Apoferritin/Vandetanib Association Is Long-Term Stable But Does Not Improve Pharmacological Properties of Vandetanib
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-10251S
Grantová Agentura České Republiky
PubMed
33923880
PubMed Central
PMC8074211
DOI
10.3390/ijms22084250
PII: ijms22084250
Knihovny.cz E-zdroje
- Klíčová slova
- apoferritin, cancer targeting, medullary thyroid cancer, neuroblastoma, vandetanib,
- MeSH
- apoferritiny chemie farmakokinetika MeSH
- chinazoliny chemie farmakokinetika MeSH
- koncentrace vodíkových iontů MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nanočástice chemie MeSH
- piperidiny chemie farmakokinetika MeSH
- stabilita léku MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- apoferritiny MeSH
- chinazoliny MeSH
- piperidiny MeSH
- vandetanib MeSH Prohlížeč
A tyrosine kinase inhibitor, vandetanib (Van), is an anticancer drug affecting the signaling of VEGFR, EGFR and RET protooncogenes. Van is primarily used for the treatment of advanced or metastatic medullary thyroid cancer; however, its usage is significantly limited by side effects, particularly cardiotoxicity. One approach to minimize them is the encapsulation or binding of Van in- or onto a suitable carrier, allowing targeted delivery to tumor tissue. Herein, we constructed a nanocarrier based on apoferritin associated with Van (ApoVan). Based on the characteristics obtained by analyzing the average size, the surface ζ-potential and the polydispersive index, ApoVan nanoparticles exhibit long-term stability and maintain their morphology. Experiments have shown that ApoVan complex is relatively stable during storage. It was found that Van is gradually released from its ApoVan form into the neutral environment (pH 7.4) as well as into the acidic environment (pH 6.5). The effect of free Van and ApoVan on neuroblastoma and medullary thyroid carcinoma cell lines revealed that both forms were toxic in both used cell lines, and minimal differences between ApoVan and Van were observed. Thus, we assume that Van might not be encapsulated into the cavity of apoferritin, but instead only binds to its surface.
Zobrazit více v PubMed
FDA Center for Drug Evaluation and Research Labeling-Package Insert. [(accessed on 30 January 2021)]; Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/022405s017lbl.pdf.
Desphande H., Roman S., Thumar J., Sosa J.A. Vandetanib (ZD6474) in the Treatment of Medullary Thyroid Cancer. Clin. Med. Insights Oncol. 2011;5:213–221. PubMed PMC
Vozniak J.M., Jacobs J.M. Vandetanib. Journal of the Advanced Practitioner in Oncology. 2012;3:112–116. PubMed PMC
Indra R., Černá T., Heger Z., Hraběta J., Wilhelm M., Dostálová S., Lengálová A., Martínková M., Adam V., Eckschlager T., et al. Ellipticine-loaded apoferritin nanocarrier retains DNA adduct-based cytochrome P450-fasilitated toxicity in neroblastoma cells. Toxicology. 2019;419:45–54. doi: 10.1016/j.tox.2019.03.009. PubMed DOI
Martin P., Oliver S., Robertson J., Kennedy S.J., Read J., Duvauchelle T. Pharmacokinetic Drug Interactions with Vandetanib during Coadministration with Rifampicin or Itraconazole. Orig. Res. Artic. 2011;11:37–51. doi: 10.2165/11586980-000000000-00000. PubMed DOI PMC
Grande E., Kreissl M.C., Filetti S., Newbold K., Reinisch W., Robert C., Schlumberger M., Tolstrup L.K., Zamorano J.L., Capdevila J. Vandetanib in Advanced Medullary Thyroid Cancer: Review of Adverse Event Management Strategies. Adv. Ther. 2013;30:945–966. doi: 10.1007/s12325-013-0069-5. PubMed DOI PMC
Wells Jr S.A., Robinson B.G., Gagel R.F., Dralle H., Fagin J.A., Santoro M., Bausin E., Elisei R., Jerzab B., Vaselli J.R., et al. Vandetanib in Patients With Locally Advanced or Metastatic Medullary Thyroid Cancer: A Randomized, Double-Blind Phase III Trial. J. Clin. Oncol. 2012;30:134–142. doi: 10.1200/JCO.2011.35.5040. PubMed DOI PMC
Campbell M.J., Seib C.D., Gosnell J. Vandetanib and the management of advanced medullary thyroid cancer. Curr. Opin. Oncol. 2012;25:39–43. doi: 10.1097/CCO.0b013e32835a42b9. PubMed DOI
Fava P., Quaglino P., Fierro M.T., Novelli M., Bernengo M.G. Therapeutic hotline. A rare vandetanib-induced photo-allergic drug eruption. Dermatol. Ther. 2010;23:553–555. doi: 10.1111/j.1529-8019.2010.01360.x. PubMed DOI
Din ud F., Aman W., Ullah I., Qureshi O.S., Mustapha O., Shafique S., Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomed. 2017;12:7291–7309. doi: 10.2147/IJN.S146315. PubMed DOI PMC
Byrne J.D., Betancourt T., Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. 2008;60:1615–1626. doi: 10.1016/j.addr.2008.08.005. PubMed DOI
Shi J., Kantoff P.W., Wooster R., Farokhzad O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer. 2017;17:20–37. doi: 10.1038/nrc.2016.108. PubMed DOI PMC
Haley B., Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol. Oncol. 2008;26:57–64. doi: 10.1016/j.urolonc.2007.03.015. PubMed DOI
Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev. 2011;63:131–135. doi: 10.1016/j.addr.2010.03.011. PubMed DOI
Danhier F., Feron O., Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release. 2010;148:135–146. doi: 10.1016/j.jconrel.2010.08.027. PubMed DOI
Arosio P., Levi S. Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage. Biochim. Biophys. Acta. 2010;1800:783–792. doi: 10.1016/j.bbagen.2010.02.005. PubMed DOI
Crichton R.R., Declerq J.P. X-ray structures of ferritins and related proteins. Biochim. Biophys. Acta. 2010;1800:706–718. doi: 10.1016/j.bbagen.2010.03.019. PubMed DOI
Harrison P.M. The ferritins: Molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta. 1996;1275:161–203. doi: 10.1016/0005-2728(96)00022-9. PubMed DOI
Heger Z., Skalickova S., Zitka O., Adam V., Kizek R. Apoferritin applications in nanomedicine. Nanomedicine. 2014;9:2233–2245. doi: 10.2217/nnm.14.119. PubMed DOI
Douglas T., Stark V.T. Nanophase Cobalt Oxyhydroxide Mineral Synthesized within the Protein Cage of Ferritin. Inorg. Chem. 2000;39:1828–1830. doi: 10.1021/ic991269q. PubMed DOI
Chen G., Zhu X., Meng F., Yu Z., Li G. Apoferritin as a bionanomaterial to facilitate the electron transfer reactivity of hemoglobin and the catalytic activity towards hydrogen peroxide. Bioelectrochemistry. 2008;72:77–80. doi: 10.1016/j.bioelechem.2007.11.005. PubMed DOI
Zhen Z., Tang W., Chen H., Lin X., Todd T., Wang G., Cowger T., Chen X., Xie J. RGD Modified Apoferritin Nanoparticles for Efficient Drug Delivery to Tumors. ACS Nano. 2013;7:4830–4837. doi: 10.1021/nn305791q. PubMed DOI PMC
Blazkova I., Nguyen H., Dostalova S., Kopel P., Stanisavljevic M., Vaculovicova M., Stiborova M., Eckschlager T., Kizek R., Adam V. Apoferritin modified magnetic particles as doxorubicin carriers for anticancer drug delivery. Int. J. Mol. Sci. 2013;14:13391–13402. doi: 10.3390/ijms140713391. PubMed DOI PMC
Domínguez-Vera J.M., Colacio E. Nanoparticles of Prussian Blue Ferritin: A New Route for Obtaining Nanomaterials. Inorg. Chem. 2003;42:6983–6985. doi: 10.1021/ic034783b. PubMed DOI
Liang M., Fan K., Zhou M., Duan D., Zheng J., Yang D., Feng J., Yan X. H-ferritin–nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc. Natl. Acad. Sci. USA. 2014;111:14900–14905. doi: 10.1073/pnas.1407808111. PubMed DOI PMC
Fisher J., Devraj K., Ingram J., Slagle-Webb B., Madhankumar A.B., Liu X., Klinger M., Simson I.A., Connor J.R. Ferritin: A novel mechanism for delivery of iron to the brain and other organs. Am. J. Physiol. Cell Physiol. 2007;293:641–649. doi: 10.1152/ajpcell.00599.2006. PubMed DOI
Han J., Seaman W.E., Di X., Wang W., Willingam M., Torti F.M., Torti S.V. Iron Uptake Mediated by Binding of H-Ferritin to the TIM-2 Receptor in Mouse Cells. PLoS ONE. 2011;6:e23800. doi: 10.1371/journal.pone.0023800. PubMed DOI PMC
Rane S.S., Choi P. Polydispersity Index: How Accurately Does It Measure the Breadth of the Molecular Weight Distribution? Chem. Mater. 2005;17:926. doi: 10.1021/cm048594i. DOI
Clogston J.D., Patri A.K. Zeta potential measurement. Methods Mol. Biol. 2011;697:63–70. doi: 10.1007/978-1-60327-198-1_6. PubMed DOI
Ferreira L.M.R. Cancer Metabolism: The Warburg effect today. Exp. Mol. Pathol. 2010;89:372–380. doi: 10.1016/j.yexmp.2010.08.006. PubMed DOI
Krausova K. Bachelor’s Thesis. Brno University of Technology; Brno, Czech Republic: 2017. Study of Expression of Transferrin Receptors (TfR1) and their Utilization in Nanomedicine. (In Czech)
Uchida M., Klem M.T., Allen M., Suci P., Flenniken M., Gillitzer E., Varpness Z., Liepold L.O., Young M., Douglas T. Biological Containers: Protein Cages as Multifunctional Nanoplatforms. Adv. Mater. 2007;19:1025–1042. doi: 10.1002/adma.200601168. DOI
Petros R.A., DeSimone J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 2010;9:615–627. doi: 10.1038/nrd2591. PubMed DOI
Takacsova P., Indra R., Barvik I., Heger Z., Adam V., Stiborová M. Neutralization of lenvatinib charge hampers encapsulation into ferritin nanocages. MendelNet. 2019:665–670.
Hagan A., Caine M., Press C., Macfarlane W.M., Phillips G., Lloyd A.W., Czuczman P., Kilpatrick H., Bascal Z., Tang Y., et al. Predicting pharmacokinetic behavior of drug release from drug-eluting embolization beads using in vitro elution methods. Eur. J. Pharm. Sci. 2019;136:104943. doi: 10.1016/j.ejps.2019.05.021. PubMed DOI
Hagan A., Phillips G.J., Macfarlane W.M., Lloyd A.W., Czuczman P., Lewis A.L. Preparation and characterization of vandetanib-eluting radiopaque beads for locoregional treatment of hepatic malignancies. Eur. J. Pharm. Sci. 2017;101:22–30. doi: 10.1016/j.ejps.2017.01.033. PubMed DOI
Čilíková O. Bachelor’s Thesis. Charles University; Prague, Czech Republic: 2020. Metabolism of inhibitors of tyrosine kinases, the drugs of new generation. (In Czech)
Zang J., Chen H., Zhao G., Wang F., Ren F. Ferritin cage for encapsulation and delivery of bioactive nutrients: From structure, property to applications. Crit. Rev. Food Sci. Nutr. 2017;57:3673–3683. doi: 10.1080/10408398.2016.1149690. PubMed DOI
Kuruppu A.I., Zhang L., Collins H., Turyanska L., Thomas N.R., Bradshaw T.D. An apoferritin-based drug delivery system for the tyrosine kinase inhibitor gefitinib. Adv. Healthc. Mater. 2015;4:2816–2821. doi: 10.1002/adhm.201500389. PubMed DOI
Indra R., Pompach P., Martínek V., Takácsová P., Vavrová K., Heger Z., Adam V., Eckschlager T., Kopečková K., Arlt V.M., et al. Identification of Human Enzymes Oxidizing the Anti-Thyroid-Cancer Drug Vandetanib and Explanation of the High Efficiency of Cytochrome P450 3A4 in its Oxidation. Int. J. Mol. Sci. 2019;20:3392. doi: 10.3390/ijms20143392. PubMed DOI PMC
Poljaková J., Eckschlager T., Hraběta J., Hrebacková J., Smutný S., Frei E., Martínek V., Kizek R., Stiborová M. The mechanism of cytotoxicity and DNA adduct formation by the anticancer drug ellipticine in human neuroblastoma cells. Biochem. Pharmacol. 2009;77:1466–1479. doi: 10.1016/j.bcp.2009.01.021. PubMed DOI
Destruction of Lysozyme Amyloid Fibrils Induced by Magnetoferritin and Reconstructed Ferritin