C53 Interacting with UFM1-Protein Ligase 1 Regulates Microtubule Nucleation in Response to ER Stress
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
18-27197S; 19-20716S; 21-30281S
Czech Science Foundation
LTAUSA17052,LTAUSA19118,LM2018129
Ministry of Education, Youth and Sports of the Czech Republic
TP01010060
Technology Agency of the Czech Republic
RVO 68378050
Institutional Research Support
PubMed
35159364
PubMed Central
PMC8834445
DOI
10.3390/cells11030555
PII: cells11030555
Knihovny.cz E-zdroje
- Klíčová slova
- CDK5RAP3, ER stress, UFL1, microtubule nucleation, γ-tubulin,
- MeSH
- lidé MeSH
- mikrotubuly metabolismus MeSH
- nádorové supresorové proteiny metabolismus MeSH
- proteiny buněčného cyklu metabolismus MeSH
- stres endoplazmatického retikula fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CDK5RAP3 protein, human MeSH Prohlížeč
- nádorové supresorové proteiny MeSH
- proteiny buněčného cyklu MeSH
ER distribution depends on microtubules, and ER homeostasis disturbance activates the unfolded protein response resulting in ER remodeling. CDK5RAP3 (C53) implicated in various signaling pathways interacts with UFM1-protein ligase 1 (UFL1), which mediates the ufmylation of proteins in response to ER stress. Here we find that UFL1 and C53 associate with γ-tubulin ring complex proteins. Knockout of UFL1 or C53 in human osteosarcoma cells induces ER stress and boosts centrosomal microtubule nucleation accompanied by γ-tubulin accumulation, microtubule formation, and ER expansion. C53, which is stabilized by UFL1, associates with the centrosome and rescues microtubule nucleation in cells lacking UFL1. Pharmacological induction of ER stress by tunicamycin also leads to increased microtubule nucleation and ER expansion. Furthermore, tunicamycin suppresses the association of C53 with the centrosome. These findings point to a novel mechanism for the relief of ER stress by stimulation of centrosomal microtubule nucleation.
Zobrazit více v PubMed
Chakrabarti A., Chen A.W., Varner J.D. A review of the mammalian unfolded protein response. Biotechnol. Bioeng. 2011;108:2777–2793. doi: 10.1002/bit.23282. PubMed DOI PMC
Smith M., Wilkinson S. ER homeostasis and autophagy. Essays Biochem. 2017;61:625–635. doi: 10.1042/EBC20170092. PubMed DOI PMC
Schuck S., Prinz W.A., Thorn K.S., Voss C., Walter P. Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J. Cell Biol. 2009;187:525–536. doi: 10.1083/jcb.200907074. PubMed DOI PMC
Waterman-Storer C.M., Salmon E.D. Endoplasmic reticulum membrane tubules are distributed by microtubules in living cells using three distinct mechanisms. Curr. Biol. 1998;8:798–806. doi: 10.1016/S0960-9822(98)70321-5. PubMed DOI
Oakley C.E., Oakley B.R. Identification of γ-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature. 1989;338:662–664. doi: 10.1038/338662a0. PubMed DOI
Kollman J.M., Merdes A., Mourey L., Agard D.A. Microtubule nucleation by γ-tubulin complexes. Nat. Rev. Mol. Cell Biol. 2011;12:709–721. doi: 10.1038/nrm3209. PubMed DOI PMC
Wieczorek M., Urnavicius L., Ti S.C., Molloy K.R., Chait B.T., Kapoor T.M. Asymmetric molecular architecture of the human γ-tubulin ring complex. Cell. 2020;180:165–175. doi: 10.1016/j.cell.2019.12.007. PubMed DOI PMC
Consolati T., Locke J., Roostalu J., Chen Z.A., Gannon J., Asthana J., Lim W.M., Martino F., Cvetkovic M.A., Rappsilber J., et al. Microtubule nucleation properties of single human γTuRCs explained by their cryo-EM structure. Dev. Cell. 2020;53:603–617. doi: 10.1016/j.devcel.2020.04.019. PubMed DOI PMC
Liu P., Zupa E., Neuner A., Böhler A., Loerke J., Flemming D., Ruppert T., Rudack T., Peter C., Spahn C., et al. Insights into the assembly and activation of the microtubule nucleator γ-TuRC. Nature. 2020;578:467–471. doi: 10.1038/s41586-019-1896-6. PubMed DOI
Sulimenko V., Hájková Z., Klebanovych A., Dráber P. Regulation of microtubule nucleation mediated by γ-tubulin complexes. Protoplasma. 2017;254:1187–1199. doi: 10.1007/s00709-016-1070-z. PubMed DOI
Tovey C.A., Conduit P.T. Microtubule nucleation by γ-tubulin complexes and beyond. Essays Biochem. 2018;62:765–780. doi: 10.1042/EBC20180028. PubMed DOI PMC
Tatsumi K., Sou Y.S., Tada N., Nakamura E., Iemura S., Natsume T., Kang S.H., Chung C.H., Kasahara M., Kominami E., et al. A novel type of E3 ligase for the Ufm1 conjugation system. J. Biol. Chem. 2010;285:5417–5427. doi: 10.1074/jbc.M109.036814. PubMed DOI PMC
Komatsu M., Chiba T., Tatsumi K., Iemura S., Tanida I., Okazaki N., Ueno T., Kominami E., Natsume T., Tanaka K. A novel protein-conjugating system for Ufm1, a ubiquitin-fold modifier. EMBO J. 2004;23:1977–1986. doi: 10.1038/sj.emboj.7600205. PubMed DOI PMC
Gerakis Y., Quintero M., Li H., Hetz C. The UFMylation system in proteostasis and beyond. Trends Cell Biol. 2019;29:974–986. doi: 10.1016/j.tcb.2019.09.005. PubMed DOI PMC
Kwon J., Cho H.J., Han S.H., No J.G., Kwon J.Y., Kim H. A novel LZAP-binding protein, NLBP, inhibits cell invasion. J. Biol. Chem. 2010;285:12232–12240. doi: 10.1074/jbc.M109.065920. PubMed DOI PMC
Wu J., Lei G., Mei M., Tang Y., Li H. A novel C53/LZAP-interacting protein regulates stability of C53/LZAP and DDRGK domain-containing Protein 1 (DDRGK1) and modulates NF-κB signaling. J. Biol. Chem. 2010;285:15126–15136. doi: 10.1074/jbc.M110.110619. PubMed DOI PMC
Shiwaku H., Yoshimura N., Tamura T., Sone M., Ogishima S., Watase K., Tagawa K., Okazawa H. Suppression of the novel ER protein Maxer by mutant ataxin-1 in Bergman glia contributes to non-cell-autonomous toxicity. EMBO J. 2010;29:2446–2460. doi: 10.1038/emboj.2010.116. PubMed DOI PMC
Lemaire K., Moura R.F., Granvik M., Igoillo-Esteve M., Hohmeier H.E., Hendrickx N., Newgard C.B., Waelkens E., Cnop M., Schuit F. Ubiquitin fold modifier 1 (UFM1) and its target UFBP1 protect pancreatic beta cells from ER stress-induced apoptosis. PLoS ONE. 2011;6:e18517. doi: 10.1371/journal.pone.0018517. PubMed DOI PMC
Zhang Y., Zhang M., Wu J., Lei G., Li H. Transcriptional regulation of the Ufm1 conjugation system in response to disturbance of the endoplasmic reticulum homeostasis and inhibition of vesicle trafficking. PLoS ONE. 2012;7:e48587. doi: 10.1371/journal.pone.0048587. PubMed DOI PMC
Zhu H., Bhatt B., Sivaprakasam S., Cai Y., Liu S., Kodeboyina S.K., Patel N., Savage N.M., Sharma A., Kaufman R.J., et al. Ufbp1 promotes plasma cell development and ER expansion by modulating distinct branches of UPR. Nat. Commun. 2019;10:e1084. doi: 10.1038/s41467-019-08908-5. PubMed DOI PMC
Liu D., Wang W.D., Melville D.B., Cha Y.I., Yin Z., Issaeva N., Knapik E.W., Yarbrough W.G. Tumor suppressor Lzap regulates cell cycle progression, doming, and zebrafish epiboly. Dev. Dyn. 2011;240:1613–1625. doi: 10.1002/dvdy.22644. PubMed DOI PMC
Jiang H., Wu J., He C., Yang W., Li H. A tumor suppressor C53 protein antagonizes checkpoint kinases to promote cyclin-dependent kinase 1 activation. Cell Res. 2009;19:458–468. doi: 10.1038/cr.2009.14. PubMed DOI PMC
Wang J., An H., Mayo M.W., Baldwin A.S., Yarbrough W.G. LZAP, a putative tumor suppressor, selectively inhibits NF-κB. Cancer Cell. 2007;12:239–251. doi: 10.1016/j.ccr.2007.07.002. PubMed DOI
Zhao J.J., Pan K., Li J.J., Chen Y.B., Chen J.G., Lv L., Wang D.D., Pan Q.Z., Chen M.S., Xia J.C. Identification of LZAP as a new candidate tumor suppressor in hepatocellular carcinoma. PLoS ONE. 2011;6:e26608. doi: 10.1371/journal.pone.0026608. PubMed DOI PMC
Yang R., Wang H., Kang B., Chen B., Shi Y., Yang S., Sun L., Liu Y., Xiao W., Zhang T., et al. CDK5RAP3, a UFL1 substrate adaptor, is crucial for liver development. Development. 2019;146:dev169235. doi: 10.1242/dev.169235. PubMed DOI
Wu J., Jiang H., Luo S., Zhang M., Zhang Y., Sun F., Huang S., Li H. Caspase-mediated cleavage of C53/LZAP protein causes abnormal microtubule bundling and rupture of the nuclear envelope. Cell Res. 2013;23:691–704. doi: 10.1038/cr.2013.36. PubMed DOI PMC
Hořejší B., Vinopal S., Sládková V., Dráberová E., Sulimenko V., Sulimenko T., Vosecká V., Philimonenko A., Hozák P., Katsetos C.D., et al. Nuclear γ-tubulin associates with nucleoli and interacts with tumor suppressor protein C53. J. Cell. Physiol. 2012;227:367–382. doi: 10.1002/jcp.22772. PubMed DOI
Zheng Y., Jung M.K., Oakley B.R. γ-Tubulin is present in Drosophila melanogaster and Homo sapiens and is associated with centrosome. Cell. 1991;65:817–823. doi: 10.1016/0092-8674(91)90389-G. PubMed DOI
Nováková M., Dráberová E., Schürmann W., Czihak G., Viklický V., Dráber P. γ-Tubulin redistribution in taxol-treated mitotic cells probed by monoclonal antibodies. Cell Motil. Cytoskel. 1996;33:38–51. doi: 10.1002/(SICI)1097-0169(1996)33:1<38::AID-CM5>3.0.CO;2-E. PubMed DOI
Dráberová E., D’Agostino L., Caracciolo V., Sládková V., Sulimenko T., Sulimenko V., Sobol M., Maounis N.F., Tzelepis E., Mahera E., et al. Overexpression and nucleolar localization of γ-tubulin small complex proteins GCP2 and GCP3 in glioblastoma. J. Neuropathol. Exp. Neurol. 2015;74:723–742. doi: 10.1097/NEN.0000000000000212. PubMed DOI
Viklický V., Dráber P., Hašek J., Bártek J. Production and characterization of a monoclonal antitubulin antibody. Cell Biol. Int. Rep. 1982;6:725–731. doi: 10.1016/0309-1651(82)90164-3. PubMed DOI
Zíková M., Dráberová E., Sulimenko V., Dráber P. New monoclonal antibodies specific for microtubule-associated protein MAP2. Folia Biol. 2000;46:87–88. PubMed
Bar-Peled M., Raikhel N.V. A method for isolation and purification of specific antibodies to a protein fused to the GST. Anal. Biochem. 1996;241:140–142. doi: 10.1006/abio.1996.0390. PubMed DOI
Kukharskyy V., Sulimenko V., Macurek L., Sulimenko T., Dráberová E., Dráber P. Complexes of γ-tubulin with non-receptor protein tyrosine kinases Src and Fyn in differentiating P19 embryonal carcinoma cells. Exp. Cell Res. 2004;298:218–228. doi: 10.1016/j.yexcr.2004.04.016. PubMed DOI
Vinopal S., Černohorská M., Sulimenko V., Sulimenko T., Vosecká V., Flemr M., Dráberová E., Dráber P. γ-Tubulin 2 nucleates microtubules and is downregulated in mouse early embryogenesis. PLoS ONE. 2012;7:e29919. doi: 10.1371/annotation/5dd084b1-20e6-4e1f-88e0-dfe05289da08. PubMed DOI PMC
Macurek L., Dráberová E., Richterová V., Sulimenko V., Sulimenko T., Dráberová L., Marková V., Dráber P. Regulation of microtubule nucleation from membranes by complexes of membrane-bound γ-tubulin with Fyn kinase and phosphoinositide 3-kinase. Biochem. J. 2008;416:421–430. doi: 10.1042/BJ20080909. PubMed DOI
Sander J.D., Joung J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 2014;32:347–355. doi: 10.1038/nbt.2842. PubMed DOI PMC
Flemr M., Buhler M. Single-step generation of conditional knockout mouse embryonic stem cells. Cell Rep. 2015;12:709–716. doi: 10.1016/j.celrep.2015.06.051. PubMed DOI
Dráberová E., Sulimenko V., Vinopal S., Sulimenko T., Sládková V., D’Agostino L., Sobol M., Hozák P., Křen L., Katsetos C.D., et al. Differential expression of human γ-tubulin isotypes during neuronal development and oxidative stress points to a γ-tubulin-2 prosurvival function. FASEB J. 2017;31:1828–1846. doi: 10.1096/fj.201600846RR. PubMed DOI
Chu Q., Martinez T.F., Novak S.W., Donaldson C.J., Tan D., Vaughan J.M., Chang T., Diedrich J.K., Andrade L., Kim A., et al. Regulation of the ER stress response by a mitochondrial microprotein. Nat. Commun. 2019;10:1–13. doi: 10.1038/s41467-019-12816-z. PubMed DOI PMC
Mitchison T.J., Kirschner M.W. Isolation of mammalian centrosomes. Methods Enzymol. 1986;134:261–268. doi: 10.1016/0076-6879(86)34094-1. PubMed DOI
Dráberová E., Dráber P. A microtubule-interacting protein involved in coalignment of vimentin intermediate filaments with microtubules. J. Cell Sci. 1993;106:1263–1273. doi: 10.1242/jcs.106.4.1263. PubMed DOI
Klebanovych A., Sládková V., Sulimenko T., Vosecká V., Rubíková Z., Čapek M., Dráberová E., Dráber P., Sulimenko V. Regulation of microtubule nucleation in mouse bone marrow-derived mast cells by protein tyrosine kinase SHP-1. Cells. 2019;8:345. doi: 10.3390/cells8040345. PubMed DOI PMC
Li J., Yue G., Ma W., Zhang A., Zou J., Cai Y., Tang X., Wang J., Liu J., Li H., et al. Ufm1-specific ligase Ufl1 regulates endoplasmic reticulum homeostasis and protects against heart failure. Circ. Heart Fail. 2018;11:e004917. doi: 10.1161/CIRCHEARTFAILURE.118.004917. PubMed DOI PMC
Zhang M., Zhu X., Zhang Y., Cai Y., Chen J., Sivaprakasam S., Gurav A., Pi W., Makala L., Wu J., et al. RCAD/Ufl1, a Ufm1 E3 ligase, is essential for hematopoietic stem cell function and murine hematopoiesis. Cell Death Differ. 2015;22:1922–1934. doi: 10.1038/cdd.2015.51. PubMed DOI PMC
Quintero M., Liu S., Xia Y., Huang Y., Zou Y., Li G., Hu L., Singh N., Blumberg R., Cai Y., et al. Cdk5rap3 is essential for intestinal Paneth cell development and maintenance. Cell Death Dis. 2021;12:e131. doi: 10.1038/s41419-021-03401-8. PubMed DOI PMC
Sriburi R., Jackowski S., Mori K., Brewer J.W. XBP1: A link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J. Cell Biol. 2004;167:35–41. doi: 10.1083/jcb.200406136. PubMed DOI PMC
Černohorská M., Sulimenko V., Hájková Z., Sulimenko T., Sládková V., Vinopal S., Dráberová E., Dráber P. GIT1/βPIX signaling proteins and PAK1 kinase regulate microtubule nucleation. BBA Mol. Cell. Res. 2016;1863:1282–1297. doi: 10.1016/j.bbamcr.2016.03.016. PubMed DOI
Colello D., Reverte C.G., Ward R., Jones C.W., Magidson V., Khodjakov A., LaFlamme S.E. Androgen and Src signaling regulate centrosome activity. J. Cell Sci. 2010;123:2094–2102. doi: 10.1242/jcs.057505. PubMed DOI PMC
Ding W.X., Ni H.M., Gao W., Hou Y.F., Melan M.A., Chen X., Stolz D.B., Shao Z.M., Yin X.M. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J. Biol. Chem. 2007;282:4702–4710. doi: 10.1074/jbc.M609267200. PubMed DOI
Liao W., Chan L. Tunicamycin induces ubiquitination and degradation of apolipoprotein B in HepG2 cells. Biochem. J. 2001;353:493–501. doi: 10.1042/bj3530493. PubMed DOI PMC
Wu J., de Heus C., Liu Q., Bouchet B.P., Noordstra I., Jiang K., Hua S., Martin M., Yang C., Grigoriev I., et al. Molecular pathway of microtubule organization at the Golgi apparatus. Dev. Cell. 2016;39:44–60. doi: 10.1016/j.devcel.2016.08.009. PubMed DOI
Hehnly H., Doxsey S. Rab11 endosomes contribute to mitotic spindle organization and orientation. Dev. Cell. 2014;28:497–507. doi: 10.1016/j.devcel.2014.01.014. PubMed DOI PMC
Teixidó-Travesa N., Roig J., Lüders J. The where, when and how of microtubule nucleation—One ring to rule them all. J. Cell Sci. 2012;125:4445–4456. doi: 10.1242/jcs.106971. PubMed DOI
Stephani M., Picchianti L., Gajic A., Beveridge R., Skarwan E., de Hernandez V.S.M., Mohseni A., Clavel M., Zeng Y., Naumann C., et al. A cross-kingdom conserved ER-phagy receptor maintains endoplasmic reticulum homeostasis during stress. Elife. 2020;9:e58396. doi: 10.7554/eLife.58396. PubMed DOI PMC
Wamsley J.J., Issaeva N., An H., Lu X., Donehower L.A., Yarbrough W.G. LZAP is a novel Wip1 binding partner and positive regulator of its phosphatase activity in vitro. Cell Cycle. 2017;16:213–223. doi: 10.1080/15384101.2016.1261767. PubMed DOI PMC
Borek W.E., Groocock L.M., Samejima I., Zou J., de Lima Alves F., Rappsilber J., Sawin K.E. Mto2 multisite phosphorylation inactivates non-spindle microtubule nucleation complexes during mitosis. Nat. Commun. 2015;6:7929. doi: 10.1038/ncomms8929. PubMed DOI PMC
Yu L., Li G., Deng J., Jiang X., Xue J., Zhu Y., Huang W., Tang B., Duan R. The UFM1 cascade times mitosis entry associated with microcephaly. FASEB J. 2020;34:1319–1330. doi: 10.1096/fj.201901751R. PubMed DOI
Zhang X., Chen Q., Feng J., Hou J., Yang F., Liu J., Jiang Q., Zhang C. Sequential phosphorylation of Nedd1 by Cdk1 and Plk1 is required for targeting of the γTuRC to the centrosome. J. Cell Sci. 2009;122:2240–2251. doi: 10.1242/jcs.042747. PubMed DOI
Guo Y., Li D., Zhang S., Yang Y., Liu J.J., Wang X., Liu C., Milkie D.E., Moore R.P., Tulu U.S., et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell. 2018;175:1430–1442. doi: 10.1016/j.cell.2018.09.057. PubMed DOI
Liang J.R., Lingeman E., Luong T., Ahmed S., Muhar M., Nguyen T., Olzmann J.A., Corn J.E. A genome-wide ER-phagy screen highlights key roles of mitochondrial metabolism and ER-resident UFMylation. Cell. 2020;180:1160–1177.e20. doi: 10.1016/j.cell.2020.02.017. PubMed DOI PMC
γ-Tubulin in microtubule nucleation and beyond