Identification of Human Enzymes Oxidizing the Anti-Thyroid-Cancer Drug Vandetanib and Explanation of the High Efficiency of Cytochrome P450 3A4 in its Oxidation

. 2019 Jul 10 ; 20 (14) : . [epub] 20190710

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31295928

Grantová podpora
18-10251S Grantová Agentura České Republiky

The metabolism of vandetanib, a tyrosine kinase inhibitor used for treatment of symptomatic/progressive medullary thyroid cancer, was studied using human hepatic microsomes, recombinant cytochromes P450 (CYPs) and flavin-containing monooxygenases (FMOs). The role of CYPs and FMOs in the microsomal metabolism of vandetanib to N-desmethylvandetanib and vandetanib-N-oxide was investigated by examining the effects of CYP/FMO inhibitors and by correlating CYP-/FMO-catalytic activities in each microsomal sample with the amounts of N-desmethylvandetanib/vandetanib-N-oxide formed by these samples. CYP3A4/FMO-activities significantly correlated with the formation of N-desmethylvandetanib/ vandetanib-N-oxide. Based on these studies, most of the vandetanib metabolism was attributed to N-desmethylvandetanib/vandetanib-N-oxide to CYP3A4/FMO3. Recombinant CYP3A4 was most efficient to form N-desmethylvandetanib, while FMO1/FMO3 generated N-oxide. Cytochrome b5 stimulated the CYP3A4-catalyzed formation of N-desmethylvandetanib, which is of great importance because CYP3A4 is not only most efficient in generating N-desmethylvandetanib, but also most significant due to its high expression in human liver. Molecular modeling indicated that binding of more than one molecule of vandetanib into the CYP3A4-active center can be responsible for the high efficiency of CYP3A4 N-demethylating vandetanib. Indeed, the CYP3A4-mediated reaction exhibits kinetics of positive cooperativity and this corresponded to the in silico model, where two vandetanib molecules were found in CYP3A4-active center.

Zobrazit více v PubMed

Heger Z., Cernei N., Kudr J., Gumulec J., Blazkova I., Zitka O., Eckschlager T., Stiborova M., Adam V., Kizek R. A novel insight into the cardiotoxicity of antineoplastic drug doxorubicin. Int. J. Mol. Sci. 2013;14:21629–21646. doi: 10.3390/ijms141121629. PubMed DOI PMC

Heger Z., Skalickova S., Zitka O., Adam V., Kizek R. Apoferritin applications in nanomedicine. Nanomedicine (Lond) 2014;9:2233–2245. doi: 10.2217/nnm.14.119. PubMed DOI

Arora A., Scholar E.M. Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther. 2005;315:971–979. doi: 10.1124/jpet.105.084145. PubMed DOI

Reibenwein J., Krainer M. Targeting signaling pathways in ovarian cancer. Expert Opin. Ther. Targets. 2008;12:353–365. doi: 10.1517/14728222.12.3.353. PubMed DOI

Hartmann J.T., Haap M., Kopp H.G., Lipp H.P. Tyrosine kinase inhibitors—a review on pharmacology, metabolism and side effects. Curr. Drug Metab. 2009;10:470–481. doi: 10.2174/138920009788897975. PubMed DOI

Hennequin L.F., Stokem E.S., Thomas A.P., Johnstone C., Plé P.A., Ogilvie D.J., Dukes M., Wedge S.R., Kendrew J., Curwen J.O. Novel 4-anilinoquinazolines with C-7 basic side chains: design and structure activity relationship of a series of potent, orally active, VEGF receptor tyrosine kinase inhibitors. J. Med. Chem. 2002;45:1300–1312. doi: 10.1021/jm011022e. PubMed DOI

Wedge S.R., Ogilvie D.J., Dukes M., Kendrew J., Chester R., Jackson J.A., Boffey S.J., Valentine P.J., Curwen J.O., Musgrove H.L., et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res. 2002;62:4645–4655. PubMed

Ciardiello F., Valuto R., Damiano V., Valuto R., Trojanu T., Vitaglian D., Carlomagno F., Veneziani B.M., Fontanini G., Bianco A.R., et al. Antitumor effects of ZD6474, a small molecule vascular endothelial growth factor receptor tyrosine kinase inhibitor, with additional activity against epidermal growth factor receptor tyrosine kinase. Clin. Cancer Res. 2003;9:1546–1556. PubMed

Commander H., Whiteside G., Perry C. Vandetanib: first global approval. Drugs. 2011;71:1355–1365. doi: 10.2165/11595310-000000000-00000. PubMed DOI

Martin P., Oliver S., Robertson J., Kennedy S.J., Read J., Duvauchelle T. Pharmacokinetic drug interactions with vandetanib during coadministration with rifampicin or itraconazole. Drugs R. D. 2011;11:37–51. doi: 10.2165/11586980-000000000-00000. PubMed DOI PMC

Vozniak J.M., Jacobs J.M. Vandetanib. J. Adv. Pract. Oncol. 2012;3:112–116. PubMed PMC

Ferrara N., Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr. Rev. 1997;18:4–25. doi: 10.1210/edrv.18.1.0287. PubMed DOI

Wells A. EGF receptor. Int. J. Biochem. Cell. Biol. 1999;31:637–643. doi: 10.1016/S1357-2725(99)00015-1. PubMed DOI

Kowanetz M., Ferrara N. Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin. Cancer Res. 2006;12:5018–5022. doi: 10.1158/1078-0432.CCR-06-1520. PubMed DOI

Dvořáková S., Václavíková E., Sýkorová V., Včelák J., Novák Z., Dušková J., Ryska A., Laco J., Čáp J., Kodetová D., et al. Somatic mutations in the RET proto-oncogene in sporadic medullary thyroid carcinomas. Mol. Cell. Endocrinol. 2008;284:21–27. PubMed

Václavíková E., Dvořáková S., Sýkorová V., Bilek R., Dvořáková K., Vlček P., Skaba R., Zelinka T., Bendlová B. RET mutation Tyr791Phe: the genetic cause of different diseases derived from neural crest. Endocrine. 2009;36:419–424. doi: 10.1007/s12020-009-9242-7. PubMed DOI

Hadoux J., Pacini F., Tuttle R.M., Schlumberger M. Management of advanced medullary thyroid cancer. Lancet Diabetes Endocrinol. 2016;4:64–71. doi: 10.1016/S2213-8587(15)00337-X. PubMed DOI

Hadoux J., Schlumberger M. Chemotherapy and tyrosine-kinase inhibitors for medullary thyroid cancer. Best Pract. Res. Clin. Endocrinol. Metab. 2017;31:335–347. doi: 10.1016/j.beem.2017.04.009. PubMed DOI

FDA Center for Drug Evaluation and Research Approval Package for Vandetanib, Application Number NDA 022405Orig1s000; Medical Review. [(accessed on 19 May 2011)]; Available online: http://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/022405Orig1s000MedR.pdf.

Martin P., Oliver S., Kennedy S.J., Partridge E., Hutchison M., Clarke D., Gilda P. Pharmacokinetics of vandetanib: three phase I studies in healthy subjects. Clin. Ther. 2012;34:221–237. doi: 10.1016/j.clinthera.2011.11.011. PubMed DOI

Fujita K. Cytochrome P450 and anticancer drugs. Curr. Drug Metab. 2006;7:23–37. doi: 10.2174/138920006774832587. PubMed DOI

Bates D. ZD-6474. AstraZeneca. Curr. Opin. Investig. Drugs. 2013;4:1468–1472. PubMed

Australian Public Assessment Report for vandetanib. Caprelsa Vandetanib. Therapeutic Goods Administration; Canberra, Australia: 2013. pp. 1–73. AstraZeneca Pty Ltd PM-2011-03002-3-4.

Attwa M.W., Kadi A.A., Darwish H.W., Amer S.M., Al-Shakliah N.S. Identification and characterization of in vivo, in vitro and reactive metabolites of vandetanib using LC-ESI-MS/MS. Chem. Cent. J. 2018;12:99. doi: 10.1186/s13065-018-0467-5. PubMed DOI PMC

Yamazaki H., Nakano M., Omak Y., Ueng Y.F., Guengerich F.P., Shimada T. Roles of cytochrome b5 in the oxidation of testosterone and nifedipine by recombinant cytochrome P450 3A4 and by human liver microsomes. Arch. Biochem. Biophys. 1996;325:174–182. doi: 10.1006/abbi.1996.0022. PubMed DOI

Yamazaki H., Shimada T., Martin M.V., Guengerich F.P. Stimulation of cytochrome P450 reactions by apo-cytochrome b5: evidence against transfer of heme from cytochrome P450 3A4 to apo-cytochrome b5 or heme oxygenase. J. Biol. Chem. 2001;276:30885–30891. doi: 10.1074/jbc.M105011200. PubMed DOI

Stiborová M., Indra R., Mizerovská M., Cerná V., Rupertová M., Martínek V., Eckschlager T., Kizek R., Frei E. Cytochrome b5 increases cytochrome P450 3A4-mediated activation of anticancer drug ellipticine to 13-hydroxyellipticine whose covalent binding to DNA is elevated by sulfotransferases and N,O-acetyltransferases. Chem. Res. Toxicol. 2017;25:1075–1085. doi: 10.1021/tx3000335. PubMed DOI

Stiborová M., Indra R., Frei E., Kopečková K., Schmeiser H.H., Eckschlager T., Adam V., Heger Z., Arlt V.M., Martínek V. Cytochrome b5 plays a dual role in the reaction cycle of cytochrome P450 3A4 during oxidation of the anticancer drug ellipticine. Monatsh. Chem. 2017;148:1983–1991. PubMed PMC

Guengerich F.P. Mechanisms of cytochrome P450-catalyzed oxidations. ACS Catal. 2018;8:10964–10976. doi: 10.1021/acscatal.8b03401. PubMed DOI PMC

Ballard J.E., Prueksaritanont T., Tang C. Hepatic metabolism of MK-0457, a potent aurora kinase inhibitor: Interspecies comparison and role of human cytochrome P450 and flavin-containing monooxygenase. Drug Metab. Dispos. 2007;9:1447–1451. doi: 10.1124/dmd.107.015438. PubMed DOI

Gao C., Catucci G., Gilardi G., Sadeghi S.J. Binding of methimazole and NADP(H) to human FMO3: In vitro and in silico studies. Int. J. Biol. Macromol. 2018;118:460–468. doi: 10.1016/j.ijbiomac.2018.06.104. PubMed DOI

Porter T.D. The roles of cytochrome b5 in cytochrome P450 reactions. J. Biochem. Mol. Toxicol. 2002;16:311–316. doi: 10.1002/jbt.10052. PubMed DOI

Schenkman J.B., Jansson I. The many roles of cytochrome b5. Pharmacol. Ther. 2003;97:139–152. doi: 10.1016/S0163-7258(02)00327-3. PubMed DOI

McLaughin L.A., Ronseaux S., Finn R.D., Henderson C.J., Wolf C.R. Deletion of microsomal cytochrome b5 profoundly affects hepatic and extrahepatic drug metabolism. Mol. Pharmacol. 2010;75:269–278. doi: 10.1124/mol.110.064246. PubMed DOI

Stiborová M., Indra R., Mizerovská M., Frei E., Schmeiser H.H., Kopka K., Philips D.H., Arlt V.M. NADH:Cytochrome b5 reductase and cytochrome b5 can act as sole electron donors to human cytochrome P450 1A1-mediated oxidation and DNA adduct formation by benzo[a]pyrene. Chem. Res. Toxicol. 2016;29:1325–1334. doi: 10.1021/acs.chemrestox.6b00143. PubMed DOI PMC

Stiborová M., Moserova M., Mrizova I., Dracinska H., Martinek V., Indra R., Frei E., Adam V., Kizek R., Schmeiser H.H., et al. Induced expression of microsomal cytochrome b5 determined at mRNA and protein levels in rats exposed to ellipticine, benzo[a]pyrene, and 1-phenylazo-2-naphthol (Sudan I) Monatsh. Chem. 2016;147:897–904. doi: 10.1007/s00706-015-1636-z. PubMed DOI PMC

Reed L., Mrizova I., Barta F., Indra R., Moserova M., Kopka K., Schmeiser H.H., Wolf C.R., Henderson C.J., Stiborova M., et al. Cytochrome b5 impacts on cytochrome P450-mediated metabolism of benzo[a]pyrene and its DNA adduct formation: studies in hepatic cytochrome b5/P450 reductase null (HBRN) mice. Arch. Toxicol. 2018;92:1625–1638. doi: 10.1007/s00204-018-2162-7. PubMed DOI PMC

Itoh K., Kimura T., Yokoi T., Itoh S., Kamataki T. Rat liver flavin-containing monooxygenase (FMO): cDNA cloning and expression in yeast. Biochim. Biophys. Acta. 1993;1173:165–171. doi: 10.1016/0167-4781(93)90177-F. PubMed DOI

Krueger S.K., Williams D.E. Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol. Ther. 2005;106:357–387. doi: 10.1016/j.pharmthera.2005.01.001. PubMed DOI PMC

Rendic S., DiCarlo F.J. Human cytochrome P450 enzymes: A status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab. Rev. 1997;29:413–480. doi: 10.3109/03602539709037591. PubMed DOI

Nedelcheva V., Gut I. P450 in the rat and man: methods of investigation, substrate specificities and relevance to cancer. Xenobiotica. 1994;24:1151–1175. doi: 10.3109/00498259409038673. PubMed DOI

Stiborová M., Martínek V., Rýdlová H., Hodek P., Frei E. Sudan I is a potential carcinogen for humans: evidence for its metabolic activation and detoxication by human recombinant cytochrome P450 1A1 and liver microsomes. Cancer Res. 2002;62:5678–5684. PubMed

Stiborová M., Martínek V., Rýdlová H., Koblas T., Hodek P. Expression of cytochrome P450 1A1 and its contribution to oxidation of a potential human carcinogen 1-phenylazo-2-naphthol (Sudan I) in human livers. Cancer Lett. 2005;220:145–154. doi: 10.1016/j.canlet.2004.07.036. PubMed DOI

Yamazaki H., Shimizu M., Nagashima T., Minoshima M., Murayama N. Rat cytochrome P450 2C11 in liver microsomes involved in oxidation of anesthetic agent propofol and deactivated by prior treatment with propofol. Drug Metab. Dispos. 2006;34:1803–1805. doi: 10.1124/dmd.106.011627. PubMed DOI

Zuber R., Modrianský M., Dvorák Z., Rohovský P., Ulrichová J., Simánek V., Anzenbacher P. Effect of silybin and its congeners on human liver microsomal cytochrome P450 activities. Phytother. Res. 2002;16:632–638. doi: 10.1002/ptr.1000. PubMed DOI

Moskaleva N., Moysa A., Novikova S., Tikhonova O., Zgoda V., Archakov A. Spaceflight effects on cytochrome P450 content in mouse liver. PLoS One. 2015;10:e0142374. doi: 10.1371/journal.pone.0142374. PubMed DOI PMC

Kopečková K. ((Department of Oncology, 2nd Medical Faculty, Charles University and University Hospital Motol, Prague 5, Czech Republic)). Personal Communication. 2019.

Williams D.E., Hale S.E., Muerhoff A.S., Masters B.S. Rabbit lung flavin-containing monooxygenase. Purification, characterization, and induction during pregnancy. Mol. Pharmacol. 1985;28:381–390. PubMed

Dannan G.A., Guengerich F.P., Waxman D.J. Hormonal regulation of rat liver microsomal enzymes. Role of gonadal steroids in programming, maintenance, and suppression of delta 4-steroid 5 alpha-reductase, flavin-containing monooxygenase, and sex-specific cytochromes P-450. J. Biol. Chem. 1986;261:10728–10735. PubMed

Tynes R.E., Philpot R.M. Tissue- and species-dependent expression of multiple forms of mammalian microsomal flavin-containing monooxygenase. Mol. Pharmacol. 1987;31:569–574. PubMed

Fumarola A., Di Fjord A., Dainelli M., Grani G., Calvanese A. Medical treatment of hyperthyroidism: state of the art. Exp. Clin. Endocrinol. Diabetes. 2010;118:678–684. doi: 10.1055/s-0030-1253420. PubMed DOI

Stiborová M., Stiborová-Rupertová M., Bořek-Dohalská L., Wiessler M., Frei E. Rat microsomes activating the anticancer drug ellipticine to species covalently binding to deoxyguanosine in DNA are a suitable model mimicking ellipticine bioactivation in humans. Chem. Res. Toxicol. 2003;16:38–47. doi: 10.1021/tx0200818. PubMed DOI

Hodek P., Koblihova J., Kizek R., Frei E., Arlt V.M., Stiborova M. The relationship between DNA adduct formation by benzo[a]pyrene and expression of its activation enzyme cytochrome P450 1A1 in rats. Environ. Toxicol. Pharmacol. 2013;36:989–996. doi: 10.1016/j.etap.2013.09.004. PubMed DOI

Wiechelman K.J., Braun R.D., Fitzpatrick J.D. Investigation of the bicinchoninic acid protein assay: identified cation of the groups responsible for color formation. Anal. Biochem. 1988;175:231–237. doi: 10.1016/0003-2697(88)90383-1. PubMed DOI

Kotrbova V., Mrazova B., Moserova M., Martinek V., Hodek P., Hudecek J., Frei E., Stiborova M. Cytochrome b5 shifts oxidation of the anticancer drug ellipticine by cytochromes P450 1A1 and 1A2 from its detoxication to activation, thereby modulating its pharmacological efficacy. Biochem. Pharmacol. 2011;82:669–680. doi: 10.1016/j.bcp.2011.06.003. PubMed DOI

Stiborová M., Poljaková J., Martínková E., Ulrichová J., Simánek V., Dvořák Z., Frei E. Ellipticine oxidation and DNA adduct formation in human hepatocytes is catalyzed by human cytochromes P450 and enhanced by cytochrome b5. Toxicology. 2012;302:233–241. doi: 10.1016/j.tox.2012.08.004. PubMed DOI

Šulc M., Indra R., Moserová M., Schmeiser H.H., Frei E., Arlt V.M., Stiborová M. The impact of individual cytochrome P450 enzymes on oxidative metabolism of benzo[a]pyrene in human livers. Environ. Mol. Mutagen. 2016;57:229–235. doi: 10.1002/em.22001. PubMed DOI PMC

Stiborová M., Levová K., Bárta F., Shi Z., Frei E., Schmeiser H.H., Nebert D.W., Phillips D.H., Arlt V.M. Bioactivation versus detoxication of the urothelial carcinogen aristolochic acid I by human cytochrome P450 1A1 and 1A2. Toxicol. Sci. 2012;125:345–358. doi: 10.1093/toxsci/kfr306. PubMed DOI PMC

Stiborová M., Borek-Dohalska L., Aimova D., Kotrbova V., Kukackova K., Janouchova K., Rupertova M., Ryslava H., Hudecek J., Frei E. Oxidation pattern of the anticancer drug ellipticine by hepatic microsomes—similarity between human and rat systems. Gen. Physiol. Biophys. 2006;25:245–261. PubMed

Walsh A.A., Szklarz G.D., Scott E.E. Human cytochrome P450 1A1 structure and utility in understanding drug and xenobiotic metabolism. J. Biol. Chem. 2013;288:12932–12943. doi: 10.1074/jbc.M113.452953. PubMed DOI PMC

Wang A., Savas U., Hsu M.H., Stout C.D., Johnson E.F. Contributions of ionic interactions and protein dynamics to cytochrome P450 2D6 (CYP2D6) substrate and inhibitor binding. J. Biol. Chem. 2015;290:5092–5104. doi: 10.1074/jbc.M114.627661. PubMed DOI PMC

Williams P.A., Cosme J., Vinkovic D.M., Ward A., Angove H.C., Day P.J., Vonrhein C., Tickle I.J., Choti H. Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science. 2004;305:683–686. doi: 10.1126/science.1099736. PubMed DOI

Samuels E.R., Sevrioukova I. Inhibition of human CYP3A4 by rationally designed ritonavir-like compounds: Impact and interplay of the side group functionalities. Mol. Pharm. 2018;15:279–288. doi: 10.1021/acs.molpharmaceut.7b00957. PubMed DOI PMC

Pontikis G., Borden J., Martínek V., Florián J. Linear energy relationships for the octahedral preference of Mg, Ca and transition metal ions. J. Phys. Chem. 2009;113:3588–3593. doi: 10.1021/jp808928f. PubMed DOI

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., et al. Gaussian, Inc.; Wallingford, CT, USA: 2016. Gaussian 09, revision A. 02.

Martínek V., Bárta F., Hodek P., Frei E., Schmeiser H.H., Arlt V.M., Stiborová M. Comparison of the oxidation of carcinogenic aristolochic acid I and II by microsomal cytochromes P450 in vitro: Experimental and theoretical approaches. Monatsh. Chem. 2017;148:1971–1981. doi: 10.1007/s00706-017-2014-9. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...