Singlet oxygen production in Chlamydomonas reinhardtii under heat stress
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26831215
PubMed Central
PMC4757480
DOI
10.1038/srep20094
PII: srep20094
Knihovny.cz E-zdroje
- MeSH
- Chlamydomonas reinhardtii metabolismus MeSH
- lipoxygenasa metabolismus MeSH
- malondialdehyd metabolismus MeSH
- peroxidace lipidů fyziologie MeSH
- reakce na tepelný šok fyziologie MeSH
- rostlinné proteiny metabolismus MeSH
- singletový kyslík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- lipoxygenasa MeSH
- malondialdehyd MeSH
- rostlinné proteiny MeSH
- singletový kyslík MeSH
In the current study, singlet oxygen formation by lipid peroxidation induced by heat stress (40 °C) was studied in vivo in unicellular green alga Chlamydomonas reinhardtii. Primary and secondary oxidation products of lipid peroxidation, hydroperoxide and malondialdehyde, were generated under heat stress as detected using swallow-tailed perylene derivative fluorescence monitored by confocal laser scanning microscopy and high performance liquid chromatography, respectively. Lipid peroxidation was initiated by enzymatic reaction as inhibition of lipoxygenase by catechol and caffeic acid prevented hydroperoxide formation. Ultra-weak photon emission showed formation of electronically excited species such as triplet excited carbonyl, which, upon transfer of excitation energy, leads to the formation of either singlet excited chlorophyll or singlet oxygen. Alternatively, singlet oxygen is formed by direct decomposition of hydroperoxide via Russell mechanisms. Formation of singlet oxygen was evidenced by the nitroxyl radical 2,2,6,6-tetramethylpiperidine-1-oxyl detected by electron paramagnetic resonance spin-trapping spectroscopy and the imaging of green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. Suppression of singlet oxygen formation by lipoxygenase inhibitors indicates that singlet oxygen may be formed via enzymatic lipid peroxidation initiated by lipoxygenase.
Zobrazit více v PubMed
Halliwell B. & Gutteridge J. In Free radicals in biology and medicine (2nd Eds.) (Oxford University Press, 2007).
Farmer E. & Mueller M. ROS-Mediated Lipid Peroxidation and RES-Activated Signaling. Annu. Rev. Plant Biol. 64, 429–450 (2013). PubMed
Gutteridge J. Lipid peroxidation initiated by superoxide-dependent hydroxyl radicals using complexed iron and hydrogen peroxide. FEBS Lett. 172, 245–249 (1984). PubMed
Garry B.R. Molecular targets of photosensitization–some biological chemistry of singlet oxygen, In: Free radical and Radiation Biology & ESR Facility, Med labs B180, The University of Iowa, Iowa City (2008) http://www.photobiology.info/Buettner.html. (Accessed: 1st November 2015).
Kruft B. & Greer A. Photosensitization Reactions In Vitro and In Vivo. Photochem. Photobiol. 87, 1204–1213 (2011). PubMed PMC
Kanofsky J. Measurement of Singlet-Oxygen In Vivo: Progress and Pitfalls. Photochem. Photobiol. 87, 14–17 (2011). PubMed
Girotti A. W. Lipid hydroperoxide generation, turnover, and effector action in biological System. J. Lipid Res. 39, 1529–42 (1998). PubMed
Cilento G. & Waldemar A. From Free Radicals to Electronically Excited Species. Free Rad. Biol. Med. 19, 103–14 (1995). PubMed
Cilento G. & Waldemar A. Photochemistry and photobiology without light. Photochem. Photobiol. 48, 361–68 (1988). PubMed
Miyamoto S. et al. Biological hydroperoxides and singlet molecular oxygen generation. TBMB IUBMB Life 59, 322–331 (2007). PubMed
Miyamoto S., Martinez G. R., Medeiros M. H. G. & Di Mascio P. Singlet molecular oxygen generated from lipid hydroperoxide by the Russell mechanism: studies using 18O-labeled linoleic acid hydroperoxide and monomol light emission measurements. J Am. Chem. Soc. 125, 6172–6179 (2003). PubMed
Miyamoto S., Martinez G. R., Martins A. P. B., Medeiros M. G. G. & Di Mascio D. Direct Evidence of Singlet Molecular Oxygen [O2(1ΔG)] Production in the Reaction of Linoleic Acid Hydroperoxide with Peroxynitrite. J. Am. Chem. Soc. 125, 4510–517 (2003). PubMed
Mano N., Mao F. & Heller A. Characteristics of a Miniature Compartment-less Glucose−O 2 Biofuel Cell and Its Operation in a Living Plant. J. Am. Chem. Soc. 125, 6588–594 (2003). PubMed
Miyamoto S. et al. Linoleic Acid Hydroperoxide Reacts with Hypochlorous Acid, Generating Peroxyl Radical Intermediates and Singlet Molecular Oxygen. PNAS 103. 2, 293–98 (2006). PubMed PMC
Adam W., Kazakov D. V. & Kazakov V. P. Singlet-Oxygen Chemiluminescence in Peroxide Reactions. Chem. Rev. 105, 3371–387 (2005). PubMed
Cilento G. & Adam W. From free radicals to electronically excited species. Free Radical Bio. Med 19, 103–114 (1995). PubMed
Cilento G. & Nascimento A. Generation of electronically excited triplet species at the cellular level: A potential source of genotoxicity. Toxicology Lett. 67, 17–28 (1993). PubMed
Miyamoto S., Martinez G., Medeiros M. & Mascio P. Singlet molecular oxygen generated by biological hydroperoxides. J Photochem. Photobiol. B: Biology 139, 24–33 (2014). PubMed
Brivida K., Saha-Moller C. R., Adam W. & Sies H. Formation of singlet oxygen in the thermal decomposition of 3-hydroxymethyl-3,4,4-trimethyl-1-,2-dioxetane, a chemical source of triplet excited ketones. Biochem. Mol. Biol. Int. 38, 647–651 (1996). PubMed
Havaux M., Triantaphylides C. & Genty B. Autoluminescence Imaging: A Non-invasive Tool for Mapping Oxidative Stress.Trends Plant Sci. 11, 480–84 (2006). PubMed
Pospíšil P. The role of metals in production and scavenging of reactive oxygen species in Photosystem II. Plant and Cell Physiol. 55, 1224–1232 (2014). PubMed
Cilento G., De Baptista R. C. & Brunetti I. L. Triplet Carbonyls: From Photophysics to Biochemistry. J. Mol. Struct. 324, 45–48 (1994).
Cilento G. “Electronic Excitation in Dark Biological Processes” in Chemical and Biological Generation of Excited States Ch. 9, 277–307 (Academic press, 1982).
Mano C. M. et al. Excited Singlet Molecular O2 (1Δg) Is Generated Enzymatically from Excited Carbonyls in the Dark. Sci. Rep. 4 (2014). PubMed PMC
Frankel E. N. Photooxidation in unsaturated fats in Lipid oxidation 2nd edn Ch. 3, 51–66 (Oily Press, 2005).
Liu X. & Huang B. Heat Stress Injury in Relation to Membrane Lipid Peroxidation in Creeping Bentgrass. Crop Sci. 40, 503–510 (2000).
Larkindale J. & Knight M. R. Protection against Heat Stress-Induced Oxidative Damage in Arabidopsis Involves Calcium, Abscisic Acid, Ethylene, and Salicylic Acid. Plant Physiol. 128, 682–95 (2002). PubMed PMC
Kipp E. & Boyle M. The Effects of Heat Stress on Reactive Oxygen Species Production and Chlorophyll Concentration in Arabidopsis Thaliana. Research in Plant Sciences 2, 20–23 (2013).
Allakhverdiev S. et al. Heat stress: An overview of molecular responses in photosynthesis. Photosynth. Res. 98, 541–550 (2008). PubMed
Murata N. & Los D. A. Membrane fluidity and temperature perception. Plant Physiol. 115, 875–879 (1997). PubMed PMC
Yamashita A. et al. Quality Control of Photosystem II: Reactive oxygen species are responsible for the damage to photosystem ii under moderate heat stress. J Biol. Chem. 283, 28380–28391 (2008). PubMed PMC
Mishra R. & Singhal G. Function of Photosynthetic Apparatus of Intact Wheat Leaves under High Light and Heat Stress and Its Relationship with Peroxidation of Thylakoid Lipids. Plant Physiol. 98, 1–6 (1992). PubMed PMC
El-Shitinawy F., Ebrahim M. K. H., Sewelam N. & El-Shourbagy M. N. Activity of photosystem 2, lipid peroxidation, and the enzymatic antioxidant protective system in heat shocked barley seedlings. Photosynthetica 42, 15–21 (2004).
Hasanuzzaman M., Nahar K., Alam M., Roychowdhury R. & Fujita M. Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. IJMS International Journal of Molecular Sciences 14, 9643–9684 (2013). PubMed PMC
Pospíšil P., Šnyrychová I. & Nauš J. Dark production of reactive oxygen species in photosystem II membrane particles at elevated temperature–EPR spin-trapping study. Biochim. Biophys. Acta 1767, 854–859 (2007). PubMed
Hideg É. & Vass I. The 75 °C Thermoluminescence Band of Green Tissues: Chemiluminescence From Membrane-Chlorophyll Interaction. Photochem. Photobiol. 58, 280–283 (1993).
Koshihara Y. et al. Caffeic acid is a selective inhibitor for leukotriene biosynthesis. Biochim. Biophys. Acta 792, 92–97 (1984). PubMed
Sud’ina G. F. et al. Caffeic acid phenethyl ester as a lipoxygenase inhibitor with antioxidant properties. Feder. Eur. Biochem. Soc. 329, 21–24 (1993). PubMed
Ali M., Hahn E. & Paek K. Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis. Plant Physiol. Bioch. 43, 213–223 (2005). PubMed
Chan T. et al. Quality Control of Photosystem II: Lipid Peroxidation Accelerates Photoinhibition under Excessive Illumination. PLoS One 7, 12 (2012). PubMed PMC
Hideg È. & Inaba H. Biophoton Emission (Ultraweak Photoemission) From Dark Adapted Spinach Chloroplasts. Photochem. Photobiol. 53, 137–142 (1991).
Russell G. A. Deuterium-isotope effects in the autoxidation of aralkyl hydrocarbons – mechanism of the interaction of peroxy radicals. J. Am. Chem. Soc. 79, 3871–3877 (1957).
Howard J. A. & Ingold K. U. Self reaction of sec-butylperoxy radicals. Confirmation of Russell mechanism. J Am. Chem. Soc. 90, 1056–1058 (1968).
Sedlářová M. et al. Influence of Nitric Oxide and Reactive Oxygen Species on Development of Lettuce Downy Mildew in Lactuca Spp. Eur. J Plant Pathol. 129, 267–280 (2011).
Pilz J. Meineke I. & Gleiter C. H. Measurement of free and bound malondialdehyde in plasma by high-performance liquid chromatography as the 2,4-dinitrophenylhydrazine derivative. J Chromatogr. B 742, 315–325 (2000). PubMed
Reactive Oxygen Species as a Response to Wounding: In Vivo Imaging in Arabidopsis thaliana
Triplet Excited Carbonyls and Singlet Oxygen Formation During Oxidative Radical Reaction in Skin