Association of brain gamma-tubulins with alpha beta-tubulin dimers
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
11939909
PubMed Central
PMC1222706
DOI
10.1042/bj20020175
PII: BJ20020175
Knihovny.cz E-zdroje
- MeSH
- dimerizace MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- frakcionace buněk MeSH
- mozek - chemie * MeSH
- prasata MeSH
- protein - isoformy MeSH
- tkáňové extrakty chemie metabolismus MeSH
- tubulin chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protein - isoformy MeSH
- tkáňové extrakty MeSH
- tubulin MeSH
gamma-Tubulin is necessary for nucleation and polar orientation of microtubules in vivo. The molecular mechanism of microtubule nucleation by gamma-tubulin and the regulation of this process are not fully understood. Here we show that there are two gamma-tubulin forms in the brain that are present in complexes of various sizes. Large complexes tend to dissociate in the presence of a high salt concentration. Both gamma-tubulins co-polymerized with tubulin dimers, and multiple gamma-tubulin bands were identified in microtubule protein preparations under conditions of non-denaturing electrophoresis. Immunoprecipitation experiments with monoclonal antibodies against gamma-tubulin and alpha-tubulin revealed interactions of both gamma-tubulin forms with tubulin dimers, irrespective of the size of complexes. We suggest that, besides small and large gamma-tubulin complexes, other molecular gamma-tubulin form(s) exist in brain extracts. Two-dimensional electrophoresis revealed multiple charge variants of gamma-tubulin in both brain extracts and microtubule protein preparations. Post-translational modification(s) of gamma-tubulins might therefore have an important role in the regulation of microtubule nucleation in neuronal cells.
Zobrazit více v PubMed
J Cell Sci. 1996 Oct;109 ( Pt 10):2483-92 PubMed
Cell Motil Cytoskeleton. 1996;33(1):38-51 PubMed
Dev Biol. 1997 Apr 15;184(2):207-21 PubMed
Int Rev Cytol. 1998;178:207-75 PubMed
EMBO J. 1997 Dec 1;16(23):6985-95 PubMed
J Cell Biol. 1998 May 4;141(3):663-74 PubMed
J Cell Biol. 1998 Aug 10;142(3):775-86 PubMed
J Cell Sci. 1999 Mar;112 ( Pt 5):659-67 PubMed
J Cell Biol. 1999 Feb 22;144(4):721-33 PubMed
Biochem J. 1999 Apr 15;339 ( Pt 2):435-42 PubMed
Curr Opin Struct Biol. 1999 Apr;9(2):250-9 PubMed
Electrophoresis. 1999 Apr-May;20(4-5):712-7 PubMed
Int Immunol. 1999 Nov;11(11):1829-39 PubMed
Biochemistry. 1999 Nov 30;38(48):15712-20 PubMed
J Mol Biol. 2000 Mar 17;297(1):211-20 PubMed
Nat Cell Biol. 2000 Jun;2(6):358-64 PubMed
J Biol Chem. 2000 Jul 21;275(29):21975-80 PubMed
Genomics. 2000 Jul 15;67(2):164-70 PubMed
J Cell Sci. 2001 Jan;114(Pt 2):413-22 PubMed
Mol Reprod Dev. 2001 Sep;60(1):128-36 PubMed
Mol Biol Cell. 2001 Nov;12(11):3340-52 PubMed
Dev Cell. 2001 Nov;1(5):621-31 PubMed
Eur J Cell Biol. 2001 Oct;80(10):643-9 PubMed
Nature. 1970 Aug 15;227(5259):680-5 PubMed
Proc Natl Acad Sci U S A. 1973 Mar;70(3):765-8 PubMed
Proc Natl Acad Sci U S A. 1975 May;72(5):1858-62 PubMed
Biochemistry. 1981 Apr 28;20(9):2402-9 PubMed
Anal Biochem. 1981 Jul 1;114(2):281-4 PubMed
Cell Biol Int Rep. 1982 Aug;6(8):725-31 PubMed
Neurosci Lett. 1982 Aug 31;31(3):323-8 PubMed
Arch Biochem Biophys. 1985 May 15;239(1):120-9 PubMed
J Mol Biol. 1985 Sep 20;185(2):311-27 PubMed
Histochemistry. 1988;89(5):485-92 PubMed
Folia Biol (Praha). 1986;32(5):295-303 PubMed
Nature. 1989 Apr 20;338(6217):662-4 PubMed
J Cell Sci. 1989 Mar;92 ( Pt 3):519-28 PubMed
Cell. 1990 Jun 29;61(7):1289-301 PubMed
Nature. 1992 Mar 5;356(6364):80-3 PubMed
Biochem J. 1992 Dec 15;288 ( Pt 3):919-24 PubMed
J Cell Sci. 1993 Apr;104 ( Pt 4):1217-28 PubMed
Annu Rev Biochem. 1994;63:639-74 PubMed
J Cell Sci. 1995 Mar;108 ( Pt 3):1083-92 PubMed
J Cell Biol. 1995 Sep;130(5):1149-59 PubMed
J Cell Biol. 1995 Oct;131(1):207-14 PubMed
Nature. 1995 Dec 7;378(6557):578-83 PubMed
Cell Motil Cytoskeleton. 1995;32(4):273-88 PubMed
J Cell Sci. 1996 Apr;109 ( Pt 4):875-87 PubMed
Cell Motil Cytoskeleton. 1997;36(2):179-89 PubMed
γ-Tubulin in microtubule nucleation and beyond
Dysregulation of Microtubule Nucleating Proteins in Cancer Cells
Microtubular and Nuclear Functions of γ-Tubulin: Are They LINCed?
Regulation of microtubule nucleation mediated by γ-tubulin complexes
Cytoskeleton in mast cell signaling
γ-Tubulin 2 nucleates microtubules and is downregulated in mouse early embryogenesis
Plant gamma-tubulin interacts with alphabeta-tubulin dimers and forms membrane-associated complexes