Regulation of Microtubule Nucleation in Mouse Bone Marrow-Derived Mast Cells by Protein Tyrosine Phosphatase SHP-1
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30979083
PubMed Central
PMC6523986
DOI
10.3390/cells8040345
PII: cells8040345
Knihovny.cz E-zdroje
- Klíčová slova
- SHP-1 tyrosine phosphatase, bone marrow-derived mast cells, cell activation, microtubule nucleation, γ-tubulin complexes,
- MeSH
- degranulace buněk MeSH
- HEK293 buňky MeSH
- kinasa Syk metabolismus MeSH
- lidé MeSH
- mastocyty cytologie metabolismus MeSH
- MFC-7 buňky MeSH
- mikrotubuly metabolismus MeSH
- myši MeSH
- tubulin metabolismus MeSH
- tyrosinfosfatasa nereceptorového typu 6 antagonisté a inhibitory fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kinasa Syk MeSH
- Ptpn6 protein, mouse MeSH Prohlížeč
- Syk protein, mouse MeSH Prohlížeč
- tubulin MeSH
- tyrosinfosfatasa nereceptorového typu 6 MeSH
The antigen-mediated activation of mast cells initiates signaling events leading to their degranulation, to the release of inflammatory mediators, and to the synthesis of cytokines and chemokines. Although rapid and transient microtubule reorganization during activation has been described, the molecular mechanisms that control their rearrangement are largely unknown. Microtubule nucleation is mediated by γ-tubulin complexes. In this study, we report on the regulation of microtubule nucleation in bone marrow-derived mast cells (BMMCs) by Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 1 (SHP-1; Ptpn6). Reciprocal immunoprecipitation experiments and pull-down assays revealed that SHP-1 is present in complexes containing γ-tubulin complex proteins and protein tyrosine kinase Syk. Microtubule regrowth experiments in cells with deleted SHP-1 showed a stimulation of microtubule nucleation, and phenotypic rescue experiments confirmed that SHP-1 represents a negative regulator of microtubule nucleation in BMMCs. Moreover, the inhibition of the SHP-1 activity by inhibitors TPI-1 and NSC87877 also augmented microtubule nucleation. The regulation was due to changes in γ-tubulin accumulation. Further experiments with antigen-activated cells showed that the deletion of SHP-1 stimulated the generation of microtubule protrusions, the activity of Syk kinase, and degranulation. Our data suggest a novel mechanism for the suppression of microtubule formation in the later stages of mast cell activation.
Zobrazit více v PubMed
Kalesnikoff J., Galli S.J. New developments in mast cell biology. Nat. Immunol. 2008;9:1215–1223. doi: 10.1038/ni.f.216. PubMed DOI PMC
Blank U., Rivera J. The ins and outs of IgE-dependent mast-cell exocytosis. Trends Immunol. 2004;25:266–273. doi: 10.1016/j.it.2004.03.005. PubMed DOI
Gilfillan A.M., Rivera J. The tyrosine kinase network regulating mast cell activation. Immunol. Rev. 2009;228:149–169. doi: 10.1111/j.1600-065X.2008.00742.x. PubMed DOI PMC
Smith A.J., Pfeiffer J.R., Zhang J., Martinez A.M., Griffiths G.M., Wilson B.S. Microtubule-dependent transport of secretory vesicles in RBL-2H3 cells. Traffic. 2003;4:302–312. doi: 10.1034/j.1600-0854.2003.00084.x. PubMed DOI
Nishida K., Yamasaki S., Ito Y., Kabu K., Hattori K., Tezuka T., Nishizumi H., Kitamura D., Goitsuka R., Geha R.S., et al. FcεRI-mediated mast cell degranulation requires calcium-independent microtubule-dependent translocation of granules to the plasma membrane. J. Cell Biol. 2005;170:115–126. doi: 10.1083/jcb.200501111. PubMed DOI PMC
Sulimenko V., Dráberová E., Sulimenko T., Macurek L., Richterová V., Dráber P., Dráber P. Regulation of microtubule formation in activated mast cells by complexes of γ-tubulin with Fyn and Syk kinases. J. Immunol. 2006;176:7243–7253. doi: 10.4049/jimmunol.176.12.7243. PubMed DOI
Hájková Z., Bugajev V., Dráberová E., Vinopal S., Dráberová L., Janáček J., Dráber P., Dráber P. STIM1-directed reorganization of microtubules in activated cells. J. Immunol. 2011;186:913–923. doi: 10.4049/jimmunol.1002074. PubMed DOI
Munoz I., Danelli L., Claver J., Goudin N., Kurowska M., Madera-Salcedo I.K., Huang J.D., Fischer A., Gonzalez-Espinosa C., de Saint B.G., et al. Kinesin-1 controls mast cell degranulation and anaphylaxis through PI3K-dependent recruitment to the granular Slp3/Rab27b complex. J. Cell Biol. 2016;215:203–216. doi: 10.1083/jcb.201605073. PubMed DOI PMC
Cruse G., Beaven M.A., Ashmole I., Bradding P., Gilfillan A.M., Metcalfe D.D. A truncated splice-variant of the FcεRIβ receptor subunit is critical for microtubule formation and degranulation in mast cells. Immunity. 2013;38:906–917. doi: 10.1016/j.immuni.2013.04.007. PubMed DOI PMC
Efergan A., Azouz N.P., Klein O., Noguchi K., Rothenberg M.E., Fukuda M., Sagi-Eisenberg R. Rab12 regulates retrograde transport of mast cell secretory granules by interacting with the RILP-dynein complex. J. Immunol. 2016;196:1091–1101. doi: 10.4049/jimmunol.1500731. PubMed DOI
Oakley C.E., Oakley B.R. Identification of γ-tubulin, a new member of the tubulin superfamily encoded by mipa gene of Aspergillus nidulans. Nature. 1989;338:662–664. doi: 10.1038/338662a0. PubMed DOI
Oegema K., Wiese C., Martin O.C., Milligan R.A., Iwamatsu A., Mitchison T.J., Zheng Y. Characterization of two related Drosophila γ-tubulin complexes that differ in their ability to nucleate microtubules. J. Cell Biol. 1999;144:721–733. doi: 10.1083/jcb.144.4.721. PubMed DOI PMC
Oakley B.R., Paolillo V., Zheng Y. γ-Tubulin complexes in microtubule nucleation and beyond. Mol. Biol. Cell. 2015;26:2957–2962. doi: 10.1091/mbc.E14-11-1514. PubMed DOI PMC
Vogel J., Drapkin B., Oomen J., Beach D., Bloom K., Snyder M. Phosphorylation of γ-tubulin regulates microtubule organization in budding yeast. Dev. Cell. 2001;1:621–631. doi: 10.1016/S1534-5807(01)00073-9. PubMed DOI
Keck J.M., Jones M.H., Wong C.C., Binkley J., Chen D., Jaspersen S.L., Holinger E.P., Xu T., Niepel M., Rout M.P., et al. A cell cycle phosphoproteome of the yeast centrosome. Science. 2011;332:1557–1561. doi: 10.1126/science.1205193. PubMed DOI PMC
Colello D., Reverte C.G., Ward R., Jones C.W., Magidson V., Khodjakov A., LaFlamme S.E. Androgen and Src signaling regulate centrosome activity. J. Cell Sci. 2010;123:2094–2102. doi: 10.1242/jcs.057505. PubMed DOI PMC
Colello D., Mathew S., Ward R., Pumiglia K., LaFlamme S.E. Integrins regulate microtubule nucleating activity of centrosome through mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase (MEK/ERK) signaling. J. Biol. Chem. 2012;287:2520–2530. doi: 10.1074/jbc.M111.254128. PubMed DOI PMC
Sulimenko V., Hájková Z., Černohorská M., Sulimenko T., Sládková V., Dráberová L., Vinopal S., Dráberová E., Dráber P. Microtubule nucleation in mouse bone marrow-derived mast cells is regulated by the concerted action of GIT1/βPIX proteins and calcium. J. Immunol. 2015;194:4099–4111. doi: 10.4049/jimmunol.1402459. PubMed DOI
Nováková M., Dráberová E., Schürmann W., Czihak G., Viklický V., Dráber P. γ-Tubulin redistribution in taxol-treated mitotic cells probed by monoclonal antibodies. Cell Motil. Cytoskel. 1996;33:38–51. doi: 10.1002/(SICI)1097-0169(1996)33:1<38::AID-CM5>3.0.CO;2-E. PubMed DOI
Dráberová E., Sulimenko V., Vinopal S., Sulimenko T., Sládková V., D’Agostino L., Sobol M., Hozák P., Křen L., Katsetos C.D., et al. Differential expression of human γ-tubulin isotypes during neuronal development and oxidative stress points to a γ-tubulin-2 prosurvival function. FASEB J. 2017;31:1828–1846. doi: 10.1096/fj.201600846RR. PubMed DOI
Dráberová E., D’Agostino L., Caracciolo V., Sládková V., Sulimenko T., Sulimenko V., Sobol M., Maounis N.F., Tzelepis E., Mahera E., et al. Overexpression and nucleolar localization of γ-tubulin small complex proteins GCP2 and GCP3 in glioblastoma. J. Neuropathol. Exp. Neurol. 2015;74:723–742. doi: 10.1097/NEN.0000000000000212. PubMed DOI
Dráberová E., Sulimenko V., Kukharskyy V., Dráber P. Monoclonal antibody NF-09 specific for neurofilament protein NF-M. Folia Biol. 1999;45:163–165. PubMed
Tolar P., Dráberová L., Dráber P. Protein tyrosine kinase Syk is involved in Thy-1 signaling in rat basophilic leukemia cells. Eur. J. Immunol. 1997;27:3389–3397. doi: 10.1002/eji.1830271238. PubMed DOI
Amoui M., Dráberová L., Tolar P., Dráber P. Direct interaction of Syk and Lyn protein tyrosine kinases in rat basophilic leukemia cells activated via type I Fcεreceptors. Eur. J. Immunol. 1997;27:321–328. doi: 10.1002/eji.1830270146. PubMed DOI
Hibbs M.L., Tarlinton D.M., Armes J., Grail D., Hodgson G., Maglitto R., Stacker S.A., Dunn A.R.R. Multiple defects in the immune-system of Lyn-deficient mice, culminating in autoimmune-disease. Cell. 1995;83:301–311. doi: 10.1016/0092-8674(95)90171-X. PubMed DOI
Sander J.D., Joung J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnol. 2014;32:347–355. doi: 10.1038/nbt.2842. PubMed DOI PMC
Flemr M., Buhler M. Single-step generation of conditional knockout mouse embryonic stem cells. Cell Rep. 2015;12:709–716. doi: 10.1016/j.celrep.2015.06.051. PubMed DOI
Green M.R., Sambrook J. Molecular Cloning; A Laboratory Manual. 4th ed. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, NY, USA: 2012. pp. 1378–1380.
Blume Y., Yemets A., Sulimenko V., Sulimenko T., Chan J., Lloyd C., Dráber P. Tyrosine phosphorylation of plant tubulin. Planta. 2008;229:143–150. doi: 10.1007/s00425-008-0816-z. PubMed DOI
Kukharskyy V., Sulimenko V., Macurek L., Sulimenko T., Dráberová E., Dráber P. Complexes of γ-tubulin with non-receptor protein tyrosine kinases Src and Fyn in differentiating p19 embryonal carcinoma cells. Exp. Cell Res. 2004;298:218–228. doi: 10.1016/j.yexcr.2004.04.016. PubMed DOI
Dráber P., Lagunowich L.A., Dráberová E., Viklický V., Damjanov I. Heterogeneity of tubulin epitopes in mouse fetal tissues. Histochemistry. 1988;89:485–492. doi: 10.1007/BF00492606. PubMed DOI
Hořejší B., Vinopal S., Sládková V., Dráberová E., Sulimenko V., Sulimenko T., Vosecká V., Philimonenko A., Hozák P., Katsetos C.D., et al. Nuclear γ-tubulin associates with nucleoli and interacts with tumor suppressor protein C53. J. Cell Physiol. 2012;227:367–382. doi: 10.1002/jcp.22772. PubMed DOI
Černohorská M., Sulimenko V., Hájková Z., Sulimenko T., Sládková V., Vinopal S., Dráberová E., Dráber P. GIT1/βPIX signaling proteins and PAK1 kinase regulate microtubule nucleation. BBA Mol. Cell. Res. 2016;1863:1282–1297. doi: 10.1016/j.bbamcr.2016.03.016. PubMed DOI
Dráberová E., Dráber P. A microtubule-interacting protein involved in coalignment of vimentin intermediate filaments with microtubules. J. Cell Sci. 1993;106:1263–1273. PubMed
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Rivera J., Fierro N.A., Olivera A., Suzuki R. New insights on mast cell activation via the high affinity receptor for IgE. Adv. Immunol. 2008;98:85–120. doi: 10.1016/S0065-2776(08)00403-3. PubMed DOI PMC
Ruschmann J., Antignano F., Lam V., Snyder K., Kim C., Essak M., Zhang A., Lin A.H., Mali R.S., Kapur R., et al. The role of SHIP in the development and activation of mouse mucosal and connective tissue mast cells. J. Immunol. 2012;188:3839–3850. doi: 10.4049/jimmunol.1003875. PubMed DOI PMC
Lorenz U. SHP-1 and SHP-2 in T cells: Two phosphatases functioning at many levels. Immunol. Rev. 2009;228:342–359. doi: 10.1111/j.1600-065X.2008.00760.x. PubMed DOI PMC
Xiao W., Ando T., Wang H.Y., Kawakami Y., Kawakami T. Lyn- and PLC-β3-dependent regulation of SHP-1 phosphorylation controls Stat5 activity and myelomonocytic leukemia-like disease. Blood. 2010;116:6003–6013. doi: 10.1182/blood-2010-05-283937. PubMed DOI PMC
Bohnenberger H., Oellerich T., Engelke M., Hsiao H.H., Urlaub H., Wienands J. Complex phosphorylation dynamics control the composition of the Syk interactome in B cells. Eur. J. Immunol. 2011;41:1550–1562. doi: 10.1002/eji.201041326. PubMed DOI
Kulathu Y., Grothe G., Reth M. Autoinhibition and adapter function of Syk. Immunol. Rev. 2009;232:286–299. doi: 10.1111/j.1600-065X.2009.00837.x. PubMed DOI
Komarova Y.A., Vorobjev I.A., Borisy G.G. Life cycle of MTts: Persistent growth in the cell interior, asymmetric transition frequencies and effects of the cell boundary. J. Cell Sci. 2002;115:3527–3539. PubMed
Sulimenko V., Hájková Z., Klebanovych A., Dráber P. Regulation of microtubule nucleation mediated by γ-tubulin complexes. Protoplasma. 2017;254:1187–1199. doi: 10.1007/s00709-016-1070-z. PubMed DOI
Kundu S., Fan K., Cao M., Lindner D.J., Zhao Z.J., Borden E., Yi T. Novel SHP-1 inhibitors tyrosine phosphatase inhibitor-1 and analogs with preclinical anti-tumor activities as tolerated oral agents. J. Immunol. 2010;184:6529–6536. doi: 10.4049/jimmunol.0903562. PubMed DOI PMC
Chen L., Sung S.S., Yip M.L., Lawrence H.R., Ren Y., Guida W.C., Sebti S.M., Lawrence N.J., Wu J. Discovery of a novel SHP2 protein tyrosine phosphatase inhibitor. Mol. Pharmacol. 2006;70:562–570. doi: 10.1124/mol.106.025536. PubMed DOI
Zyss D., Montcourrier P., Vidal B., Anguille C., Merezegue F., Sahuquet A., Mangeat P.H., Coopman P.J. The Syk tyrosine kinase localizes to the centrosomes and negatively affects mitotic progression. Cancer Res. 2005;65:10872–10880. doi: 10.1158/0008-5472.CAN-05-1270. PubMed DOI
Fargier G., Favard C., Parmeggiani A., Sahuquet A., Merezegue F., Morel A., Denis M., Molinari N., Mangeat P.H., Coopman P.J., et al. Centrosomal targeting of Syk kinase is controlled by its catalytic activity and depends on microtubules and the dynein motor. FASEB J. 2013;27:109–122. doi: 10.1096/fj.11-202465. PubMed DOI
Martin-Verdeaux S., Pombo I., Iannascoli B., Roa M., Varin-Blank N., Rivera J., Blank U. Evidence of a role for Munc18-2 and microtubules in mast cell granule exocytosis. J. Cell Sci. 2003;116:325–334. doi: 10.1242/jcs.00216. PubMed DOI
Dráberová L., Dráberová E., Surviladze Z., Dráber P., Dráber P. Protein tyrosine kinase p53/p56lyn form complexes with γ-tubulin in rat basophilic leukemia cells. Int. Immunol. 1999;11:1829–1839. doi: 10.1093/intimm/11.11.1829. PubMed DOI
Rubíková Z., Sulimenko V., Paulenda T., Dráber P. Mast cell activation and microtubule organization are modulated by miltefosine through protein kinase C inhibition. Front. Immunol. 2018;9 doi: 10.3389/fimmu.2018.01563. PubMed DOI PMC
Linhartová I., Dráber P., Dráberová E., Viklický V. Immunological discrimination of β-tubulin isoforms in developing mouse brain. Posttranslational modification of non-class III β-tubulins. Biochem. J. 1992;288:919–924. doi: 10.1042/bj2880919. PubMed DOI PMC
Janke C., Bulinski J.C. Post-translational regulation of the microtubule cytoskeleton: Mechanisms and functions. Nat. Rev. Mol. Cell Biol. 2011;12:773–786. doi: 10.1038/nrm3227. PubMed DOI
Katsetos C.D., Dráberová E., Legido A., Dráber P. Tubulin targets in the pathobiology and therapy of glioblastoma multiforme. II. γ-Tubulin. J. Cell Physiol. 2009;221:514–520. doi: 10.1002/jcp.21884. PubMed DOI
Harris J., Shadrina M., Oliver C., Vogel J., Mittermaier A. Concerted millisecond timescale dynamics in the intrinsically disordered carboxyl terminus of γ-tubulin induced by mutation of a conserved tyrosine residue. Protein Sci. 2018;27:531–545. doi: 10.1002/pro.3345. PubMed DOI PMC
Teixidó-Travesa N., Roig J., Lüders J. The where, when and how of microtubule nucleation - one ring to rule them all. J. Cell Sci. 2012;125:4445–4456. doi: 10.1242/jcs.106971. PubMed DOI
Kollman J.M., Merdes A., Mourey L., Agard D.A. Microtubule nucleation by γ-tubulin complexes. Nat. Rev. Mol. Cell Biol. 2011;12:709–721. doi: 10.1038/nrm3209. PubMed DOI PMC
Katagiri K., Katagiri T., Kajiyama K., Yamamoto T., Yoshida T. Tyrosine-phosphorylation of tubulin during monocytic differentiation of HL-60 cells. J. Immunol. 1993;150:585–593. PubMed
Ley S.C., Marsh M., Bebbington C.R., Proudfoot K., Jordan P. Distinct intracellular-localization of Lck and Fyn protein-tyrosine kinases in human T-lymphocytes. J. Cell Biol. 1994;125:639–649. doi: 10.1083/jcb.125.3.639. PubMed DOI PMC
Jay J., Hammer A., Nestor-Kalinoski A., Diakonova M. JAK2 tyrosine kinase phosphorylates and is negatively regulated by centrosomal protein ninein. Mol. Cell Biol. 2015;35:111–131. doi: 10.1128/MCB.01138-14. PubMed DOI PMC
Macurek L., Dráberová E., Richterová V., Sulimenko V., Sulimenko T., Dráberová L., Marková V., Dráber P. Regulation of microtubule nucleation from membranes by complexes of membrane-bound γ-tubulin with Fyn kinase and phosphoinositide 3-kinase. Biochem. J. 2008;416:421–430. doi: 10.1042/BJ20080909. PubMed DOI
Herrmann L., Dittmar T., Erdmann K.S. The protein tyrosine phosphatase PTP-BL associates with the midbody and is involved in the regulation of cytokinesis. Mol. Biol. Cell. 2003;14:230–240. doi: 10.1091/mbc.e02-04-0191. PubMed DOI PMC
Wang J., Kirby C.E., Herbst R. The tyrosine phosphatase PRL-1 localizes to the endoplasmic reticulum and the mitotic spindle and is required for normal mitosis. J. Biol. Chem. 2002;277:46659–46668. doi: 10.1074/jbc.M206407200. PubMed DOI
Boutros R., Lobjois V., Ducommun B. CDC25B involvement in the centrosome duplication cycle and in microtubule nucleation. Cancer Res. 2007;67:11557–11564. doi: 10.1158/0008-5472.CAN-07-2415. PubMed DOI
Webb D.J., Mayhew M.W., Kovalenko M., Schroeder M.J., Jeffery E.D., Whitmore L., Shabanowitz J., Hunt D.F., Horwitz A.F. Identification of phosphorylation sites in GIT1. J. Cell Sci. 2006;119:2847–2850. doi: 10.1242/jcs.03044. PubMed DOI
Manser E., Loo T.H., Koh C.G., Zhao Z.S., Chen X.Q., Tan L., Tan I., Leung T., Lim L. PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol. Cell. 1998;1:183–192. doi: 10.1016/S1097-2765(00)80019-2. PubMed DOI
Zhao Z.S., Lim J.P., Ng Y.W., Lim L., Manser E. The GITt-associated kinase PAK targets to the centrosome and regulates Aurora-A. Mol. Cell. 2005;20:237–249. doi: 10.1016/j.molcel.2005.08.035. PubMed DOI
Bagrodia S., Bailey D., Lenard Z., Hart M., Guan J.L., Premont R.T., Taylor S.J., Cerione R.A. A tyrosine-phosphorylated protein that binds to an important regulatory region on the cool family of p21-activated kinase-binding proteins. J. Biol. Chem. 1999;274:22393–22400. doi: 10.1074/jbc.274.32.22393. PubMed DOI
Totaro A., Astro V., Tonoli D., de Curtis I. Identification of two tyrosine residues required for the intramolecular mechanism implicated in GIT1 activation. PLoS ONE. 2014;9:e93199. doi: 10.1371/journal.pone.0093199. PubMed DOI PMC
Feng Q., Baird D., Yoo S., Antonyak M., Cerione R.A. Phosphorylation of the cool-1/β-Pix protein serves as a regulatory signal for the migration and invasive activity of Src-transformed cells. J. Biol. Chem. 2010;285:18806–18816. doi: 10.1074/jbc.M109.098079. PubMed DOI PMC
Hornbeck P.V., Chabra I., Kornhauser J.M., Skrzypek E., Zhang B. Phosphosite: A bioinformatics resource dedicated to physiological protein phosphorylation. Proteomics. 2004;4:1551–1561. doi: 10.1002/pmic.200300772. PubMed DOI
Zhang L., Oh S.Y., Wu X., Oh M.H., Wu F., Schroeder J.T., Takemoto C.M., Zheng T., Zhu Z. SHP-1 deficient mast cells are hyperresponsive to stimulation and critical in initiating allergic inflammation in the lung. J. Immunol. 2010;184:1180–1190. doi: 10.4049/jimmunol.0901972. PubMed DOI PMC
Nakata K., Yoshimaru T., Suzuki Y., Inoue T., Ra C., Yakura H., Mizuno K. Positive and negative regulation of high affinity IgE receptor signaling by Src homology region 2 domain-containing phosphatase 1. J. Immunol. 2008;181:5414–5424. doi: 10.4049/jimmunol.181.8.5414. PubMed DOI