson K., Alvarado-Kristensson M. Nuclear localization of γ-tubulin affects E2F transcriptional activity and S-phase progression. FASEB J. 2011;25:3815–3827. doi: 10.1096/fj.11-187484. PubMed DOI PMC

Kállai B.M., Kourová H., Chumová J., Papdi C., Trögelová L., Kofroňová O., Hozák P., Filimonenko V., Mészáros T., Magyar Z., et al. γ-Tubulin interacts with E2F transcription factors to regulate proliferation and endocycling in Arabidopsis. J. Exp. Bot. 2020;71:1265–1277. doi: 10.1093/jxb/erz498. PubMed DOI

Lesca C., Germanier M., Raynaud-Messina B., Pichereaux C., Etievant C., Emond S., Burlet-Schiltz O., Monsarrat B., Wright M., Defais M. DNA damage induce γ-tubulin-RAD51 nuclear complexes in mammalian cells. Oncogene. 2005;24:5165–5172. doi: 10.1038/sj.onc.1208723. PubMed DOI

Hubert T., Vandekerckhove J., Gettemans J. Cdk1 and BRCA1 target γ-tubulin to microtubule domains. Biochem. Biophys. Res. Commun. 2011;414:240–245. doi: 10.1016/j.bbrc.2011.09.064. PubMed DOI

Zhang S., Hernmerich P., Grosse F. Centrosomal localization of DNA damage checkpoint proteins. J. Cell. Biochem. 2007;101:451–465. doi: 10.1002/jcb.21195. PubMed DOI

Sulimenko V., Sulimenko T., Poznanovic S., Nechiporuk-Zloy V., Böhm J.K., Macurek L., Unger E., Dráber P. Association of brain γ-tubulins with αβ-tubulin dimers. Biochem. J. 2002;365:889–895. doi: 10.1042/bj20020175. PubMed DOI PMC

Chumová J., Trögelová L., Kourová H., Volc J., Sulimenko V., Halada P., Kučera O., Benada O., Kuchařová A., Klebanovych A., et al. γ-Tubulin has a conserved intrinsic property of self-polymerization into double stranded filaments and fibrillar networks. BBA Mol. Cell Res. 2018;1865:734–748. doi: 10.1016/j.bbamcr.2018.02.009. PubMed DOI

Lindström L., Li T., Malycheva D., Kancharla A., Nilsson H., Vishnu N., Mulder H., Johansson M., Rosselló C.A., Alvarado-Kristensson M. The GTPase domain of gamma-tubulin is required for normal mitochondrial function and spatial organization. Commun. Biol. 2018;1:37. doi: 10.1038/s42003-018-0037-3. PubMed DOI PMC

Chumová J., Kourová H., Trögelová L., Halada P., Binarová P. Microtubular and nuclear functions of γ-tubulin: Are they LINCed? Cells. 2019;8:259. doi: 10.3390/cells8030259. PubMed DOI PMC

Rosselló C.A., Lindström L., Eklund G., Corvaisier M., Alvarado-Kristensson M.A. γ-Tubulin-γ-tubulin interactions as the basis for the formation of a meshwork. Int. J. Mol. Sci. 2018;19:3245. doi: 10.3390/ijms19103245. PubMed DOI PMC

Chabin-Brion K., Marceiller J., Perez F., Settegrana C., Drechou A., Durand G., Pous C. The Golgi complex is a microtubule-organizing organelle. Mol. Biol. Cell. 2001;12:2047–2060. doi: 10.1091/mbc.12.7.2047. PubMed DOI PMC

Hehnly H., Doxsey S. Rab11 endosomes contribute to mitotic spindle organization and orientation. Dev. Cell. 2014;28:497–507. doi: 10.1016/j.devcel.2014.01.014. PubMed DOI PMC

Katsetos C.D., Dráberová E., Legido A., Dráber P. Tubulin targets in the pathobiology and therapy of glioblastoma multiforme. II. g-Tubulin. J. Cell. Physiol. 2009;221:514–520. doi: 10.1002/jcp.21884. PubMed DOI

Ohgaki H., Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J. Neuropathol. Exp. Neurol. 2005;64:479–489. doi: 10.1093/jnen/64.6.479. PubMed DOI

Rickman D.S., Bobek M.P., Misek D.E., Kuick R., Blaivas M., Kurnit D.M., Taylor J., Hanash S.M. Distinctive molecular profiles of high-grade and low-grade gliomas based on oligonucleotide microarray analysis. Cancer Res. 2001;61:6885–6891. PubMed

Katsetos C.D., Reddy G., Dráberová E., Šmejkalová B., Del Valle L., Ashraf Q., Tradevosyan A., Yelin K., Maraziotis T., Mishra O.P., et al. Altered cellular distribution and subcellular sorting of γ-tubulin in diffuse astrocytic gliomas and human glioblastoma cell lines. J. Neuropathol. Exp. Neurol. 2006;65:465–477. doi: 10.1097/01.jnen.0000229235.20995.6e. PubMed DOI

Katsetos C.D., Dráberová E., Šmejkalová B., Reddy G., Bertrand L., de Chadarévian J.P., Legido A., Nissanov J., Baas P.W., Dráber P. Class III β-tubulin and γ-tubulin are co-expressed and form complexes in human glioblastoma cells. Neurochem. Res. 2007;32:1387–1398. doi: 10.1007/s11064-007-9321-1. PubMed DOI

Loh J.K., Lieu A.S., Chou C.H., Lin F.Y., Wu C.H., Howng S.L., Chio C.C., Hong Y.R. Differential expression of centrosomal proteins at different stages of human glioma. BMC Cancer. 2010;10:268. doi: 10.1186/1471-2407-10-268. PubMed DOI PMC

Loh J.K., Lieu A.S., Chou C.H., Lin C.C., Yang M.C., Lin F.Y., Hong Y.R., Howng S.L. Differential expression of centrosome-associated proteins in human brain tumors: A possible role of hNinein isoform 6 in cell differentiation. Biofactors. 2012;38:470–477. doi: 10.1002/biof.1053. PubMed DOI

Tsai H.P., Tsai C.Y., Lieu A.S., Chai C.Y., Kwan A.L., Howng S.L., Loh J.K. Association of Aurora A and γ-tubulin expression in astrocytomas and patient survival. Neurol. Res. 2014;36:746–751. doi: 10.1179/1743132813Y.0000000310. PubMed DOI

Caracciolo V., D’Agostino L., Dráberová E., Sládková V., Crozier-Fitzgerald C., Agamanolis D.P., de Chadarévian J.P., Legido A., Giordano A., Dráber P., et al. Differential expression and cellular distribution of γ-tubulin and βIII-tubulin in medulloblastomas and human medulloblastoma cell lines. J. Cell. Physiol. 2010;223:519–529. doi: 10.1002/jcp.22077. PubMed DOI

Harbeck N., Penault-Llorca F., Cortes J., Gnant M., Houssami N., Poortmans P., Ruddy K., Tsang J., Cardoso F. Breast cancer. Nat. Rev. Dis. Primers. 2019;5:66. doi: 10.1038/s41572-019-0111-2. PubMed DOI

Liu T., Niu Y., Yu Y., Liu Y., Zhang F. Increased γ-tubulin expression and P16INK4A promoter methylation occur together in preinvasive lesions and carcinomas of the breast. Ann. Oncol. 2009;20:441–448. doi: 10.1093/annonc/mdn651. PubMed DOI

Niu Y., Liu T., Tse G.M., Sun B., Niu R., Li H.M., Wang H., Yang Y., Ye X., Wang Y., et al. Increased expression of centrosomal α, γ-tubulin in atypical ductal hyperplasia and carcinoma of the breast. Cancer Sci. 2009;100:580–587. doi: 10.1111/j.1349-7006.2008.01075.x. PubMed DOI PMC

Cho E.H., Whipple R.A., Matrone M.A., Balzer E.M., Martin S.S. Delocalization of γ-tubulin due to increased solubility in human breast cancer cell lines. Cancer Biol. Ther. 2010;9:66–76. doi: 10.4161/cbt.9.1.10451. PubMed DOI PMC

Sankaran S., Crone D.E., Palazzo R.E., Parvin J.D. BRCA1 regulates γ-tubulin binding to centrosomes. Cancer Biol. Ther. 2007;6:1853–1857. doi: 10.4161/cbt.6.12.5164. PubMed DOI PMC

Yoshino Y., Fang Z., Qi H., Kobayashi A., Chiba N. Dysregulation of the centrosome induced by BRCA1 deficiency contributes to tissue-specific carcinogenesis. Cancer Sci. 2021;112:1679–1687. doi: 10.1111/cas.14859. PubMed DOI PMC

Zarrizi R., Menard J.A., Belting M., Massoumi R. Deubiquitination of γ-tubulin by BAP1 prevents chromosome instability in breast cancer cells. Cancer Res. 2014;74:6499–6508. doi: 10.1158/0008-5472.CAN-14-0221. PubMed DOI

Maounis N.F., Dráberová E., Mahera E., Chorti M., Caracciolo V., Sulimenko T., Riga D., Trakas N., Emmanouilidou A., Giordano A., et al. Overexpression of γ-tubulin in non-small cell lung cancer. Histol. Histopathol. 2012;27:1183–1194. doi: 10.14670/HH-27.1183. PubMed DOI

Maounis N.F., Dráberová E., Trakas N., Chorti M., Riga D., Tzannis K., Kanakis M., Voralu K., Ellina E., Mahera E., et al. Expression of γ-tubulin in non-small cell lung cancer and effect on patient survival. Histol. Histopathol. 2019;34:81–90. doi: 10.14670/HH-18-027. PubMed DOI

Syed M.I., Syed S., Minty F., Harrower S., Singh J., Chin A., McLellan D.R., Parkinson E.K., Clark L.J. Gamma tubulin: A promising indicator of recurrence in squamous cell carcinoma of the larynx. Otolaryngol. Head Neck Surg. 2009;140:498–504. doi: 10.1016/j.otohns.2008.12.049. PubMed DOI

Montero-Conde C., Martin-Camposo J.M., Lerma E., Martinez-Guitarte J.L., Combalia N., Montaner D., Matias-Guiu X., Dopazo J., de Leiva A., Robledo M., et al. Molecular profiling related to poor prognosis in thyroid carcinoma. Combining gene expression data and biological information. Oncogene. 2008;27:1554–1561. doi: 10.1038/sj.onc.1210792. PubMed DOI

Hsu L.C., Kapali M., DeLoia J.A., Gallion H.H. Centrosome abnormalities in ovarian cancer. Int. J. Cancer. 2005;113:746–751. doi: 10.1002/ijc.20633. PubMed DOI

Li Y.W., Hussain M., Sarkar S.H., Eliason J., Li R., Sarkar F.H. Gene expression profiling revealed novel mechanism of action of Taxotere and Furtulon in prostate cancer cells. BMC Cancer. 2005;5:7. doi: 10.1186/1471-2407-5-7. PubMed DOI PMC

LoMastro G.M., Holland A.J. The emerging link between centrosome aberrations and metastasis. Dev. Cell. 2019;49:325–331. doi: 10.1016/j.devcel.2019.04.002. PubMed DOI PMC

Dráberová E., D’Agostino L., Caracciolo V., Sládková V., Sulimenko T., Sulimenko V., Sobol M., Maounis N.F., Tzelepis E., Mahera E., et al. Overexpression and nucleolar localization of γ-tubulin small complex proteins GCP2 and GCP3 in glioblastoma. J. Neuropathol. Exp. Neurol. 2015;74:723–742. doi: 10.1097/NEN.0000000000000212. PubMed DOI

Huang S.L., Chao C.C. Silencing of taxol-sensitizer genes in cancer cells: Lack of sensitization effects. Cancers. 2015;7:1052–1071. doi: 10.3390/cancers7020824. PubMed DOI PMC

Wang H., Jiang X., Cheng Y., Ren H., Hu Y., Zhang Y., Su H., Zou Z., Wang Q., Liu Z., et al. MZT2A promotes NSCLC viability and invasion by increasing Akt phosphorylation via the MOZART2 domain. Cancer Sci. 2021;112:2210–2222. doi: 10.1111/cas.14900. PubMed DOI PMC

Liu P., Würtz M., Zupa E., Pfeffer S., Schiebel E. Microtubule nucleation: The waltz between γ-tubulin ring complex and associated proteins. Curr. Opin. Cell Biol. 2021;68:124–131. doi: 10.1016/j.ceb.2020.10.004. PubMed DOI

Suresh R., Diaz R.J. The remodelling of actin composition as a hallmark of cancer. Transl. Oncol. 2021;14:101051. doi: 10.1016/j.tranon.2021.101051. PubMed DOI PMC

Po’uha S.T., Kavallaris M. Gamma-actin is involved in regulating centrosome function and mitotic progression in cancer cells. Cell Cycle. 2015;14:3908–3919. doi: 10.1080/15384101.2015.1120920. PubMed DOI PMC

Nejedlá M., Sadi S., Sulimenko V., de Almeida F.N., Blom H., Dráber P., Aspenström P., Karlsson R. Profilin connects actin assembly with microtubule dynamics. Mol. Biol. Cell. 2016;27:2381–2393. doi: 10.1091/mbc.e15-11-0799. PubMed DOI PMC

Henty-Ridilla J.L., Juanes M.A., Goode B.L. Profilin directly promotes microtubule growth through residues mutated in amyotrophic lateral sclerosis. Curr. Biol. 2017;27:3535–3543. doi: 10.1016/j.cub.2017.10.002. PubMed DOI PMC

Nejedlá M., Klebanovych A., Sulimenko V., Sulimenko T., Dráberová E., Dráber P., Karlsson R. The actin regulator profilin 1 is functionally associated with the mammalian centrosome. Life Sci. Alliance. 2021;4:e202000655. doi: 10.26508/lsa.202000655. PubMed DOI PMC

Pimm M.L., Hotaling J., Henty-Ridilla J.L. Profilin choreographs actin and microtubules in cells and cancer. Int. Rev. Cell Mol. Biol. 2020;355:155–204. doi: 10.1016/bs.ircmb.2020.05.005. PubMed DOI PMC

Karlsson R., Dráber P. Profilin-A master coordinator of actin and microtubule organization in mammalian cells. J. Cell. Physiol. 2021;236:7256–7265. doi: 10.1002/jcp.30379. PubMed DOI

Khodjakov A., Rieder C.L. The sudden recruitment of γ-tubulin to the centrosome at the onset of mitosis and its dynamic exchange throughout the cell cycle, do not require microtubules. J. Cell Biol. 1999;146:585–596. doi: 10.1083/jcb.146.3.585. PubMed DOI PMC

Yao R., Kondoh Y., Natsume Y., Yamanaka H., Inoue M., Toki H., Takagi R., Shimizu T., Yamori T., Osada H., et al. A small compound targeting TACC3 revealed its different spatiotemporal contributions for spindle assembly in cancer cells. Oncogene. 2014;33:4242–4252. doi: 10.1038/onc.2013.382. PubMed DOI

Sabat-Pospiech D., Fabian-Kolpanowicz K., Prior I.A., Coulson J.M., Fielding A.B. Targeting centrosome amplification, an Achilles’ heel of cancer. Biochem. Soc. Trans. 2019;47:1209–1222. doi: 10.1042/BST20190034. PubMed DOI PMC

Friesen D.E., Barakat K.H., Semenchenko V., Perez-Pineiro R., Fenske B.W., Mane J., Wishart D.S., Tuszynski J.A. Discovery of small molecule inhibitors that interact with γ-tubulin. Chem. Biol. Drug. Des. 2012;79:639–652. doi: 10.1111/j.1747-0285.2012.01340.x. PubMed DOI

Aldaz H., Rice L.M., Stearns T., Agard D.A. Insights into microtubule nucleation from the crystal structure of human γ-tubulin. Nature. 2005;435:523–527. doi: 10.1038/nature03586. PubMed DOI

Chinen T., Liu P., Shioda S., Pagel J., Cerikan B., Lin T.C., Gruss O., Hayashi Y., Takeno H., Shima T., et al. The γ-tubulin-specific inhibitor gatastatin reveals temporal requirements of microtubule nucleation during the cell cycle. Nat. Commun. 2015;6:8722. doi: 10.1038/ncomms9722. PubMed DOI PMC

Rayevsky A.S.M., Samofalova D., Demchuk O., Karpov P., Blume Y. In silico mechanistic model of microtubule assembly inhibition by selective chromone derivatives. J. Mol. Struct. 2021;1241:130633. doi: 10.1016/j.molstruc.2021.130633. DOI

Ebisu H., Shintani K., Chinen T., Nagumo Y., Shioda S., Hatanaka T., Sakakura A., Hayakawa I., Kigoshi H., Usui T. Dual inhibition of γ-tubulin and Plk1 induces mitotic cell death. Front. Pharmacol. 2020;11:620185. doi: 10.3389/fphar.2020.620185. PubMed DOI PMC

Shintani K., Ebisu H., Mukaiyama M., Hatanaka T., Chinen T., Takao D., Nagumo Y., Sakakura A., Hayakawa I., Usui T. Structure optimization of gatastatin for the development of γ-tubulin-specific inhibitor. ACS Med. Chem. Lett. 2020;11:1125–1129. doi: 10.1021/acsmedchemlett.9b00526. PubMed DOI PMC

Traversi G., Staid D.S., Fiore M., Percario Z., Trisciuoglio D., Antonioletti R., Morea V., Degrassi F., Cozzi R. A novel resveratrol derivative induces mitotic arrest, centrosome fragmentation and cancer cell death by inhibiting γ-tubulin. Cell Div. 2019;14:3. doi: 10.1186/s13008-019-0046-8. PubMed DOI PMC

Naik P.K., Santoshi S., Rai A., Joshi H.C. Molecular modelling and competition binding study of Br-noscapine and colchicine provide insight into noscapinoid-tubulin binding site. J. Mol. Graph. Model. 2011;29:947–955. doi: 10.1016/j.jmgm.2011.03.004. PubMed DOI PMC

Suri C., Naik P.K. Combined molecular dynamics and continuum solvent approaches (MM-PBSA/GBSA) to predict noscapinoid binding to gamma-tubulin dimer. SAR QSAR Environ. Res. 2015;26:507–519. doi: 10.1080/1062936X.2015.1070200. PubMed DOI

Altinoz M.A., Topcu G., Hacimuftuoglu A., Ozpinar A., Ozpinar A., Hacker E., Elmaci I. Noscapine, a non-addictive opioid and microtubule-inhibitor in potential treatment of glioblastoma. Neurochem. Res. 2019;44:1796–1806. doi: 10.1007/s11064-019-02837-x. PubMed DOI

Knudsen E.S., Nambiar R., Rosario S.R., Smiraglia D.J., Goodrich D.W., Witkiewicz A.K. Pan-cancer molecular analysis of the RB tumor suppressor pathway. Commun. Biol. 2020;3:158. doi: 10.1038/s42003-020-0873-9. PubMed DOI PMC

Ehlén Å., Rosselló C.A., von Stedingk K., Höög G., Nilsson E., Pettersson H.M., Jirström K., Alvarado-Kristensson M. Tumors with nonfunctional retinoblastoma protein are killed by reduced γ-tubulin levels. J. Biol. Chem. 2012;287:17241–17247. doi: 10.1074/jbc.M112.357038. PubMed DOI PMC

Lindström L., Villoutreix B.O., Lehn S., Hellsten R., Nilsson E., Crneta E., Olsson R., Alvarado-Kristensson M. Therapeutic targeting of nuclear γ-tubulin in RB1-negative tumors. Mol. Cancer Res. 2015;13:1073–1082. doi: 10.1158/1541-7786.MCR-15-0063-T. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

γ-Tubulin in microtubule nucleation and beyond

. 2022 ; 10 () : 880761. [epub] 20220901

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...