TUBG1 missense variants underlying cortical malformations disrupt neuronal locomotion and microtubule dynamics but not neurogenesis

. 2019 May 13 ; 10 (1) : 2129. [epub] 20190513

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, audiovizuální média

Perzistentní odkaz   https://www.medvik.cz/link/pmid31086189
Odkazy

PubMed 31086189
PubMed Central PMC6513894
DOI 10.1038/s41467-019-10081-8
PII: 10.1038/s41467-019-10081-8
Knihovny.cz E-zdroje

De novo heterozygous missense variants in the γ-tubulin gene TUBG1 have been linked to human malformations of cortical development associated with intellectual disability and epilepsy. Here, we investigated through in-utero electroporation and in-vivo studies, how four of these variants affect cortical development. We show that TUBG1 mutants affect neuronal positioning, disrupting the locomotion of new-born neurons but without affecting progenitors' proliferation. We further demonstrate that pathogenic TUBG1 variants are linked to reduced microtubule dynamics but without major structural nor functional centrosome defects in subject-derived fibroblasts. Additionally, we developed a knock-in Tubg1Y92C/+ mouse model and assessed consequences of the mutation. Although centrosomal positioning in bipolar neurons is correct, they fail to initiate locomotion. Furthermore, Tubg1Y92C/+ animals show neuroanatomical and behavioral defects and increased epileptic cortical activity. We show that Tubg1Y92C/+ mice partially mimic the human phenotype and therefore represent a relevant model for further investigations of the physiopathology of cortical malformations.

Zobrazit více v PubMed

Rakic P. Specification of cerebral cortical areas. Science. 1988;241:170–176. doi: 10.1126/science.3291116. PubMed DOI

Anderson SA, Eisenstat DD, Shi L, Rubenstein JLR. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science. 1997;278:15–18. doi: 10.1126/science.278.5335.15. PubMed DOI

Guerrini R, Dobyns WB. Malformations of cortical development: clinical features and genetic causes. Lancet Neurol. 2014;13:710–726. doi: 10.1016/S1474-4422(14)70040-7. PubMed DOI PMC

Francis F, et al. Human disorders of cortical development: from past to present. Eur. J. Neurosci. 2006;23:877–893. doi: 10.1111/j.1460-9568.2006.04649.x. PubMed DOI

Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB. A developmental and genetic classification for malformations of cortical development: update 2012. Brain. 2012;135:1348–1369. doi: 10.1093/brain/aws019. PubMed DOI PMC

Jaglin XH, Chelly J. Tubulin-related cortical dysgeneses: microtubule dysfunction underlying neuronal migration defects. Trends Genet. 2009;25:555–566. doi: 10.1016/j.tig.2009.10.003. PubMed DOI

Bahi-Buisson N, et al. The wide spectrum of tubulinopathies: what are the key features for the diagnosis? Brain. 2014;137:1676–1700. doi: 10.1093/brain/awu082. PubMed DOI

Bond J, et al. A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nat. Genet. 2005;37:353–355. doi: 10.1038/ng1539. PubMed DOI

Hussain MS, et al. A truncating mutation of CEP135 causes primary microcephaly and disturbed centrosomal function. Am. J. Hum. Genet. 2012;90:871–878. doi: 10.1016/j.ajhg.2012.03.016. PubMed DOI PMC

Yu TW, et al. Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture. Nat. Genet. 2010;42:1015–1020. doi: 10.1038/ng.683. PubMed DOI PMC

Guernsey DL, et al. Mutations in centrosomal protein CEP152 in primary microcephaly families linked to MCPH4. Am. J. Hum. Genet. 2010;87:40–51. doi: 10.1016/j.ajhg.2010.06.003. PubMed DOI PMC

Bond J, et al. ASPM is a major determinant of cerebral cortical size. Nat. Genet. 2002;32:316–320. doi: 10.1038/ng995. PubMed DOI

Kumar A, Girimaji SC, Duvvari MR, Blanton SH. Mutations in STIL, encoding a pericentriolar and centrosomal protein, cause primary microcephaly. Am. J. Hum. Genet. 2009;84:286–290. doi: 10.1016/j.ajhg.2009.01.017. PubMed DOI PMC

Poirier K, et al. Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly. Nat. Genet. 2013;45:639–647. doi: 10.1038/ng.2613. PubMed DOI PMC

Brock S, et al. Tubulinopathies continued: refining the phenotypic spectrum associated with variants in TUBG1. Eur. J. Hum. Genet. 2018;26:1132–1142. doi: 10.1038/s41431-018-0146-y. PubMed DOI PMC

Yuba-Kubo A, Kubo A, Hata M, Tsukita S. Gene knockout analysis of two γ-tubulin isoforms in mice. Dev. Biol. 2005;282:361–373. doi: 10.1016/j.ydbio.2005.03.031. PubMed DOI

Dráberová E, et al. Differential expression of human γ-tubulin isotypes during neuronal development and oxidative stress points to a γ-tubulin-2 prosurvival function. FASEB J. 2017;31:1828–1846. doi: 10.1096/fj.201600846RR. PubMed DOI

Moudjou M, Bordes N, Paintrand M, Bornens M. gamma-Tubulin in mammalian cells: the centrosomal and the cytosolic forms. J. Cell. Sci. 1996;109(Pt 4):875–887. PubMed

Vinopal Stanislav, Černohorská Markéta, Sulimenko Vadym, Sulimenko Tetyana, Vosecká Věra, Flemr Matyáš, Dráberová Eduarda, Dráber Pavel. γ-Tubulin 2 Nucleates Microtubules and Is Downregulated in Mouse Early Embryogenesis. PLoS ONE. 2012;7(1):e29919. doi: 10.1371/journal.pone.0029919. PubMed DOI PMC

Ohashi T, Yamamoto T, Yamanashi Y, Ohsugi M. Human TUBG2 gene is expressed as two splice variant mRNA and involved in cell growth. FEBS Lett. 2016;590:1053–1063. doi: 10.1002/1873-3468.12163. PubMed DOI

Oegema K, et al. Characterization of two related Drosophila γ-tubulin complexes that differ in their ability to nucleate microtubules. J. Cell. Biol. 1999;144:721–733. doi: 10.1083/jcb.144.4.721. PubMed DOI PMC

Knop M, Schiebel E. Spc98p and Spc97p of the yeast gamma-tubulin complex mediate binding to the spindle pole body via their interaction with Spc110p. EMBO J. 1997;16:6985–6995. doi: 10.1093/emboj/16.23.6985. PubMed DOI PMC

Kollman JM, et al. The structure of the gamma-tubulin small complex: implications of its architecture and flexibility for microtubule nucleation. Mol. Biol. Cell. 2008;19:207–215. doi: 10.1091/mbc.e07-09-0879. PubMed DOI PMC

Kollman JM, Merdes A, Mourey L, Agard DA. Microtubule nucleation by γ-tubulin complexes. Nat. Rev. Mol. Cell Biol. 2011;12:709–721. doi: 10.1038/nrm3209. PubMed DOI PMC

Wang X, Qiu R, Tsark W, Lu Q. Rapid promoter analysis in developing mouse brain and genetic labeling of young neurons by doublecortin-DsRed-express. J. Neurosci. Res. 2007;85:3567–3573. doi: 10.1002/jnr.21440. PubMed DOI

Galjart N. Plus-end-tracking proteins and their interactions at microtubule ends. Curr. Biol. 2010;20:R528–R537. doi: 10.1016/j.cub.2010.05.022. PubMed DOI

Collins Stephan C., Wagner Christel, Gagliardi Léo, Kretz Perrine F., Fischer Marie-Christine, Kessler Pascal, Kannan Meghna, Yalcin Binnaz. A Method for Parasagittal Sectioning for Neuroanatomical Quantification of Brain Structures in the Adult Mouse. Current Protocols in Mouse Biology. 2018;8(3):e48. doi: 10.1002/cpmo.48. PubMed DOI

Li G, Pleasure SJ. The development of hippocampal cellular assemblies. Wiley Interdiscip. Rev. Dev. Biol. 2014;3:165–177. doi: 10.1002/wdev.127. PubMed DOI

Bevins RA, Besheer J. Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study ‘recognition memory’. Nat. Protoc. 2006;1:1306–1311. doi: 10.1038/nprot.2006.205. PubMed DOI

Crawley JN. Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res. 1999;835:18–26. doi: 10.1016/S0006-8993(98)01258-X. PubMed DOI

Loscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure. 2011;20:359–368. doi: 10.1016/j.seizure.2011.01.003. PubMed DOI

Oakley CE, Oakley BR. Identification of gamma-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature. 1989;338:662–664. doi: 10.1038/338662a0. PubMed DOI

Gueth-Hallonet C, et al. Gamma-Tubulin is present in acentriolar MTOCs during early mouse development. J. Cell. Sci. 1993;105:157–166. PubMed

Donato NDi, et al. Analysis of 17 genes detects mutations in 81 % of 811 patients with lissencephaly. Genet. Med. 2018;20:1354–1364. doi: 10.1038/gim.2018.8. PubMed DOI PMC

Faheem M, et al. Molecular genetics of human primary microcephaly: an overview. Bmc. Med. Genom. 2015;8:24–27. doi: 10.1186/1755-8794-8-S1-S4. PubMed DOI PMC

Corbo JC, et al. Doublecortin is required in mice for lamination of the hippocampus but not the neocortex. J. Neurosci. 2002;22:7548–7557. doi: 10.1523/JNEUROSCI.22-17-07548.2002. PubMed DOI PMC

Keays DA, et al. Mutations in α-Tubulin cause abnormal neuronal migration in mice and lissencephaly in humans. Cell. 2007;128:45–57. doi: 10.1016/j.cell.2006.12.017. PubMed DOI PMC

Gstrein T, et al. Mutations in Vps15 perturb neuronal migration in mice and are associated with neurodevelopmental disease in humans. Nat. Neurosci. 2018 doi: 10.1038/s41593-017-0053-5. PubMed DOI PMC

Stottmann RW, et al. Genes. Brain. Behav. 2016;16:250–259. doi: 10.1111/gbb.12327. PubMed DOI PMC

Bai J, et al. RNAi reveals doublecortin is required for radial migration in rat neocortex. Nat. Neurosci. 2003;6:1277–1283. doi: 10.1038/nn1153. PubMed DOI

Jaglin XH, et al. Mutations in the Β-tubulin gene TUBB2B result in asymmetrical polymicrogyria. Nat. Genet. 2009;41:746–752. doi: 10.1038/ng.380. PubMed DOI PMC

Wong M, Roper SN. Genetic animal models of malformations of cortical development and epilepsy. J. Neurosci. Methods. 2016;260:73–82. doi: 10.1016/j.jneumeth.2015.04.007. PubMed DOI PMC

Chevassus-au-Louis N, Represa A. The right neuron at the wrong place: Biology of heterotopic neurons in cortical neuronal migration disorders, with special reference to associated pathologies. Cell. Mol. Life Sci. 1999;55:1206–1215. doi: 10.1007/s000180050367. PubMed DOI PMC

Oakley BR, Oakley CE, Yoon Y, Jung MK. Gamma-tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergillus nidulans. Cell. 1990;61:1289–1301. doi: 10.1016/0092-8674(90)90693-9. PubMed DOI

Stearns T, Evans L, Kirschner M. Gamma-tubulin is a highly conserved component of the centrosome. Cell. 1991;65:825–836. doi: 10.1016/0092-8674(91)90390-K. PubMed DOI

Joshi HC, Palacios MJ, McNamara L, Cleveland DW. Gamma-tubulin is a centrosomal protein required for cell cycle-dependent microtubule nucleation. Nature. 1992;356:80–83. doi: 10.1038/356080a0. PubMed DOI

Oakley BRI. Centrosomes and Microtubule Nucleation. Curr. Top. Dev. Biol. 2000;49:27–54. doi: 10.1016/S0070-2153(99)49003-9. PubMed DOI

Wiese C, Zheng Y. A new function for the gamma-tubulin ring complex as a microtubule minus-end cap. Nat. Cell Biol. 2000;2:358–364. doi: 10.1038/35014051. PubMed DOI

Hendrickson TW, Yao J, Bhadury S, Corbett AH, Joshi HC. Conditional mutations in gamma-tubulin reveal its involvement in chromosome segregation and cytokinesis. Mol. Biol. Cell. 2001;12:2469–2481. doi: 10.1091/mbc.12.8.2469. PubMed DOI PMC

Feng Y, Walsh CA. Mitotic spindle regulation by Nde1 controls cerebral cortical size. Neuron. 2004;44:279–293. doi: 10.1016/j.neuron.2004.09.023. PubMed DOI

Mcintyre RE, et al. Disruption of mouse cenpj, a regulator of centriole biogenesis, phenocopies seckel syndrome. PLoS Genet. 2012;8:1–18. doi: 10.1371/journal.pgen.1003022. PubMed DOI PMC

Bouissou A, et al. γ-Tubulin ring complexes regulate microtubule plus end dynamics. J. Cell. Biol. 2009;187:327–334. doi: 10.1083/jcb.200905060. PubMed DOI PMC

Paluh JL, et al. A mutation in gamma-tubulin alters microtubule dynamics and organization and is synthetically lethal with the kinesin-like protein pkl1p. Mol. Biol. Cell. 2000;11:1225–1239. doi: 10.1091/mbc.11.4.1225. PubMed DOI PMC

Chinen T, et al. The γ-tubulin-specific inhibitor gatastatin reveals temporal requirements of microtubule nucleation during the cell cycle. Nat. Commun. 2015;6:1–11. doi: 10.1038/ncomms9722. PubMed DOI PMC

Sánchez-Huertas C, et al. Non-centrosomal nucleation mediated by augmin organizes microtubules in post-mitotic neurons and controls axonal microtubule polarity. Nat. Commun. 2016;7:12187. doi: 10.1038/ncomms12187. PubMed DOI PMC

Cunha-Ferreira I, et al. The HAUS complex is a key regulator of non-centrosomal microtubule organization during neuronal development. Cell Rep. 2018;24:791–800. doi: 10.1016/j.celrep.2018.06.093. PubMed DOI PMC

Sulimenko V, et al. Microtubule nucleation in mouse bone marrow–derived mast cells is regulated by the concerted action of GIT1/βPIX proteins and calcium. J. Immunol. 2015;194:4099–4111. doi: 10.4049/jimmunol.1402459. PubMed DOI

Dráberová E, et al. Overexpression and nucleolar localization of γ-tubulin small complex proteins GCP2 and GCP3 in glioblastoma. J. Neuropathol. Exp. Neurol. 2015;74:723–742. doi: 10.1097/NEN.0000000000000212. PubMed DOI

Hájková Z, et al. STIM1-directed reorganization of microtubules in activated mast cells. J. Immunol. 2011;186:913–923. doi: 10.4049/jimmunol.1002074. PubMed DOI

SULIMENKO Vadym, SULIMENKO Tetyana, POZNANOVIC Slobodan, NECHIPORUK-ZLOY Volodymyr, BÖHM Konrad J., MACUREK Libor, UNGER Eberhard, DRÁBER Pavel. Association of brain γ-tubulins with αβ-tubulin dimers. Biochemical Journal. 2002;365(3):889–895. doi: 10.1042/bj20020175. PubMed DOI PMC

Katsetos CD, et al. Altered cellular distribution and subcellular sorting of γ-tubulin in diffuse astrocytic gliomas and human glioblastoma cell lines. J. Neuropathol. Exp. Neurol. 2006;65:465–477. doi: 10.1097/01.jnen.0000229235.20995.6e. PubMed DOI

Tabata H, Nakajima K. Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience. 2001;103:865–872. doi: 10.1016/S0306-4522(01)00016-1. PubMed DOI

Tielens S, Godin JD, Nguyen L. Real-time recordings of migrating cortical neurons from GFP and Cre recombinase expressing mice. Curr. Protoc. Neurosci. 2016;74:3.29.1–23. doi: 10.1002/0471142301.ns0329s74. PubMed DOI

Birling MC, Dierich A, Jacquot S, Herault Y, Pavlovic G. Highly-efficient, fluorescent, locus directed cre and FlpO deleter mice on a pure C57BL/6N genetic background. Genesis. 2012;50:482–489. doi: 10.1002/dvg.20826. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Tubulin: Structure, Functions and Roles in Disease

. 2019 Oct 22 ; 8 (10) : . [epub] 20191022

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...