TUBG1 missense variants underlying cortical malformations disrupt neuronal locomotion and microtubule dynamics but not neurogenesis
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, audiovizuální média
PubMed
31086189
PubMed Central
PMC6513894
DOI
10.1038/s41467-019-10081-8
PII: 10.1038/s41467-019-10081-8
Knihovny.cz E-zdroje
- MeSH
- centrozom metabolismus MeSH
- chování zvířat MeSH
- elektronová mikroskopie MeSH
- embryo savčí MeSH
- epilepsie genetika MeSH
- fibroblasty cytologie metabolismus ultrastruktura MeSH
- genetická predispozice k nemoci MeSH
- genový knockin MeSH
- HeLa buňky MeSH
- intravitální mikroskopie MeSH
- konfokální mikroskopie MeSH
- lidé MeSH
- malformace mozkové kůry genetika MeSH
- mikrotubuly genetika metabolismus MeSH
- missense mutace MeSH
- modely nemocí na zvířatech MeSH
- mozková kůra abnormality cytologie diagnostické zobrazování MeSH
- myši transgenní MeSH
- myši MeSH
- neurogeneze genetika MeSH
- neurony fyziologie MeSH
- pohyb buněk genetika MeSH
- tubulin genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- audiovizuální média MeSH
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- TUBG1 protein, human MeSH Prohlížeč
- TUBG1 protein, mouse MeSH Prohlížeč
- tubulin MeSH
De novo heterozygous missense variants in the γ-tubulin gene TUBG1 have been linked to human malformations of cortical development associated with intellectual disability and epilepsy. Here, we investigated through in-utero electroporation and in-vivo studies, how four of these variants affect cortical development. We show that TUBG1 mutants affect neuronal positioning, disrupting the locomotion of new-born neurons but without affecting progenitors' proliferation. We further demonstrate that pathogenic TUBG1 variants are linked to reduced microtubule dynamics but without major structural nor functional centrosome defects in subject-derived fibroblasts. Additionally, we developed a knock-in Tubg1Y92C/+ mouse model and assessed consequences of the mutation. Although centrosomal positioning in bipolar neurons is correct, they fail to initiate locomotion. Furthermore, Tubg1Y92C/+ animals show neuroanatomical and behavioral defects and increased epileptic cortical activity. We show that Tubg1Y92C/+ mice partially mimic the human phenotype and therefore represent a relevant model for further investigations of the physiopathology of cortical malformations.
Centre National de la Recherche Scientifique UMR7104 67400 Illkirch France
Institut de Génétique et de Biologie Moléculaire et Cellulaire 67400 Illkirch France
Institut National de la Santé et de la Recherche Médicale U1258 67400 Illkirch France
Laboratoire de Diagnostic Génétique Hôpitaux Universitaire de Strasbourg 67000 Strasbourg France
Service de Biochimie et de Génétique Moléculaire Hôpital Cochin AP HP Paris 75014 France
Université de Bourgogne SVTE Boulevard Gabriel 21000 Dijon France
Zobrazit více v PubMed
Rakic P. Specification of cerebral cortical areas. Science. 1988;241:170–176. doi: 10.1126/science.3291116. PubMed DOI
Anderson SA, Eisenstat DD, Shi L, Rubenstein JLR. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science. 1997;278:15–18. doi: 10.1126/science.278.5335.15. PubMed DOI
Guerrini R, Dobyns WB. Malformations of cortical development: clinical features and genetic causes. Lancet Neurol. 2014;13:710–726. doi: 10.1016/S1474-4422(14)70040-7. PubMed DOI PMC
Francis F, et al. Human disorders of cortical development: from past to present. Eur. J. Neurosci. 2006;23:877–893. doi: 10.1111/j.1460-9568.2006.04649.x. PubMed DOI
Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB. A developmental and genetic classification for malformations of cortical development: update 2012. Brain. 2012;135:1348–1369. doi: 10.1093/brain/aws019. PubMed DOI PMC
Jaglin XH, Chelly J. Tubulin-related cortical dysgeneses: microtubule dysfunction underlying neuronal migration defects. Trends Genet. 2009;25:555–566. doi: 10.1016/j.tig.2009.10.003. PubMed DOI
Bahi-Buisson N, et al. The wide spectrum of tubulinopathies: what are the key features for the diagnosis? Brain. 2014;137:1676–1700. doi: 10.1093/brain/awu082. PubMed DOI
Bond J, et al. A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nat. Genet. 2005;37:353–355. doi: 10.1038/ng1539. PubMed DOI
Hussain MS, et al. A truncating mutation of CEP135 causes primary microcephaly and disturbed centrosomal function. Am. J. Hum. Genet. 2012;90:871–878. doi: 10.1016/j.ajhg.2012.03.016. PubMed DOI PMC
Yu TW, et al. Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture. Nat. Genet. 2010;42:1015–1020. doi: 10.1038/ng.683. PubMed DOI PMC
Guernsey DL, et al. Mutations in centrosomal protein CEP152 in primary microcephaly families linked to MCPH4. Am. J. Hum. Genet. 2010;87:40–51. doi: 10.1016/j.ajhg.2010.06.003. PubMed DOI PMC
Bond J, et al. ASPM is a major determinant of cerebral cortical size. Nat. Genet. 2002;32:316–320. doi: 10.1038/ng995. PubMed DOI
Kumar A, Girimaji SC, Duvvari MR, Blanton SH. Mutations in STIL, encoding a pericentriolar and centrosomal protein, cause primary microcephaly. Am. J. Hum. Genet. 2009;84:286–290. doi: 10.1016/j.ajhg.2009.01.017. PubMed DOI PMC
Poirier K, et al. Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly. Nat. Genet. 2013;45:639–647. doi: 10.1038/ng.2613. PubMed DOI PMC
Brock S, et al. Tubulinopathies continued: refining the phenotypic spectrum associated with variants in TUBG1. Eur. J. Hum. Genet. 2018;26:1132–1142. doi: 10.1038/s41431-018-0146-y. PubMed DOI PMC
Yuba-Kubo A, Kubo A, Hata M, Tsukita S. Gene knockout analysis of two γ-tubulin isoforms in mice. Dev. Biol. 2005;282:361–373. doi: 10.1016/j.ydbio.2005.03.031. PubMed DOI
Dráberová E, et al. Differential expression of human γ-tubulin isotypes during neuronal development and oxidative stress points to a γ-tubulin-2 prosurvival function. FASEB J. 2017;31:1828–1846. doi: 10.1096/fj.201600846RR. PubMed DOI
Moudjou M, Bordes N, Paintrand M, Bornens M. gamma-Tubulin in mammalian cells: the centrosomal and the cytosolic forms. J. Cell. Sci. 1996;109(Pt 4):875–887. PubMed
Vinopal Stanislav, Černohorská Markéta, Sulimenko Vadym, Sulimenko Tetyana, Vosecká Věra, Flemr Matyáš, Dráberová Eduarda, Dráber Pavel. γ-Tubulin 2 Nucleates Microtubules and Is Downregulated in Mouse Early Embryogenesis. PLoS ONE. 2012;7(1):e29919. doi: 10.1371/journal.pone.0029919. PubMed DOI PMC
Ohashi T, Yamamoto T, Yamanashi Y, Ohsugi M. Human TUBG2 gene is expressed as two splice variant mRNA and involved in cell growth. FEBS Lett. 2016;590:1053–1063. doi: 10.1002/1873-3468.12163. PubMed DOI
Oegema K, et al. Characterization of two related Drosophila γ-tubulin complexes that differ in their ability to nucleate microtubules. J. Cell. Biol. 1999;144:721–733. doi: 10.1083/jcb.144.4.721. PubMed DOI PMC
Knop M, Schiebel E. Spc98p and Spc97p of the yeast gamma-tubulin complex mediate binding to the spindle pole body via their interaction with Spc110p. EMBO J. 1997;16:6985–6995. doi: 10.1093/emboj/16.23.6985. PubMed DOI PMC
Kollman JM, et al. The structure of the gamma-tubulin small complex: implications of its architecture and flexibility for microtubule nucleation. Mol. Biol. Cell. 2008;19:207–215. doi: 10.1091/mbc.e07-09-0879. PubMed DOI PMC
Kollman JM, Merdes A, Mourey L, Agard DA. Microtubule nucleation by γ-tubulin complexes. Nat. Rev. Mol. Cell Biol. 2011;12:709–721. doi: 10.1038/nrm3209. PubMed DOI PMC
Wang X, Qiu R, Tsark W, Lu Q. Rapid promoter analysis in developing mouse brain and genetic labeling of young neurons by doublecortin-DsRed-express. J. Neurosci. Res. 2007;85:3567–3573. doi: 10.1002/jnr.21440. PubMed DOI
Galjart N. Plus-end-tracking proteins and their interactions at microtubule ends. Curr. Biol. 2010;20:R528–R537. doi: 10.1016/j.cub.2010.05.022. PubMed DOI
Collins Stephan C., Wagner Christel, Gagliardi Léo, Kretz Perrine F., Fischer Marie-Christine, Kessler Pascal, Kannan Meghna, Yalcin Binnaz. A Method for Parasagittal Sectioning for Neuroanatomical Quantification of Brain Structures in the Adult Mouse. Current Protocols in Mouse Biology. 2018;8(3):e48. doi: 10.1002/cpmo.48. PubMed DOI
Li G, Pleasure SJ. The development of hippocampal cellular assemblies. Wiley Interdiscip. Rev. Dev. Biol. 2014;3:165–177. doi: 10.1002/wdev.127. PubMed DOI
Bevins RA, Besheer J. Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study ‘recognition memory’. Nat. Protoc. 2006;1:1306–1311. doi: 10.1038/nprot.2006.205. PubMed DOI
Crawley JN. Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res. 1999;835:18–26. doi: 10.1016/S0006-8993(98)01258-X. PubMed DOI
Loscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure. 2011;20:359–368. doi: 10.1016/j.seizure.2011.01.003. PubMed DOI
Oakley CE, Oakley BR. Identification of gamma-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature. 1989;338:662–664. doi: 10.1038/338662a0. PubMed DOI
Gueth-Hallonet C, et al. Gamma-Tubulin is present in acentriolar MTOCs during early mouse development. J. Cell. Sci. 1993;105:157–166. PubMed
Donato NDi, et al. Analysis of 17 genes detects mutations in 81 % of 811 patients with lissencephaly. Genet. Med. 2018;20:1354–1364. doi: 10.1038/gim.2018.8. PubMed DOI PMC
Faheem M, et al. Molecular genetics of human primary microcephaly: an overview. Bmc. Med. Genom. 2015;8:24–27. doi: 10.1186/1755-8794-8-S1-S4. PubMed DOI PMC
Corbo JC, et al. Doublecortin is required in mice for lamination of the hippocampus but not the neocortex. J. Neurosci. 2002;22:7548–7557. doi: 10.1523/JNEUROSCI.22-17-07548.2002. PubMed DOI PMC
Keays DA, et al. Mutations in α-Tubulin cause abnormal neuronal migration in mice and lissencephaly in humans. Cell. 2007;128:45–57. doi: 10.1016/j.cell.2006.12.017. PubMed DOI PMC
Gstrein T, et al. Mutations in Vps15 perturb neuronal migration in mice and are associated with neurodevelopmental disease in humans. Nat. Neurosci. 2018 doi: 10.1038/s41593-017-0053-5. PubMed DOI PMC
Stottmann RW, et al. Genes. Brain. Behav. 2016;16:250–259. doi: 10.1111/gbb.12327. PubMed DOI PMC
Bai J, et al. RNAi reveals doublecortin is required for radial migration in rat neocortex. Nat. Neurosci. 2003;6:1277–1283. doi: 10.1038/nn1153. PubMed DOI
Jaglin XH, et al. Mutations in the Β-tubulin gene TUBB2B result in asymmetrical polymicrogyria. Nat. Genet. 2009;41:746–752. doi: 10.1038/ng.380. PubMed DOI PMC
Wong M, Roper SN. Genetic animal models of malformations of cortical development and epilepsy. J. Neurosci. Methods. 2016;260:73–82. doi: 10.1016/j.jneumeth.2015.04.007. PubMed DOI PMC
Chevassus-au-Louis N, Represa A. The right neuron at the wrong place: Biology of heterotopic neurons in cortical neuronal migration disorders, with special reference to associated pathologies. Cell. Mol. Life Sci. 1999;55:1206–1215. doi: 10.1007/s000180050367. PubMed DOI PMC
Oakley BR, Oakley CE, Yoon Y, Jung MK. Gamma-tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergillus nidulans. Cell. 1990;61:1289–1301. doi: 10.1016/0092-8674(90)90693-9. PubMed DOI
Stearns T, Evans L, Kirschner M. Gamma-tubulin is a highly conserved component of the centrosome. Cell. 1991;65:825–836. doi: 10.1016/0092-8674(91)90390-K. PubMed DOI
Joshi HC, Palacios MJ, McNamara L, Cleveland DW. Gamma-tubulin is a centrosomal protein required for cell cycle-dependent microtubule nucleation. Nature. 1992;356:80–83. doi: 10.1038/356080a0. PubMed DOI
Oakley BRI. Centrosomes and Microtubule Nucleation. Curr. Top. Dev. Biol. 2000;49:27–54. doi: 10.1016/S0070-2153(99)49003-9. PubMed DOI
Wiese C, Zheng Y. A new function for the gamma-tubulin ring complex as a microtubule minus-end cap. Nat. Cell Biol. 2000;2:358–364. doi: 10.1038/35014051. PubMed DOI
Hendrickson TW, Yao J, Bhadury S, Corbett AH, Joshi HC. Conditional mutations in gamma-tubulin reveal its involvement in chromosome segregation and cytokinesis. Mol. Biol. Cell. 2001;12:2469–2481. doi: 10.1091/mbc.12.8.2469. PubMed DOI PMC
Feng Y, Walsh CA. Mitotic spindle regulation by Nde1 controls cerebral cortical size. Neuron. 2004;44:279–293. doi: 10.1016/j.neuron.2004.09.023. PubMed DOI
Mcintyre RE, et al. Disruption of mouse cenpj, a regulator of centriole biogenesis, phenocopies seckel syndrome. PLoS Genet. 2012;8:1–18. doi: 10.1371/journal.pgen.1003022. PubMed DOI PMC
Bouissou A, et al. γ-Tubulin ring complexes regulate microtubule plus end dynamics. J. Cell. Biol. 2009;187:327–334. doi: 10.1083/jcb.200905060. PubMed DOI PMC
Paluh JL, et al. A mutation in gamma-tubulin alters microtubule dynamics and organization and is synthetically lethal with the kinesin-like protein pkl1p. Mol. Biol. Cell. 2000;11:1225–1239. doi: 10.1091/mbc.11.4.1225. PubMed DOI PMC
Chinen T, et al. The γ-tubulin-specific inhibitor gatastatin reveals temporal requirements of microtubule nucleation during the cell cycle. Nat. Commun. 2015;6:1–11. doi: 10.1038/ncomms9722. PubMed DOI PMC
Sánchez-Huertas C, et al. Non-centrosomal nucleation mediated by augmin organizes microtubules in post-mitotic neurons and controls axonal microtubule polarity. Nat. Commun. 2016;7:12187. doi: 10.1038/ncomms12187. PubMed DOI PMC
Cunha-Ferreira I, et al. The HAUS complex is a key regulator of non-centrosomal microtubule organization during neuronal development. Cell Rep. 2018;24:791–800. doi: 10.1016/j.celrep.2018.06.093. PubMed DOI PMC
Sulimenko V, et al. Microtubule nucleation in mouse bone marrow–derived mast cells is regulated by the concerted action of GIT1/βPIX proteins and calcium. J. Immunol. 2015;194:4099–4111. doi: 10.4049/jimmunol.1402459. PubMed DOI
Dráberová E, et al. Overexpression and nucleolar localization of γ-tubulin small complex proteins GCP2 and GCP3 in glioblastoma. J. Neuropathol. Exp. Neurol. 2015;74:723–742. doi: 10.1097/NEN.0000000000000212. PubMed DOI
Hájková Z, et al. STIM1-directed reorganization of microtubules in activated mast cells. J. Immunol. 2011;186:913–923. doi: 10.4049/jimmunol.1002074. PubMed DOI
SULIMENKO Vadym, SULIMENKO Tetyana, POZNANOVIC Slobodan, NECHIPORUK-ZLOY Volodymyr, BÖHM Konrad J., MACUREK Libor, UNGER Eberhard, DRÁBER Pavel. Association of brain γ-tubulins with αβ-tubulin dimers. Biochemical Journal. 2002;365(3):889–895. doi: 10.1042/bj20020175. PubMed DOI PMC
Katsetos CD, et al. Altered cellular distribution and subcellular sorting of γ-tubulin in diffuse astrocytic gliomas and human glioblastoma cell lines. J. Neuropathol. Exp. Neurol. 2006;65:465–477. doi: 10.1097/01.jnen.0000229235.20995.6e. PubMed DOI
Tabata H, Nakajima K. Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience. 2001;103:865–872. doi: 10.1016/S0306-4522(01)00016-1. PubMed DOI
Tielens S, Godin JD, Nguyen L. Real-time recordings of migrating cortical neurons from GFP and Cre recombinase expressing mice. Curr. Protoc. Neurosci. 2016;74:3.29.1–23. doi: 10.1002/0471142301.ns0329s74. PubMed DOI
Birling MC, Dierich A, Jacquot S, Herault Y, Pavlovic G. Highly-efficient, fluorescent, locus directed cre and FlpO deleter mice on a pure C57BL/6N genetic background. Genesis. 2012;50:482–489. doi: 10.1002/dvg.20826. PubMed DOI