Dysregulation of Microtubule Nucleating Proteins in Cancer Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
19-20716S
Czech Science Foundation
21-30281S
Czech Science Foundation
LTAUSA19118
Ministry of Education Youth and Sports
RVO 68378050
IMG CAS Institutional Research Support
PubMed
34830792
PubMed Central
PMC8616210
DOI
10.3390/cancers13225638
PII: cancers13225638
Knihovny.cz E-zdroje
- Klíčová slova
- cancers, microtubule nucleation, γ-tubulin complexes,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In cells, microtubules typically nucleate from microtubule organizing centers, such as centrosomes. γ-Tubulin, which forms multiprotein complexes, is essential for nucleation. The γ-tubulin ring complex (γ-TuRC) is an efficient microtubule nucleator that requires additional centrosomal proteins for its activation and targeting. Evidence suggests that there is a dysfunction of centrosomal microtubule nucleation in cancer cells. Despite decades of molecular analysis of γ-TuRC and its interacting factors, the mechanisms of microtubule nucleation in normal and cancer cells remains obscure. Here, we review recent work on the high-resolution structure of γ-TuRC, which brings new insight into the mechanism of microtubule nucleation. We discuss the effects of γ-TuRC protein dysregulation on cancer cell behavior and new compounds targeting γ-tubulin. Drugs inhibiting γ-TuRC functions could represent an alternative to microtubule targeting agents in cancer chemotherapy.
Zobrazit více v PubMed
Mitchison T., Kirschner M. Dynamic instability of microtubule growth. Nature. 1984;312:237–242. doi: 10.1038/312237a0. PubMed DOI
Nogales E., Wang H.W. Structural mechanisms underlying nucleotide-dependent self-assembly of tubulin and its relatives. Curr. Opin. Struct. Biol. 2006;16:221–229. doi: 10.1016/j.sbi.2006.03.005. PubMed DOI
Akhmanova A., Steinmetz M.O. Control of microtubule organization and dynamics: Two ends in the limelight. Nat. Rev. Mol. Cell Biol. 2015;16:711–726. doi: 10.1038/nrm4084. PubMed DOI
Dráber P., Dráberová E. Microtubules. In: Kavallaris M., editor. Cytoskeleton and Human Disease. Humana Press; New York, NY, USA: 2012. pp. 29–54.
Woodruff J.B., Wueseke O., Hyman A.A. Pericentriolar material structure and dynamics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014;369:20130459. doi: 10.1098/rstb.2013.0459. PubMed DOI PMC
Fry A.M., Sampson J., Shak C., Shackleton S. Recent advances in pericentriolar material organization: Ordered layers and scaffolding gels. F1000Research. 2017;6:1622. doi: 10.12688/f1000research.11652.1. PubMed DOI PMC
Arquint C., Gabryjonczyk A.M., Nigg E.A. Centrosomes as signalling centres. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014;369:20130464. doi: 10.1098/rstb.2013.0464. PubMed DOI PMC
Farina F., Gaillard J., Guerin C., Coute Y., Sillibourne J., Blanchoin L., Théry M. The centrosome is an actin-organizing centre. Nat. Cell Biol. 2016;18:65–75. doi: 10.1038/ncb3285. PubMed DOI PMC
Inoue D., Obino D., Pineau J., Farina F., Gaillard J., Guerin C., Blanchoin L., Lennon-Dumenil A.M., Théry M. Actin filaments regulate microtubule growth at the centrosome. EMBO J. 2019;38:e99630. doi: 10.15252/embj.201899630. PubMed DOI PMC
Oakley B.R., Paolillo V., Zheng Y. γ-Tubulin complexes in microtubule nucleation and beyond. Mol. Biol. Cell. 2015;26:2957–2962. doi: 10.1091/mbc.E14-11-1514. PubMed DOI PMC
Petry S., Vale R.D. Microtubule nucleation at the centrosome and beyond. Nat. Cell Biol. 2015;17:1089–1093. doi: 10.1038/ncb3220. PubMed DOI
Sulimenko V., Hájková Z., Klebanovych A., Dráber P. Regulation of microtubule nucleation mediated by γ-tubulin complexes. Protoplasma. 2017;254:1187–1199. doi: 10.1007/s00709-016-1070-z. PubMed DOI
Wu J., Akhmanova A. Microtubule-organizing centers. Annu. Rev. Cell Dev. Biol. 2017;33:51–75. doi: 10.1146/annurev-cellbio-100616-060615. PubMed DOI
Nigg E.A. Centrosome aberrations: Cause or consequence of cancer progression? Nat. Rev. Cancer. 2002;27:1554–1561. doi: 10.1038/nrc924. PubMed DOI
Godinho S.A., Picone R., Burute M., Dagher R., Su Y., Leung C.T., Polyak K., Brugge J.S., Théry M., Pellman D. Oncogene-like induction of cellular invasion from centrosome amplification. Nature. 2014;510:167–171. doi: 10.1038/nature13277. PubMed DOI PMC
Marteil G., Guerrero A., Vieira A.F., de Almeida B.P., Machado P., Mendonca S., Mesquita M., Villarreal B., Fonseca I., Francia M.E., et al. Over-elongation of centrioles in cancer promotes centriole amplification and chromosome missegregation. Nat. Commun. 2018;9:1258. doi: 10.1038/s41467-018-03641-x. PubMed DOI PMC
Mittal K., Kaur J., Jaczko M., Wei G., Toss M.S., Rakha E.A., Janssen E.A.M., Søiland H., Kucuk O., Reid M.D., et al. Centrosome amplification: A quantifiable cancer cell trait with prognostic value in solid malignancies. Cancer Metastasis Rev. 2021;40:319–339. doi: 10.1007/s10555-020-09937-z. PubMed DOI PMC
Goundiam O., Basto R. Centrosomes in disease: How the same music can sound so different? Curr. Opin. Struct. Biol. 2021;66:74–82. doi: 10.1016/j.sbi.2020.09.011. PubMed DOI
Nováková M., Dráberová E., Schürmann W., Czihak G., Viklický V., Dráber P. γ-Tubulin redistribution in taxol-treated mitotic cells probed by monoclonal antibodies. Cell Motil. Cytoskel. 1996;33:38–51. doi: 10.1002/(SICI)1097-0169(1996)33:1<38::AID-CM5>3.0.CO;2-E. PubMed DOI
Ludueña R.F. Are tubulin isotypes functionally significant? Mol. Biol. Cell. 1993;4:445–457. doi: 10.1091/mbc.4.5.445. PubMed DOI PMC
Ludueña R.F. A hypothesis on the origin and evolution of tubulin. Int. Rev. Cell. Mol. Biol. 2013;302:41–185. doi: 10.1016/B978-0-12-407699-0.00002-9. PubMed DOI
Roll-Mecak A. The tubulin code in microtubule dynamics and information encoding. Dev. Cell. 2020;54:7–20. doi: 10.1016/j.devcel.2020.06.008. PubMed DOI PMC
Gadadhar S., Bodakuntla S., Natarajan K., Janke C. The tubulin code at a glance. J. Cell Sci. 2017;130:1347–1353. doi: 10.1242/jcs.199471. PubMed DOI
Janke C., Magiera M.M. The tubulin code and its role in controlling microtubule properties and functions. Nat. Rev. Mol. Cell Biol. 2020;21:307–326. doi: 10.1038/s41580-020-0214-3. PubMed DOI
Wolff A., Denoulet P., Jeantet C. High level of tubulin microheterogeneity in the mouse brain. Neurosci. Lett. 1982;31:323–328. doi: 10.1016/0304-3940(82)90041-6. PubMed DOI
Linhartová I., Dráber P., Dráberová E., Viklický V. Immunological discrimination of b-tubulin isoforms in developing mouse brain. Posttranslational modification of non-class III β-tubulins. Biochem. J. 1992;288:919–924. doi: 10.1042/bj2880919. PubMed DOI PMC
Bodakuntla S., Jijumon A.S., Villablanca C., Gonzalez-Billault C., Janke C. Microtubule-associated proteins: Structuring the cytoskeleton. Trends Cell Biol. 2019;29:804–819. doi: 10.1016/j.tcb.2019.07.004. PubMed DOI
Portran D., Schaedel L., Xu Z., Thery M., Nachury M.V. Tubulin acetylation protects long-lived microtubules against mechanical ageing. Nat. Cell Biol. 2017;19:391–398. doi: 10.1038/ncb3481. PubMed DOI PMC
Valenstein M.L., Roll-Mecak A. Graded control of microtubule severing by tubulin glutamylation. Cell. 2016;164:911–921. doi: 10.1016/j.cell.2016.01.019. PubMed DOI PMC
Kavallaris M. Microtubules and resistance to tubulin-binding agents. Nat. Rev. Cancer. 2010;10:194–204. doi: 10.1038/nrc2803. PubMed DOI
Ludueña R.F., Banerjee A. The isotypes of tubulin: Distribution and functional significance. In: Fojo T., editor. The Role of Microtubules in Cell Biology, Neurobiology and Oncology. Humana Press; Totowa, NJ, USA: 2008. pp. 123–175.
Kanakkanthara A., Miller J.H. βIII-tubulin overexpression in cancer: Causes, consequences, and potential therapies. Biochim. Biophys. Acta Rev. Cancer. 2021;1876:188607. doi: 10.1016/j.bbcan.2021.188607. PubMed DOI
Kops G.J., Weaver B.A., Cleveland D.W. On the road to cancer: Aneuploidy and the mitotic checkpoint. Nat. Rev. Cancer. 2005;5:773–785. doi: 10.1038/nrc1714. PubMed DOI
Katsetos C.D., Dráber P. Tubulins as therapeutic targets in cancer: From bench to bedside. Curr. Pharm. Design. 2012;18:2778–2792. doi: 10.2174/138161212800626193. PubMed DOI
Dumontet C., Jordan M.A. Microtubule-binding agents: A dynamic field of cancer therapeutics. Nat. Rev. Drug Discov. 2010;9:790–803. doi: 10.1038/nrd3253. PubMed DOI PMC
Steinmetz M.O., Prota A.E. Microtubule-targeting agents: Strategies to hijack the cytoskeleton. Trends Cell Biol. 2018;28:776–792. doi: 10.1016/j.tcb.2018.05.001. PubMed DOI
Mukhtar E., Adhami V.M., Mukhtar H. Targeting microtubules by natural agents for cancer therapy. Mol. Cancer Ther. 2014;13:275–284. doi: 10.1158/1535-7163.MCT-13-0791. PubMed DOI PMC
Parker A.L., Teo W.S., McCarroll J.A., Kavallaris M. An emerging role for tubulin isotypes in modulating cancer biology and chemotherapy resistance. Int. J. Mol. Sci. 2017;18:1434. doi: 10.3390/ijms18071434. PubMed DOI PMC
Oakley C.E., Oakley B.R. Identification of γ-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature. 1989;338:662–664. doi: 10.1038/338662a0. PubMed DOI
Stearns T., Evans L., Kirschner M. γ-Tubulin is highly conserved component of the centrosome. Cell. 1991;65:825–836. doi: 10.1016/0092-8674(91)90390-K. PubMed DOI
Dráberová E., Sulimenko V., Vinopal S., Sulimenko T., Sládková V., D’Agostino L., Sobol M., Hozák P., Křen L., Katsetos C.D., et al. Differential expression of human γ-tubulin isotypes during neuronal development and oxidative stress points to a γ-tubulin-2 prosurvival function. FASEB J. 2017;31:1828–1846. doi: 10.1096/fj.201600846RR. PubMed DOI
Ohashi T., Yamamoto T., Yamanashi Y., Ohsugi M. Human TUBG2 gene is expressed as two splice variant mRNA and involved in cell growth. FEBS Lett. 2016;590:1053–1063. doi: 10.1002/1873-3468.12163. PubMed DOI
Wise D.O., Krahe R., Oakley B.R. The γ-tubulin gene family in humans. Genomics. 2000;67:164–170. doi: 10.1006/geno.2000.6247. PubMed DOI
Yuba-Kubo A., Kubo A., Hata M., Tsukita S. Gene knockout analysis of two γ-tubulin isoforms in mice. Dev. Biol. 2005;282:361–373. doi: 10.1016/j.ydbio.2005.03.031. PubMed DOI
Vinopal S., Černohorská M., Sulimenko V., Sulimenko T., Vosecká V., Flemr M., Dráberová E., Dráber P. γ-Tubulin 2 nucleates microtubules and is downregulated in mouse early embryogenesis. PLoS ONE. 2012;7:e29919. doi: 10.1371/annotation/5dd084b1-20e6-4e1f-88e0-dfe05289da08. PubMed DOI PMC
Gombos L., Neuner A., Berynskyy M., Fava L.L., Wade R.C., Sachse C., Schiebel E. GTP regulates the microtubule nucleation activity of γ-tubulin. Nat. Cell Biol. 2013;15:1317–1327. doi: 10.1038/ncb2863. PubMed DOI
Alvarado-Kristensson M., Rodriguez M.J., Silio V., Valpuesta J.M., Carrera A.C. SADB phosphorylation of γ-tubulin regulates centrosome duplication. Nat. Cell Biol. 2009;11:1081–1092. doi: 10.1038/ncb1921. PubMed DOI
Sankaran S., Starita L.M., Groen A.C., Ko M.J., Parvin J.D. Centrosomal microtubule nucleation activity is inhibited by BRCA1-dependent ubiquitination. Mol. Cell Biol. 2005;25:8656–8668. doi: 10.1128/MCB.25.19.8656-8668.2005. PubMed DOI PMC
Yin C., Lui E.S.W., Jiang T., Qi R.Z. Proteolysis of γ-tubulin small complex proteins is mediated by the ubiquitin-proteasome system. FEBS Lett. 2021;595:1987–1996. doi: 10.1002/1873-3468.14146. PubMed DOI
Moritz M., Braunfeld M.B., Sedat J.W., Alberts B., Agard D.A. Microtubule nucleation by γ-tubulin-containing rings in the centrosome. Nature. 1995;378:638–640. doi: 10.1038/378638a0. PubMed DOI
Zheng Y., Alberts B., Mitchison T. Nucleation of microtubule assembly by a γ-tubulin-containing ring complex. Nature. 1995;378:578–583. doi: 10.1038/378578a0. PubMed DOI
Kollman J.M., Polka J.K., Zelter A., Davis T.N., Agard D.A. Microtubule nucleating γ-TuSC assembles structures with 13-fold microtubule-like symmetry. Nature. 2010;466:879–882. doi: 10.1038/nature09207. PubMed DOI PMC
Kollman J.M., Merdes A., Mourey L., Agard D.A. Microtubule nucleation by γ-tubulin complexes. Nat. Rev. Mol. Cell Biol. 2011;12:709–721. doi: 10.1038/nrm3209. PubMed DOI PMC
Gunawardane R.N., Martin O.C., Cao K., Zhang L., Dej K., Iwamatsu A., Zheng Y. Characterization and reconstitution of Drosophila γ-tubulin ring complex subunits. J. Cell Biol. 2000;151:1513–1524. doi: 10.1083/jcb.151.7.1513. PubMed DOI PMC
Consolati T., Locke J., Roostalu J., Chen Z.A., Gannon J., Asthana J., Lim W.M., Martino F., Cvetkovic M.A., Rappsilber J., et al. Microtubule nucleation properties of single human γTuRCs explained by their cryo-EM structure. Dev. Cell. 2020;53:603–617. doi: 10.1016/j.devcel.2020.04.019. PubMed DOI PMC
Liu P., Zupa E., Neuner A., Böhler A., Loerke J., Flemming D., Ruppert T., Rudack T., Peter C., Spahn C., et al. Insights into the assembly and activation of the microtubule nucleator γ-TuRC. Nature. 2020;578:467–471. doi: 10.1038/s41586-019-1896-6. PubMed DOI
Wieczorek M., Urnavicius L., Ti S.C., Molloy K.R., Chait B.T., Kapoor T.M. Asymmetric molecular architecture of the human γ-tubulin ring complex. Cell. 2020;180:165–175. doi: 10.1016/j.cell.2019.12.007. PubMed DOI PMC
Zimmermann F., Serna M., Ezquerra A., Fernandez-Leiro R., Llorca O., Lüders J. Assembly of the asymmetric human γ-tubulin ring complex by RUVBL1-RUVBL2 AAA ATPase. Sci. Adv. 2020;6:eabe0894. doi: 10.1126/sciadv.abe0894. PubMed DOI PMC
Wieczorek M., Huang T.L., Urnavicius L., Hsia K.C., Kapoor T.M. MZT proteins form multi-faceted structural modules in the γ-tubulin ring complex. Cell Rep. 2020;31:107791. doi: 10.1016/j.celrep.2020.107791. PubMed DOI PMC
Zupa E., Liu P., Würtz M., Schiebel E., Pfeffer S. The structure of the γ-TuRC: A 25-years-old molecular puzzle. Curr. Opin. Struct. Biol. 2021;66:15–21. doi: 10.1016/j.sbi.2020.08.008. PubMed DOI
Kollman J.M., Greenberg C.H., Li S., Moritz M., Zelter A., Fong K.K., Fernandez J.J., Sali A., Kilmartin J., Davis T.N., et al. Ring closure activates yeast γTuRC for species-specific microtubule nucleation. Nat. Struct. Mol. Biol. 2015;22:132–137. doi: 10.1038/nsmb.2953. PubMed DOI PMC
Choi Y.K., Liu P., Sze S.K., Dai C., Qi R.Z. CDK5RAP2 stimulates microtubule nucleation by the γ-tubulin ring complex. J. Cell Biol. 2010;191:1089–1095. doi: 10.1083/jcb.201007030. PubMed DOI PMC
Liu P., Choi Y.K., Qi R.Z. NME7 is a functional component of the γ-tubulin ring complex. Mol. Biol. Cell. 2014;25:2017–2025. doi: 10.1091/mbc.e13-06-0339. PubMed DOI PMC
Wang Z., Wu T., Shi L., Zhang L., Zheng W., Qu J.Y., Niu R., Qi R.Z. Conserved motif of CDK5RAP2 mediates its localization to centrosomes and the Golgi complex. J. Biol. Chem. 2010;285:22658–22665. doi: 10.1074/jbc.M110.105965. PubMed DOI PMC
Lüders J., Patel U.K., Stearns T. GCP-WD is a γ-tubulin targeting factor required for centrosomal and chromatin mediated microtubule nucleation. Nat. Cell Biol. 2006;8:137–147. doi: 10.1038/ncb1349. PubMed DOI
Zhang X., Chen Q., Feng J., Hou J., Yang F., Liu J., Jiang Q., Zhang C. Sequential phosphorylation of Nedd1 by Cdk1 and Plk1 is required for targeting of the γTuRC to the centrosome. J. Cell Sci. 2009;122:2240–2251. doi: 10.1242/jcs.042747. PubMed DOI
Takahashi M., Yamagiwa A., Nishimura T., Mukai H., Ono Y. Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring γ-tubulin ring complex. Mol. Biol. Cell. 2002;13:3235–3245. doi: 10.1091/mbc.e02-02-0112. PubMed DOI PMC
Zimmerman W.C., Sillibourne J., Rosa J., Doxsey S.J. Mitosis-specific anchoring of γ-tubulin complexes by pericentrin controls spindle organization and mitotic entry. Mol. Biol. Cell. 2004;15:3642–3657. doi: 10.1091/mbc.e03-11-0796. PubMed DOI PMC
Delgehyr N., Sillibourne J., Bornens M. Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function. J. Cell Sci. 2005;118:1565–1575. doi: 10.1242/jcs.02302. PubMed DOI
Gomez-Ferreria M.A., Rath U., Buster D.W., Chanda S.K., Caldwell J.S., Rines D.R., Sharp D.J. Human Cep192 is required for mitotic centrosome and spindle assembly. Curr. Biol. 2007;17:1960–1966. doi: 10.1016/j.cub.2007.10.019. PubMed DOI
Singh P., Thomas G.E., Gireesh K.K., Manna T.K. TACC3 protein regulates microtubule nucleation by affecting γ-tubulin ring complexes. J. Biol. Chem. 2014;289:31719–31735. doi: 10.1074/jbc.M114.575100. PubMed DOI PMC
Rajeev R., Singh P., Asmita A., Anand U., Manna T.K. Aurora A site specific TACC3 phosphorylation regulates astral microtubule assembly by stabilizing γ-tubulin ring complex. BMC Mol. Cell Biol. 2019;20:58. doi: 10.1186/s12860-019-0242-z. PubMed DOI PMC
Tovey C.A., Tubman C.E., Hamrud E., Zhu Z., Dyas A.E., Butterfield A.N., Fyfe A., Johnson E., Conduit P.T. γ-TuRC heterogeneity revealed by analysis of Mozart1. Curr. Biol. 2018;28:2314–2323. doi: 10.1016/j.cub.2018.05.044. PubMed DOI PMC
Schweizer N., Lüders J. From tip to toe-dressing centrioles in γTuRC. J. Cell Sci. 2021;134:jcs258397. doi: 10.1242/jcs.258397. PubMed DOI
Bouissou A., Verollet C., Sousa A., Sampaio P., Wright M., Sunkel C.E., Merdes A., Raynaud-Messina B. γ-Tubulin ring complexes regulate microtubule plus end dynamics. J. Cell Biol. 2009;187:327–334. doi: 10.1083/jcb.200905060. PubMed DOI PMC
Hendrickson T.W., Yao J., Bhadury S., Corbett A.H., Joshi H.C. Conditional mutations in γ-tubulin reveal its involvement in chromosome segregation and cytokinesis. Mol. Biol. Cell. 2001;12:2469–2481. doi: 10.1091/mbc.12.8.2469. PubMed DOI PMC
Nayak T., Edgerton-Morgan H., Horio T., Xiong Y., De Souza C.P., Osmani S.A., Oakley B.R. γ-Tubulin regulates the anaphase-promoting complex/cyclosome during interphase. J. Cell Biol. 2010;190:317–330. doi: 10.1083/jcb.201002105. PubMed DOI PMC
Hořejší B., Vinopal S., Sládková V., Dráberová E., Sulimenko V., Sulimenko T., Vosecká V., Philimonenko A., Hozák P., Katsetos C.D., et al. Nuclear γ-tubulin associates with nucleoli and interacts with tumor suppressor protein C53. J. Cell. Physiol. 2012;227:367–382. doi: 10.1002/jcp.22772. PubMed DOI
Höög G., Zarrizi R., von Stedingk K., Jonsson K., Alvarado-Kristensson M. Nuclear localization of γ-tubulin affects E2F transcriptional activity and S-phase progression. FASEB J. 2011;25:3815–3827. doi: 10.1096/fj.11-187484. PubMed DOI PMC
Kállai B.M., Kourová H., Chumová J., Papdi C., Trögelová L., Kofroňová O., Hozák P., Filimonenko V., Mészáros T., Magyar Z., et al. γ-Tubulin interacts with E2F transcription factors to regulate proliferation and endocycling in Arabidopsis. J. Exp. Bot. 2020;71:1265–1277. doi: 10.1093/jxb/erz498. PubMed DOI
Lesca C., Germanier M., Raynaud-Messina B., Pichereaux C., Etievant C., Emond S., Burlet-Schiltz O., Monsarrat B., Wright M., Defais M. DNA damage induce γ-tubulin-RAD51 nuclear complexes in mammalian cells. Oncogene. 2005;24:5165–5172. doi: 10.1038/sj.onc.1208723. PubMed DOI
Hubert T., Vandekerckhove J., Gettemans J. Cdk1 and BRCA1 target γ-tubulin to microtubule domains. Biochem. Biophys. Res. Commun. 2011;414:240–245. doi: 10.1016/j.bbrc.2011.09.064. PubMed DOI
Zhang S., Hernmerich P., Grosse F. Centrosomal localization of DNA damage checkpoint proteins. J. Cell. Biochem. 2007;101:451–465. doi: 10.1002/jcb.21195. PubMed DOI
Sulimenko V., Sulimenko T., Poznanovic S., Nechiporuk-Zloy V., Böhm J.K., Macurek L., Unger E., Dráber P. Association of brain γ-tubulins with αβ-tubulin dimers. Biochem. J. 2002;365:889–895. doi: 10.1042/bj20020175. PubMed DOI PMC
Chumová J., Trögelová L., Kourová H., Volc J., Sulimenko V., Halada P., Kučera O., Benada O., Kuchařová A., Klebanovych A., et al. γ-Tubulin has a conserved intrinsic property of self-polymerization into double stranded filaments and fibrillar networks. BBA Mol. Cell Res. 2018;1865:734–748. doi: 10.1016/j.bbamcr.2018.02.009. PubMed DOI
Lindström L., Li T., Malycheva D., Kancharla A., Nilsson H., Vishnu N., Mulder H., Johansson M., Rosselló C.A., Alvarado-Kristensson M. The GTPase domain of gamma-tubulin is required for normal mitochondrial function and spatial organization. Commun. Biol. 2018;1:37. doi: 10.1038/s42003-018-0037-3. PubMed DOI PMC
Chumová J., Kourová H., Trögelová L., Halada P., Binarová P. Microtubular and nuclear functions of γ-tubulin: Are they LINCed? Cells. 2019;8:259. doi: 10.3390/cells8030259. PubMed DOI PMC
Rosselló C.A., Lindström L., Eklund G., Corvaisier M., Alvarado-Kristensson M.A. γ-Tubulin-γ-tubulin interactions as the basis for the formation of a meshwork. Int. J. Mol. Sci. 2018;19:3245. doi: 10.3390/ijms19103245. PubMed DOI PMC
Chabin-Brion K., Marceiller J., Perez F., Settegrana C., Drechou A., Durand G., Pous C. The Golgi complex is a microtubule-organizing organelle. Mol. Biol. Cell. 2001;12:2047–2060. doi: 10.1091/mbc.12.7.2047. PubMed DOI PMC
Hehnly H., Doxsey S. Rab11 endosomes contribute to mitotic spindle organization and orientation. Dev. Cell. 2014;28:497–507. doi: 10.1016/j.devcel.2014.01.014. PubMed DOI PMC
Katsetos C.D., Dráberová E., Legido A., Dráber P. Tubulin targets in the pathobiology and therapy of glioblastoma multiforme. II. g-Tubulin. J. Cell. Physiol. 2009;221:514–520. doi: 10.1002/jcp.21884. PubMed DOI
Ohgaki H., Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J. Neuropathol. Exp. Neurol. 2005;64:479–489. doi: 10.1093/jnen/64.6.479. PubMed DOI
Rickman D.S., Bobek M.P., Misek D.E., Kuick R., Blaivas M., Kurnit D.M., Taylor J., Hanash S.M. Distinctive molecular profiles of high-grade and low-grade gliomas based on oligonucleotide microarray analysis. Cancer Res. 2001;61:6885–6891. PubMed
Katsetos C.D., Reddy G., Dráberová E., Šmejkalová B., Del Valle L., Ashraf Q., Tradevosyan A., Yelin K., Maraziotis T., Mishra O.P., et al. Altered cellular distribution and subcellular sorting of γ-tubulin in diffuse astrocytic gliomas and human glioblastoma cell lines. J. Neuropathol. Exp. Neurol. 2006;65:465–477. doi: 10.1097/01.jnen.0000229235.20995.6e. PubMed DOI
Katsetos C.D., Dráberová E., Šmejkalová B., Reddy G., Bertrand L., de Chadarévian J.P., Legido A., Nissanov J., Baas P.W., Dráber P. Class III β-tubulin and γ-tubulin are co-expressed and form complexes in human glioblastoma cells. Neurochem. Res. 2007;32:1387–1398. doi: 10.1007/s11064-007-9321-1. PubMed DOI
Loh J.K., Lieu A.S., Chou C.H., Lin F.Y., Wu C.H., Howng S.L., Chio C.C., Hong Y.R. Differential expression of centrosomal proteins at different stages of human glioma. BMC Cancer. 2010;10:268. doi: 10.1186/1471-2407-10-268. PubMed DOI PMC
Loh J.K., Lieu A.S., Chou C.H., Lin C.C., Yang M.C., Lin F.Y., Hong Y.R., Howng S.L. Differential expression of centrosome-associated proteins in human brain tumors: A possible role of hNinein isoform 6 in cell differentiation. Biofactors. 2012;38:470–477. doi: 10.1002/biof.1053. PubMed DOI
Tsai H.P., Tsai C.Y., Lieu A.S., Chai C.Y., Kwan A.L., Howng S.L., Loh J.K. Association of Aurora A and γ-tubulin expression in astrocytomas and patient survival. Neurol. Res. 2014;36:746–751. doi: 10.1179/1743132813Y.0000000310. PubMed DOI
Caracciolo V., D’Agostino L., Dráberová E., Sládková V., Crozier-Fitzgerald C., Agamanolis D.P., de Chadarévian J.P., Legido A., Giordano A., Dráber P., et al. Differential expression and cellular distribution of γ-tubulin and βIII-tubulin in medulloblastomas and human medulloblastoma cell lines. J. Cell. Physiol. 2010;223:519–529. doi: 10.1002/jcp.22077. PubMed DOI
Harbeck N., Penault-Llorca F., Cortes J., Gnant M., Houssami N., Poortmans P., Ruddy K., Tsang J., Cardoso F. Breast cancer. Nat. Rev. Dis. Primers. 2019;5:66. doi: 10.1038/s41572-019-0111-2. PubMed DOI
Liu T., Niu Y., Yu Y., Liu Y., Zhang F. Increased γ-tubulin expression and P16INK4A promoter methylation occur together in preinvasive lesions and carcinomas of the breast. Ann. Oncol. 2009;20:441–448. doi: 10.1093/annonc/mdn651. PubMed DOI
Niu Y., Liu T., Tse G.M., Sun B., Niu R., Li H.M., Wang H., Yang Y., Ye X., Wang Y., et al. Increased expression of centrosomal α, γ-tubulin in atypical ductal hyperplasia and carcinoma of the breast. Cancer Sci. 2009;100:580–587. doi: 10.1111/j.1349-7006.2008.01075.x. PubMed DOI PMC
Cho E.H., Whipple R.A., Matrone M.A., Balzer E.M., Martin S.S. Delocalization of γ-tubulin due to increased solubility in human breast cancer cell lines. Cancer Biol. Ther. 2010;9:66–76. doi: 10.4161/cbt.9.1.10451. PubMed DOI PMC
Sankaran S., Crone D.E., Palazzo R.E., Parvin J.D. BRCA1 regulates γ-tubulin binding to centrosomes. Cancer Biol. Ther. 2007;6:1853–1857. doi: 10.4161/cbt.6.12.5164. PubMed DOI PMC
Yoshino Y., Fang Z., Qi H., Kobayashi A., Chiba N. Dysregulation of the centrosome induced by BRCA1 deficiency contributes to tissue-specific carcinogenesis. Cancer Sci. 2021;112:1679–1687. doi: 10.1111/cas.14859. PubMed DOI PMC
Zarrizi R., Menard J.A., Belting M., Massoumi R. Deubiquitination of γ-tubulin by BAP1 prevents chromosome instability in breast cancer cells. Cancer Res. 2014;74:6499–6508. doi: 10.1158/0008-5472.CAN-14-0221. PubMed DOI
Maounis N.F., Dráberová E., Mahera E., Chorti M., Caracciolo V., Sulimenko T., Riga D., Trakas N., Emmanouilidou A., Giordano A., et al. Overexpression of γ-tubulin in non-small cell lung cancer. Histol. Histopathol. 2012;27:1183–1194. doi: 10.14670/HH-27.1183. PubMed DOI
Maounis N.F., Dráberová E., Trakas N., Chorti M., Riga D., Tzannis K., Kanakis M., Voralu K., Ellina E., Mahera E., et al. Expression of γ-tubulin in non-small cell lung cancer and effect on patient survival. Histol. Histopathol. 2019;34:81–90. doi: 10.14670/HH-18-027. PubMed DOI
Syed M.I., Syed S., Minty F., Harrower S., Singh J., Chin A., McLellan D.R., Parkinson E.K., Clark L.J. Gamma tubulin: A promising indicator of recurrence in squamous cell carcinoma of the larynx. Otolaryngol. Head Neck Surg. 2009;140:498–504. doi: 10.1016/j.otohns.2008.12.049. PubMed DOI
Montero-Conde C., Martin-Camposo J.M., Lerma E., Martinez-Guitarte J.L., Combalia N., Montaner D., Matias-Guiu X., Dopazo J., de Leiva A., Robledo M., et al. Molecular profiling related to poor prognosis in thyroid carcinoma. Combining gene expression data and biological information. Oncogene. 2008;27:1554–1561. doi: 10.1038/sj.onc.1210792. PubMed DOI
Hsu L.C., Kapali M., DeLoia J.A., Gallion H.H. Centrosome abnormalities in ovarian cancer. Int. J. Cancer. 2005;113:746–751. doi: 10.1002/ijc.20633. PubMed DOI
Li Y.W., Hussain M., Sarkar S.H., Eliason J., Li R., Sarkar F.H. Gene expression profiling revealed novel mechanism of action of Taxotere and Furtulon in prostate cancer cells. BMC Cancer. 2005;5:7. doi: 10.1186/1471-2407-5-7. PubMed DOI PMC
LoMastro G.M., Holland A.J. The emerging link between centrosome aberrations and metastasis. Dev. Cell. 2019;49:325–331. doi: 10.1016/j.devcel.2019.04.002. PubMed DOI PMC
Dráberová E., D’Agostino L., Caracciolo V., Sládková V., Sulimenko T., Sulimenko V., Sobol M., Maounis N.F., Tzelepis E., Mahera E., et al. Overexpression and nucleolar localization of γ-tubulin small complex proteins GCP2 and GCP3 in glioblastoma. J. Neuropathol. Exp. Neurol. 2015;74:723–742. doi: 10.1097/NEN.0000000000000212. PubMed DOI
Huang S.L., Chao C.C. Silencing of taxol-sensitizer genes in cancer cells: Lack of sensitization effects. Cancers. 2015;7:1052–1071. doi: 10.3390/cancers7020824. PubMed DOI PMC
Wang H., Jiang X., Cheng Y., Ren H., Hu Y., Zhang Y., Su H., Zou Z., Wang Q., Liu Z., et al. MZT2A promotes NSCLC viability and invasion by increasing Akt phosphorylation via the MOZART2 domain. Cancer Sci. 2021;112:2210–2222. doi: 10.1111/cas.14900. PubMed DOI PMC
Liu P., Würtz M., Zupa E., Pfeffer S., Schiebel E. Microtubule nucleation: The waltz between γ-tubulin ring complex and associated proteins. Curr. Opin. Cell Biol. 2021;68:124–131. doi: 10.1016/j.ceb.2020.10.004. PubMed DOI
Suresh R., Diaz R.J. The remodelling of actin composition as a hallmark of cancer. Transl. Oncol. 2021;14:101051. doi: 10.1016/j.tranon.2021.101051. PubMed DOI PMC
Po’uha S.T., Kavallaris M. Gamma-actin is involved in regulating centrosome function and mitotic progression in cancer cells. Cell Cycle. 2015;14:3908–3919. doi: 10.1080/15384101.2015.1120920. PubMed DOI PMC
Nejedlá M., Sadi S., Sulimenko V., de Almeida F.N., Blom H., Dráber P., Aspenström P., Karlsson R. Profilin connects actin assembly with microtubule dynamics. Mol. Biol. Cell. 2016;27:2381–2393. doi: 10.1091/mbc.e15-11-0799. PubMed DOI PMC
Henty-Ridilla J.L., Juanes M.A., Goode B.L. Profilin directly promotes microtubule growth through residues mutated in amyotrophic lateral sclerosis. Curr. Biol. 2017;27:3535–3543. doi: 10.1016/j.cub.2017.10.002. PubMed DOI PMC
Nejedlá M., Klebanovych A., Sulimenko V., Sulimenko T., Dráberová E., Dráber P., Karlsson R. The actin regulator profilin 1 is functionally associated with the mammalian centrosome. Life Sci. Alliance. 2021;4:e202000655. doi: 10.26508/lsa.202000655. PubMed DOI PMC
Pimm M.L., Hotaling J., Henty-Ridilla J.L. Profilin choreographs actin and microtubules in cells and cancer. Int. Rev. Cell Mol. Biol. 2020;355:155–204. doi: 10.1016/bs.ircmb.2020.05.005. PubMed DOI PMC
Karlsson R., Dráber P. Profilin-A master coordinator of actin and microtubule organization in mammalian cells. J. Cell. Physiol. 2021;236:7256–7265. doi: 10.1002/jcp.30379. PubMed DOI
Khodjakov A., Rieder C.L. The sudden recruitment of γ-tubulin to the centrosome at the onset of mitosis and its dynamic exchange throughout the cell cycle, do not require microtubules. J. Cell Biol. 1999;146:585–596. doi: 10.1083/jcb.146.3.585. PubMed DOI PMC
Yao R., Kondoh Y., Natsume Y., Yamanaka H., Inoue M., Toki H., Takagi R., Shimizu T., Yamori T., Osada H., et al. A small compound targeting TACC3 revealed its different spatiotemporal contributions for spindle assembly in cancer cells. Oncogene. 2014;33:4242–4252. doi: 10.1038/onc.2013.382. PubMed DOI
Sabat-Pospiech D., Fabian-Kolpanowicz K., Prior I.A., Coulson J.M., Fielding A.B. Targeting centrosome amplification, an Achilles’ heel of cancer. Biochem. Soc. Trans. 2019;47:1209–1222. doi: 10.1042/BST20190034. PubMed DOI PMC
Friesen D.E., Barakat K.H., Semenchenko V., Perez-Pineiro R., Fenske B.W., Mane J., Wishart D.S., Tuszynski J.A. Discovery of small molecule inhibitors that interact with γ-tubulin. Chem. Biol. Drug. Des. 2012;79:639–652. doi: 10.1111/j.1747-0285.2012.01340.x. PubMed DOI
Aldaz H., Rice L.M., Stearns T., Agard D.A. Insights into microtubule nucleation from the crystal structure of human γ-tubulin. Nature. 2005;435:523–527. doi: 10.1038/nature03586. PubMed DOI
Chinen T., Liu P., Shioda S., Pagel J., Cerikan B., Lin T.C., Gruss O., Hayashi Y., Takeno H., Shima T., et al. The γ-tubulin-specific inhibitor gatastatin reveals temporal requirements of microtubule nucleation during the cell cycle. Nat. Commun. 2015;6:8722. doi: 10.1038/ncomms9722. PubMed DOI PMC
Rayevsky A.S.M., Samofalova D., Demchuk O., Karpov P., Blume Y. In silico mechanistic model of microtubule assembly inhibition by selective chromone derivatives. J. Mol. Struct. 2021;1241:130633. doi: 10.1016/j.molstruc.2021.130633. DOI
Ebisu H., Shintani K., Chinen T., Nagumo Y., Shioda S., Hatanaka T., Sakakura A., Hayakawa I., Kigoshi H., Usui T. Dual inhibition of γ-tubulin and Plk1 induces mitotic cell death. Front. Pharmacol. 2020;11:620185. doi: 10.3389/fphar.2020.620185. PubMed DOI PMC
Shintani K., Ebisu H., Mukaiyama M., Hatanaka T., Chinen T., Takao D., Nagumo Y., Sakakura A., Hayakawa I., Usui T. Structure optimization of gatastatin for the development of γ-tubulin-specific inhibitor. ACS Med. Chem. Lett. 2020;11:1125–1129. doi: 10.1021/acsmedchemlett.9b00526. PubMed DOI PMC
Traversi G., Staid D.S., Fiore M., Percario Z., Trisciuoglio D., Antonioletti R., Morea V., Degrassi F., Cozzi R. A novel resveratrol derivative induces mitotic arrest, centrosome fragmentation and cancer cell death by inhibiting γ-tubulin. Cell Div. 2019;14:3. doi: 10.1186/s13008-019-0046-8. PubMed DOI PMC
Naik P.K., Santoshi S., Rai A., Joshi H.C. Molecular modelling and competition binding study of Br-noscapine and colchicine provide insight into noscapinoid-tubulin binding site. J. Mol. Graph. Model. 2011;29:947–955. doi: 10.1016/j.jmgm.2011.03.004. PubMed DOI PMC
Suri C., Naik P.K. Combined molecular dynamics and continuum solvent approaches (MM-PBSA/GBSA) to predict noscapinoid binding to gamma-tubulin dimer. SAR QSAR Environ. Res. 2015;26:507–519. doi: 10.1080/1062936X.2015.1070200. PubMed DOI
Altinoz M.A., Topcu G., Hacimuftuoglu A., Ozpinar A., Ozpinar A., Hacker E., Elmaci I. Noscapine, a non-addictive opioid and microtubule-inhibitor in potential treatment of glioblastoma. Neurochem. Res. 2019;44:1796–1806. doi: 10.1007/s11064-019-02837-x. PubMed DOI
Knudsen E.S., Nambiar R., Rosario S.R., Smiraglia D.J., Goodrich D.W., Witkiewicz A.K. Pan-cancer molecular analysis of the RB tumor suppressor pathway. Commun. Biol. 2020;3:158. doi: 10.1038/s42003-020-0873-9. PubMed DOI PMC
Ehlén Å., Rosselló C.A., von Stedingk K., Höög G., Nilsson E., Pettersson H.M., Jirström K., Alvarado-Kristensson M. Tumors with nonfunctional retinoblastoma protein are killed by reduced γ-tubulin levels. J. Biol. Chem. 2012;287:17241–17247. doi: 10.1074/jbc.M112.357038. PubMed DOI PMC
Lindström L., Villoutreix B.O., Lehn S., Hellsten R., Nilsson E., Crneta E., Olsson R., Alvarado-Kristensson M. Therapeutic targeting of nuclear γ-tubulin in RB1-negative tumors. Mol. Cancer Res. 2015;13:1073–1082. doi: 10.1158/1541-7786.MCR-15-0063-T. PubMed DOI
γ-Tubulin in microtubule nucleation and beyond