Apoferritin/Vandetanib Association Is Long-Term Stable But Does Not Improve Pharmacological Properties of Vandetanib

. 2021 Apr 20 ; 22 (8) : . [epub] 20210420

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33923880

Grantová podpora
18-10251S Grantová Agentura České Republiky

A tyrosine kinase inhibitor, vandetanib (Van), is an anticancer drug affecting the signaling of VEGFR, EGFR and RET protooncogenes. Van is primarily used for the treatment of advanced or metastatic medullary thyroid cancer; however, its usage is significantly limited by side effects, particularly cardiotoxicity. One approach to minimize them is the encapsulation or binding of Van in- or onto a suitable carrier, allowing targeted delivery to tumor tissue. Herein, we constructed a nanocarrier based on apoferritin associated with Van (ApoVan). Based on the characteristics obtained by analyzing the average size, the surface ζ-potential and the polydispersive index, ApoVan nanoparticles exhibit long-term stability and maintain their morphology. Experiments have shown that ApoVan complex is relatively stable during storage. It was found that Van is gradually released from its ApoVan form into the neutral environment (pH 7.4) as well as into the acidic environment (pH 6.5). The effect of free Van and ApoVan on neuroblastoma and medullary thyroid carcinoma cell lines revealed that both forms were toxic in both used cell lines, and minimal differences between ApoVan and Van were observed. Thus, we assume that Van might not be encapsulated into the cavity of apoferritin, but instead only binds to its surface.

Zobrazit více v PubMed

FDA Center for Drug Evaluation and Research Labeling-Package Insert. [(accessed on 30 January 2021)]; Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/022405s017lbl.pdf.

Desphande H., Roman S., Thumar J., Sosa J.A. Vandetanib (ZD6474) in the Treatment of Medullary Thyroid Cancer. Clin. Med. Insights Oncol. 2011;5:213–221. PubMed PMC

Vozniak J.M., Jacobs J.M. Vandetanib. Journal of the Advanced Practitioner in Oncology. 2012;3:112–116. PubMed PMC

Indra R., Černá T., Heger Z., Hraběta J., Wilhelm M., Dostálová S., Lengálová A., Martínková M., Adam V., Eckschlager T., et al. Ellipticine-loaded apoferritin nanocarrier retains DNA adduct-based cytochrome P450-fasilitated toxicity in neroblastoma cells. Toxicology. 2019;419:45–54. doi: 10.1016/j.tox.2019.03.009. PubMed DOI

Martin P., Oliver S., Robertson J., Kennedy S.J., Read J., Duvauchelle T. Pharmacokinetic Drug Interactions with Vandetanib during Coadministration with Rifampicin or Itraconazole. Orig. Res. Artic. 2011;11:37–51. doi: 10.2165/11586980-000000000-00000. PubMed DOI PMC

Grande E., Kreissl M.C., Filetti S., Newbold K., Reinisch W., Robert C., Schlumberger M., Tolstrup L.K., Zamorano J.L., Capdevila J. Vandetanib in Advanced Medullary Thyroid Cancer: Review of Adverse Event Management Strategies. Adv. Ther. 2013;30:945–966. doi: 10.1007/s12325-013-0069-5. PubMed DOI PMC

Wells Jr S.A., Robinson B.G., Gagel R.F., Dralle H., Fagin J.A., Santoro M., Bausin E., Elisei R., Jerzab B., Vaselli J.R., et al. Vandetanib in Patients With Locally Advanced or Metastatic Medullary Thyroid Cancer: A Randomized, Double-Blind Phase III Trial. J. Clin. Oncol. 2012;30:134–142. doi: 10.1200/JCO.2011.35.5040. PubMed DOI PMC

Campbell M.J., Seib C.D., Gosnell J. Vandetanib and the management of advanced medullary thyroid cancer. Curr. Opin. Oncol. 2012;25:39–43. doi: 10.1097/CCO.0b013e32835a42b9. PubMed DOI

Fava P., Quaglino P., Fierro M.T., Novelli M., Bernengo M.G. Therapeutic hotline. A rare vandetanib-induced photo-allergic drug eruption. Dermatol. Ther. 2010;23:553–555. doi: 10.1111/j.1529-8019.2010.01360.x. PubMed DOI

Din ud F., Aman W., Ullah I., Qureshi O.S., Mustapha O., Shafique S., Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomed. 2017;12:7291–7309. doi: 10.2147/IJN.S146315. PubMed DOI PMC

Byrne J.D., Betancourt T., Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. 2008;60:1615–1626. doi: 10.1016/j.addr.2008.08.005. PubMed DOI

Shi J., Kantoff P.W., Wooster R., Farokhzad O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer. 2017;17:20–37. doi: 10.1038/nrc.2016.108. PubMed DOI PMC

Haley B., Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol. Oncol. 2008;26:57–64. doi: 10.1016/j.urolonc.2007.03.015. PubMed DOI

Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev. 2011;63:131–135. doi: 10.1016/j.addr.2010.03.011. PubMed DOI

Danhier F., Feron O., Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release. 2010;148:135–146. doi: 10.1016/j.jconrel.2010.08.027. PubMed DOI

Arosio P., Levi S. Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage. Biochim. Biophys. Acta. 2010;1800:783–792. doi: 10.1016/j.bbagen.2010.02.005. PubMed DOI

Crichton R.R., Declerq J.P. X-ray structures of ferritins and related proteins. Biochim. Biophys. Acta. 2010;1800:706–718. doi: 10.1016/j.bbagen.2010.03.019. PubMed DOI

Harrison P.M. The ferritins: Molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta. 1996;1275:161–203. doi: 10.1016/0005-2728(96)00022-9. PubMed DOI

Heger Z., Skalickova S., Zitka O., Adam V., Kizek R. Apoferritin applications in nanomedicine. Nanomedicine. 2014;9:2233–2245. doi: 10.2217/nnm.14.119. PubMed DOI

Douglas T., Stark V.T. Nanophase Cobalt Oxyhydroxide Mineral Synthesized within the Protein Cage of Ferritin. Inorg. Chem. 2000;39:1828–1830. doi: 10.1021/ic991269q. PubMed DOI

Chen G., Zhu X., Meng F., Yu Z., Li G. Apoferritin as a bionanomaterial to facilitate the electron transfer reactivity of hemoglobin and the catalytic activity towards hydrogen peroxide. Bioelectrochemistry. 2008;72:77–80. doi: 10.1016/j.bioelechem.2007.11.005. PubMed DOI

Zhen Z., Tang W., Chen H., Lin X., Todd T., Wang G., Cowger T., Chen X., Xie J. RGD Modified Apoferritin Nanoparticles for Efficient Drug Delivery to Tumors. ACS Nano. 2013;7:4830–4837. doi: 10.1021/nn305791q. PubMed DOI PMC

Blazkova I., Nguyen H., Dostalova S., Kopel P., Stanisavljevic M., Vaculovicova M., Stiborova M., Eckschlager T., Kizek R., Adam V. Apoferritin modified magnetic particles as doxorubicin carriers for anticancer drug delivery. Int. J. Mol. Sci. 2013;14:13391–13402. doi: 10.3390/ijms140713391. PubMed DOI PMC

Domínguez-Vera J.M., Colacio E. Nanoparticles of Prussian Blue Ferritin:  A New Route for Obtaining Nanomaterials. Inorg. Chem. 2003;42:6983–6985. doi: 10.1021/ic034783b. PubMed DOI

Liang M., Fan K., Zhou M., Duan D., Zheng J., Yang D., Feng J., Yan X. H-ferritin–nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc. Natl. Acad. Sci. USA. 2014;111:14900–14905. doi: 10.1073/pnas.1407808111. PubMed DOI PMC

Fisher J., Devraj K., Ingram J., Slagle-Webb B., Madhankumar A.B., Liu X., Klinger M., Simson I.A., Connor J.R. Ferritin: A novel mechanism for delivery of iron to the brain and other organs. Am. J. Physiol. Cell Physiol. 2007;293:641–649. doi: 10.1152/ajpcell.00599.2006. PubMed DOI

Han J., Seaman W.E., Di X., Wang W., Willingam M., Torti F.M., Torti S.V. Iron Uptake Mediated by Binding of H-Ferritin to the TIM-2 Receptor in Mouse Cells. PLoS ONE. 2011;6:e23800. doi: 10.1371/journal.pone.0023800. PubMed DOI PMC

Rane S.S., Choi P. Polydispersity Index:  How Accurately Does It Measure the Breadth of the Molecular Weight Distribution? Chem. Mater. 2005;17:926. doi: 10.1021/cm048594i. DOI

Clogston J.D., Patri A.K. Zeta potential measurement. Methods Mol. Biol. 2011;697:63–70. doi: 10.1007/978-1-60327-198-1_6. PubMed DOI

Ferreira L.M.R. Cancer Metabolism: The Warburg effect today. Exp. Mol. Pathol. 2010;89:372–380. doi: 10.1016/j.yexmp.2010.08.006. PubMed DOI

Krausova K. Bachelor’s Thesis. Brno University of Technology; Brno, Czech Republic: 2017. Study of Expression of Transferrin Receptors (TfR1) and their Utilization in Nanomedicine. (In Czech)

Uchida M., Klem M.T., Allen M., Suci P., Flenniken M., Gillitzer E., Varpness Z., Liepold L.O., Young M., Douglas T. Biological Containers: Protein Cages as Multifunctional Nanoplatforms. Adv. Mater. 2007;19:1025–1042. doi: 10.1002/adma.200601168. DOI

Petros R.A., DeSimone J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 2010;9:615–627. doi: 10.1038/nrd2591. PubMed DOI

Takacsova P., Indra R., Barvik I., Heger Z., Adam V., Stiborová M. Neutralization of lenvatinib charge hampers encapsulation into ferritin nanocages. MendelNet. 2019:665–670.

Hagan A., Caine M., Press C., Macfarlane W.M., Phillips G., Lloyd A.W., Czuczman P., Kilpatrick H., Bascal Z., Tang Y., et al. Predicting pharmacokinetic behavior of drug release from drug-eluting embolization beads using in vitro elution methods. Eur. J. Pharm. Sci. 2019;136:104943. doi: 10.1016/j.ejps.2019.05.021. PubMed DOI

Hagan A., Phillips G.J., Macfarlane W.M., Lloyd A.W., Czuczman P., Lewis A.L. Preparation and characterization of vandetanib-eluting radiopaque beads for locoregional treatment of hepatic malignancies. Eur. J. Pharm. Sci. 2017;101:22–30. doi: 10.1016/j.ejps.2017.01.033. PubMed DOI

Čilíková O. Bachelor’s Thesis. Charles University; Prague, Czech Republic: 2020. Metabolism of inhibitors of tyrosine kinases, the drugs of new generation. (In Czech)

Zang J., Chen H., Zhao G., Wang F., Ren F. Ferritin cage for encapsulation and delivery of bioactive nutrients: From structure, property to applications. Crit. Rev. Food Sci. Nutr. 2017;57:3673–3683. doi: 10.1080/10408398.2016.1149690. PubMed DOI

Kuruppu A.I., Zhang L., Collins H., Turyanska L., Thomas N.R., Bradshaw T.D. An apoferritin-based drug delivery system for the tyrosine kinase inhibitor gefitinib. Adv. Healthc. Mater. 2015;4:2816–2821. doi: 10.1002/adhm.201500389. PubMed DOI

Indra R., Pompach P., Martínek V., Takácsová P., Vavrová K., Heger Z., Adam V., Eckschlager T., Kopečková K., Arlt V.M., et al. Identification of Human Enzymes Oxidizing the Anti-Thyroid-Cancer Drug Vandetanib and Explanation of the High Efficiency of Cytochrome P450 3A4 in its Oxidation. Int. J. Mol. Sci. 2019;20:3392. doi: 10.3390/ijms20143392. PubMed DOI PMC

Poljaková J., Eckschlager T., Hraběta J., Hrebacková J., Smutný S., Frei E., Martínek V., Kizek R., Stiborová M. The mechanism of cytotoxicity and DNA adduct formation by the anticancer drug ellipticine in human neuroblastoma cells. Biochem. Pharmacol. 2009;77:1466–1479. doi: 10.1016/j.bcp.2009.01.021. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...