C53 Interacting with UFM1-Protein Ligase 1 Regulates Microtubule Nucleation in Response to ER Stress

. 2022 Feb 05 ; 11 (3) : . [epub] 20220205

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35159364

Grantová podpora
18-27197S; 19-20716S; 21-30281S Czech Science Foundation
LTAUSA17052,LTAUSA19118,LM2018129 Ministry of Education, Youth and Sports of the Czech Republic
TP01010060 Technology Agency of the Czech Republic
RVO 68378050 Institutional Research Support

ER distribution depends on microtubules, and ER homeostasis disturbance activates the unfolded protein response resulting in ER remodeling. CDK5RAP3 (C53) implicated in various signaling pathways interacts with UFM1-protein ligase 1 (UFL1), which mediates the ufmylation of proteins in response to ER stress. Here we find that UFL1 and C53 associate with γ-tubulin ring complex proteins. Knockout of UFL1 or C53 in human osteosarcoma cells induces ER stress and boosts centrosomal microtubule nucleation accompanied by γ-tubulin accumulation, microtubule formation, and ER expansion. C53, which is stabilized by UFL1, associates with the centrosome and rescues microtubule nucleation in cells lacking UFL1. Pharmacological induction of ER stress by tunicamycin also leads to increased microtubule nucleation and ER expansion. Furthermore, tunicamycin suppresses the association of C53 with the centrosome. These findings point to a novel mechanism for the relief of ER stress by stimulation of centrosomal microtubule nucleation.

Zobrazit více v PubMed

Chakrabarti A., Chen A.W., Varner J.D. A review of the mammalian unfolded protein response. Biotechnol. Bioeng. 2011;108:2777–2793. doi: 10.1002/bit.23282. PubMed DOI PMC

Smith M., Wilkinson S. ER homeostasis and autophagy. Essays Biochem. 2017;61:625–635. doi: 10.1042/EBC20170092. PubMed DOI PMC

Schuck S., Prinz W.A., Thorn K.S., Voss C., Walter P. Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J. Cell Biol. 2009;187:525–536. doi: 10.1083/jcb.200907074. PubMed DOI PMC

Waterman-Storer C.M., Salmon E.D. Endoplasmic reticulum membrane tubules are distributed by microtubules in living cells using three distinct mechanisms. Curr. Biol. 1998;8:798–806. doi: 10.1016/S0960-9822(98)70321-5. PubMed DOI

Oakley C.E., Oakley B.R. Identification of γ-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature. 1989;338:662–664. doi: 10.1038/338662a0. PubMed DOI

Kollman J.M., Merdes A., Mourey L., Agard D.A. Microtubule nucleation by γ-tubulin complexes. Nat. Rev. Mol. Cell Biol. 2011;12:709–721. doi: 10.1038/nrm3209. PubMed DOI PMC

Wieczorek M., Urnavicius L., Ti S.C., Molloy K.R., Chait B.T., Kapoor T.M. Asymmetric molecular architecture of the human γ-tubulin ring complex. Cell. 2020;180:165–175. doi: 10.1016/j.cell.2019.12.007. PubMed DOI PMC

Consolati T., Locke J., Roostalu J., Chen Z.A., Gannon J., Asthana J., Lim W.M., Martino F., Cvetkovic M.A., Rappsilber J., et al. Microtubule nucleation properties of single human γTuRCs explained by their cryo-EM structure. Dev. Cell. 2020;53:603–617. doi: 10.1016/j.devcel.2020.04.019. PubMed DOI PMC

Liu P., Zupa E., Neuner A., Böhler A., Loerke J., Flemming D., Ruppert T., Rudack T., Peter C., Spahn C., et al. Insights into the assembly and activation of the microtubule nucleator γ-TuRC. Nature. 2020;578:467–471. doi: 10.1038/s41586-019-1896-6. PubMed DOI

Sulimenko V., Hájková Z., Klebanovych A., Dráber P. Regulation of microtubule nucleation mediated by γ-tubulin complexes. Protoplasma. 2017;254:1187–1199. doi: 10.1007/s00709-016-1070-z. PubMed DOI

Tovey C.A., Conduit P.T. Microtubule nucleation by γ-tubulin complexes and beyond. Essays Biochem. 2018;62:765–780. doi: 10.1042/EBC20180028. PubMed DOI PMC

Tatsumi K., Sou Y.S., Tada N., Nakamura E., Iemura S., Natsume T., Kang S.H., Chung C.H., Kasahara M., Kominami E., et al. A novel type of E3 ligase for the Ufm1 conjugation system. J. Biol. Chem. 2010;285:5417–5427. doi: 10.1074/jbc.M109.036814. PubMed DOI PMC

Komatsu M., Chiba T., Tatsumi K., Iemura S., Tanida I., Okazaki N., Ueno T., Kominami E., Natsume T., Tanaka K. A novel protein-conjugating system for Ufm1, a ubiquitin-fold modifier. EMBO J. 2004;23:1977–1986. doi: 10.1038/sj.emboj.7600205. PubMed DOI PMC

Gerakis Y., Quintero M., Li H., Hetz C. The UFMylation system in proteostasis and beyond. Trends Cell Biol. 2019;29:974–986. doi: 10.1016/j.tcb.2019.09.005. PubMed DOI PMC

Kwon J., Cho H.J., Han S.H., No J.G., Kwon J.Y., Kim H. A novel LZAP-binding protein, NLBP, inhibits cell invasion. J. Biol. Chem. 2010;285:12232–12240. doi: 10.1074/jbc.M109.065920. PubMed DOI PMC

Wu J., Lei G., Mei M., Tang Y., Li H. A novel C53/LZAP-interacting protein regulates stability of C53/LZAP and DDRGK domain-containing Protein 1 (DDRGK1) and modulates NF-κB signaling. J. Biol. Chem. 2010;285:15126–15136. doi: 10.1074/jbc.M110.110619. PubMed DOI PMC

Shiwaku H., Yoshimura N., Tamura T., Sone M., Ogishima S., Watase K., Tagawa K., Okazawa H. Suppression of the novel ER protein Maxer by mutant ataxin-1 in Bergman glia contributes to non-cell-autonomous toxicity. EMBO J. 2010;29:2446–2460. doi: 10.1038/emboj.2010.116. PubMed DOI PMC

Lemaire K., Moura R.F., Granvik M., Igoillo-Esteve M., Hohmeier H.E., Hendrickx N., Newgard C.B., Waelkens E., Cnop M., Schuit F. Ubiquitin fold modifier 1 (UFM1) and its target UFBP1 protect pancreatic beta cells from ER stress-induced apoptosis. PLoS ONE. 2011;6:e18517. doi: 10.1371/journal.pone.0018517. PubMed DOI PMC

Zhang Y., Zhang M., Wu J., Lei G., Li H. Transcriptional regulation of the Ufm1 conjugation system in response to disturbance of the endoplasmic reticulum homeostasis and inhibition of vesicle trafficking. PLoS ONE. 2012;7:e48587. doi: 10.1371/journal.pone.0048587. PubMed DOI PMC

Zhu H., Bhatt B., Sivaprakasam S., Cai Y., Liu S., Kodeboyina S.K., Patel N., Savage N.M., Sharma A., Kaufman R.J., et al. Ufbp1 promotes plasma cell development and ER expansion by modulating distinct branches of UPR. Nat. Commun. 2019;10:e1084. doi: 10.1038/s41467-019-08908-5. PubMed DOI PMC

Liu D., Wang W.D., Melville D.B., Cha Y.I., Yin Z., Issaeva N., Knapik E.W., Yarbrough W.G. Tumor suppressor Lzap regulates cell cycle progression, doming, and zebrafish epiboly. Dev. Dyn. 2011;240:1613–1625. doi: 10.1002/dvdy.22644. PubMed DOI PMC

Jiang H., Wu J., He C., Yang W., Li H. A tumor suppressor C53 protein antagonizes checkpoint kinases to promote cyclin-dependent kinase 1 activation. Cell Res. 2009;19:458–468. doi: 10.1038/cr.2009.14. PubMed DOI PMC

Wang J., An H., Mayo M.W., Baldwin A.S., Yarbrough W.G. LZAP, a putative tumor suppressor, selectively inhibits NF-κB. Cancer Cell. 2007;12:239–251. doi: 10.1016/j.ccr.2007.07.002. PubMed DOI

Zhao J.J., Pan K., Li J.J., Chen Y.B., Chen J.G., Lv L., Wang D.D., Pan Q.Z., Chen M.S., Xia J.C. Identification of LZAP as a new candidate tumor suppressor in hepatocellular carcinoma. PLoS ONE. 2011;6:e26608. doi: 10.1371/journal.pone.0026608. PubMed DOI PMC

Yang R., Wang H., Kang B., Chen B., Shi Y., Yang S., Sun L., Liu Y., Xiao W., Zhang T., et al. CDK5RAP3, a UFL1 substrate adaptor, is crucial for liver development. Development. 2019;146:dev169235. doi: 10.1242/dev.169235. PubMed DOI

Wu J., Jiang H., Luo S., Zhang M., Zhang Y., Sun F., Huang S., Li H. Caspase-mediated cleavage of C53/LZAP protein causes abnormal microtubule bundling and rupture of the nuclear envelope. Cell Res. 2013;23:691–704. doi: 10.1038/cr.2013.36. PubMed DOI PMC

Hořejší B., Vinopal S., Sládková V., Dráberová E., Sulimenko V., Sulimenko T., Vosecká V., Philimonenko A., Hozák P., Katsetos C.D., et al. Nuclear γ-tubulin associates with nucleoli and interacts with tumor suppressor protein C53. J. Cell. Physiol. 2012;227:367–382. doi: 10.1002/jcp.22772. PubMed DOI

Zheng Y., Jung M.K., Oakley B.R. γ-Tubulin is present in Drosophila melanogaster and Homo sapiens and is associated with centrosome. Cell. 1991;65:817–823. doi: 10.1016/0092-8674(91)90389-G. PubMed DOI

Nováková M., Dráberová E., Schürmann W., Czihak G., Viklický V., Dráber P. γ-Tubulin redistribution in taxol-treated mitotic cells probed by monoclonal antibodies. Cell Motil. Cytoskel. 1996;33:38–51. doi: 10.1002/(SICI)1097-0169(1996)33:1<38::AID-CM5>3.0.CO;2-E. PubMed DOI

Dráberová E., D’Agostino L., Caracciolo V., Sládková V., Sulimenko T., Sulimenko V., Sobol M., Maounis N.F., Tzelepis E., Mahera E., et al. Overexpression and nucleolar localization of γ-tubulin small complex proteins GCP2 and GCP3 in glioblastoma. J. Neuropathol. Exp. Neurol. 2015;74:723–742. doi: 10.1097/NEN.0000000000000212. PubMed DOI

Viklický V., Dráber P., Hašek J., Bártek J. Production and characterization of a monoclonal antitubulin antibody. Cell Biol. Int. Rep. 1982;6:725–731. doi: 10.1016/0309-1651(82)90164-3. PubMed DOI

Zíková M., Dráberová E., Sulimenko V., Dráber P. New monoclonal antibodies specific for microtubule-associated protein MAP2. Folia Biol. 2000;46:87–88. PubMed

Bar-Peled M., Raikhel N.V. A method for isolation and purification of specific antibodies to a protein fused to the GST. Anal. Biochem. 1996;241:140–142. doi: 10.1006/abio.1996.0390. PubMed DOI

Kukharskyy V., Sulimenko V., Macurek L., Sulimenko T., Dráberová E., Dráber P. Complexes of γ-tubulin with non-receptor protein tyrosine kinases Src and Fyn in differentiating P19 embryonal carcinoma cells. Exp. Cell Res. 2004;298:218–228. doi: 10.1016/j.yexcr.2004.04.016. PubMed DOI

Vinopal S., Černohorská M., Sulimenko V., Sulimenko T., Vosecká V., Flemr M., Dráberová E., Dráber P. γ-Tubulin 2 nucleates microtubules and is downregulated in mouse early embryogenesis. PLoS ONE. 2012;7:e29919. doi: 10.1371/annotation/5dd084b1-20e6-4e1f-88e0-dfe05289da08. PubMed DOI PMC

Macurek L., Dráberová E., Richterová V., Sulimenko V., Sulimenko T., Dráberová L., Marková V., Dráber P. Regulation of microtubule nucleation from membranes by complexes of membrane-bound γ-tubulin with Fyn kinase and phosphoinositide 3-kinase. Biochem. J. 2008;416:421–430. doi: 10.1042/BJ20080909. PubMed DOI

Sander J.D., Joung J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 2014;32:347–355. doi: 10.1038/nbt.2842. PubMed DOI PMC

Flemr M., Buhler M. Single-step generation of conditional knockout mouse embryonic stem cells. Cell Rep. 2015;12:709–716. doi: 10.1016/j.celrep.2015.06.051. PubMed DOI

Dráberová E., Sulimenko V., Vinopal S., Sulimenko T., Sládková V., D’Agostino L., Sobol M., Hozák P., Křen L., Katsetos C.D., et al. Differential expression of human γ-tubulin isotypes during neuronal development and oxidative stress points to a γ-tubulin-2 prosurvival function. FASEB J. 2017;31:1828–1846. doi: 10.1096/fj.201600846RR. PubMed DOI

Chu Q., Martinez T.F., Novak S.W., Donaldson C.J., Tan D., Vaughan J.M., Chang T., Diedrich J.K., Andrade L., Kim A., et al. Regulation of the ER stress response by a mitochondrial microprotein. Nat. Commun. 2019;10:1–13. doi: 10.1038/s41467-019-12816-z. PubMed DOI PMC

Mitchison T.J., Kirschner M.W. Isolation of mammalian centrosomes. Methods Enzymol. 1986;134:261–268. doi: 10.1016/0076-6879(86)34094-1. PubMed DOI

Dráberová E., Dráber P. A microtubule-interacting protein involved in coalignment of vimentin intermediate filaments with microtubules. J. Cell Sci. 1993;106:1263–1273. doi: 10.1242/jcs.106.4.1263. PubMed DOI

Klebanovych A., Sládková V., Sulimenko T., Vosecká V., Rubíková Z., Čapek M., Dráberová E., Dráber P., Sulimenko V. Regulation of microtubule nucleation in mouse bone marrow-derived mast cells by protein tyrosine kinase SHP-1. Cells. 2019;8:345. doi: 10.3390/cells8040345. PubMed DOI PMC

Li J., Yue G., Ma W., Zhang A., Zou J., Cai Y., Tang X., Wang J., Liu J., Li H., et al. Ufm1-specific ligase Ufl1 regulates endoplasmic reticulum homeostasis and protects against heart failure. Circ. Heart Fail. 2018;11:e004917. doi: 10.1161/CIRCHEARTFAILURE.118.004917. PubMed DOI PMC

Zhang M., Zhu X., Zhang Y., Cai Y., Chen J., Sivaprakasam S., Gurav A., Pi W., Makala L., Wu J., et al. RCAD/Ufl1, a Ufm1 E3 ligase, is essential for hematopoietic stem cell function and murine hematopoiesis. Cell Death Differ. 2015;22:1922–1934. doi: 10.1038/cdd.2015.51. PubMed DOI PMC

Quintero M., Liu S., Xia Y., Huang Y., Zou Y., Li G., Hu L., Singh N., Blumberg R., Cai Y., et al. Cdk5rap3 is essential for intestinal Paneth cell development and maintenance. Cell Death Dis. 2021;12:e131. doi: 10.1038/s41419-021-03401-8. PubMed DOI PMC

Sriburi R., Jackowski S., Mori K., Brewer J.W. XBP1: A link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J. Cell Biol. 2004;167:35–41. doi: 10.1083/jcb.200406136. PubMed DOI PMC

Černohorská M., Sulimenko V., Hájková Z., Sulimenko T., Sládková V., Vinopal S., Dráberová E., Dráber P. GIT1/βPIX signaling proteins and PAK1 kinase regulate microtubule nucleation. BBA Mol. Cell. Res. 2016;1863:1282–1297. doi: 10.1016/j.bbamcr.2016.03.016. PubMed DOI

Colello D., Reverte C.G., Ward R., Jones C.W., Magidson V., Khodjakov A., LaFlamme S.E. Androgen and Src signaling regulate centrosome activity. J. Cell Sci. 2010;123:2094–2102. doi: 10.1242/jcs.057505. PubMed DOI PMC

Ding W.X., Ni H.M., Gao W., Hou Y.F., Melan M.A., Chen X., Stolz D.B., Shao Z.M., Yin X.M. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J. Biol. Chem. 2007;282:4702–4710. doi: 10.1074/jbc.M609267200. PubMed DOI

Liao W., Chan L. Tunicamycin induces ubiquitination and degradation of apolipoprotein B in HepG2 cells. Biochem. J. 2001;353:493–501. doi: 10.1042/bj3530493. PubMed DOI PMC

Wu J., de Heus C., Liu Q., Bouchet B.P., Noordstra I., Jiang K., Hua S., Martin M., Yang C., Grigoriev I., et al. Molecular pathway of microtubule organization at the Golgi apparatus. Dev. Cell. 2016;39:44–60. doi: 10.1016/j.devcel.2016.08.009. PubMed DOI

Hehnly H., Doxsey S. Rab11 endosomes contribute to mitotic spindle organization and orientation. Dev. Cell. 2014;28:497–507. doi: 10.1016/j.devcel.2014.01.014. PubMed DOI PMC

Teixidó-Travesa N., Roig J., Lüders J. The where, when and how of microtubule nucleation—One ring to rule them all. J. Cell Sci. 2012;125:4445–4456. doi: 10.1242/jcs.106971. PubMed DOI

Stephani M., Picchianti L., Gajic A., Beveridge R., Skarwan E., de Hernandez V.S.M., Mohseni A., Clavel M., Zeng Y., Naumann C., et al. A cross-kingdom conserved ER-phagy receptor maintains endoplasmic reticulum homeostasis during stress. Elife. 2020;9:e58396. doi: 10.7554/eLife.58396. PubMed DOI PMC

Wamsley J.J., Issaeva N., An H., Lu X., Donehower L.A., Yarbrough W.G. LZAP is a novel Wip1 binding partner and positive regulator of its phosphatase activity in vitro. Cell Cycle. 2017;16:213–223. doi: 10.1080/15384101.2016.1261767. PubMed DOI PMC

Borek W.E., Groocock L.M., Samejima I., Zou J., de Lima Alves F., Rappsilber J., Sawin K.E. Mto2 multisite phosphorylation inactivates non-spindle microtubule nucleation complexes during mitosis. Nat. Commun. 2015;6:7929. doi: 10.1038/ncomms8929. PubMed DOI PMC

Yu L., Li G., Deng J., Jiang X., Xue J., Zhu Y., Huang W., Tang B., Duan R. The UFM1 cascade times mitosis entry associated with microcephaly. FASEB J. 2020;34:1319–1330. doi: 10.1096/fj.201901751R. PubMed DOI

Zhang X., Chen Q., Feng J., Hou J., Yang F., Liu J., Jiang Q., Zhang C. Sequential phosphorylation of Nedd1 by Cdk1 and Plk1 is required for targeting of the γTuRC to the centrosome. J. Cell Sci. 2009;122:2240–2251. doi: 10.1242/jcs.042747. PubMed DOI

Guo Y., Li D., Zhang S., Yang Y., Liu J.J., Wang X., Liu C., Milkie D.E., Moore R.P., Tulu U.S., et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell. 2018;175:1430–1442. doi: 10.1016/j.cell.2018.09.057. PubMed DOI

Liang J.R., Lingeman E., Luong T., Ahmed S., Muhar M., Nguyen T., Olzmann J.A., Corn J.E. A genome-wide ER-phagy screen highlights key roles of mitochondrial metabolism and ER-resident UFMylation. Cell. 2020;180:1160–1177.e20. doi: 10.1016/j.cell.2020.02.017. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

γ-Tubulin in microtubule nucleation and beyond

. 2022 ; 10 () : 880761. [epub] 20220901

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...