Destruction of Lysozyme Amyloid Fibrils Induced by Magnetoferritin and Reconstructed Ferritin

. 2022 Nov 11 ; 23 (22) : . [epub] 20221111

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36430405

Grantová podpora
2018/11-UKMT-7 Ministry of Health of the Slovak Republic
VEGA 2/0044/20 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences
ITMS code: 26220220153 Competence Centre Martin
APVV-19-0324 Slovak Research and Development Agency
SAS-MOST JRP 2021/2 MVTS SKTW AMAZON
ITMS 313011T548 MODEX Structural Funds of EU, Ministry of Education, Slovakia

Neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), or systemic amyloidosis, are characterized by the specific protein transformation from the native state to stable insoluble deposits, e.g., amyloid plaques. The design of potential therapeutic agents and drugs focuses on the destabilization of the bonds in their beta-rich structures. Surprisingly, ferritin derivatives have recently been proposed to destabilize fibril structures. Using atomic force microscopy (AFM) and fluorescence spectrophotometry, we confirmed the destructive effect of reconstructed ferritin (RF) and magnetoferritin (MF) on lysosome amyloid fibrils (LAF). The presence of iron was shown to be the main factor responsible for the destruction of LAF. Moreover, we found that the interaction of RF and MF with LAF caused a significant increase in the release of potentially harmful ferrous ions. Zeta potential and UV spectroscopic measurements of LAF and ferritin derivative mixtures revealed a considerable difference in RF compared to MF. Our results contribute to a better understanding of the mechanism of fibril destabilization by ferritin-like proteins. From this point of view, ferritin derivatives seem to have a dual effect: therapeutic (fibril destruction) and adverse (oxidative stress initiated by increased Fe2+ release). Thus, ferritins may play a significant role in various future biomedical applications.

Zobrazit více v PubMed

Bou-Abdallah F. The iron redox and hydrolysis chemistry of the ferritins. Biochim. Biophys. Acta. 2010;1800:719–731. doi: 10.1016/j.bbagen.2010.03.021. PubMed DOI

Chasteen N.D., Harrison P.M. Mineralization in ferritin: An efficient means of iron storage. J. Struct. Biol. 1999;126:182–194. doi: 10.1006/jsbi.1999.4118. PubMed DOI

Quintana C., Cowley J.M., Marhic C. Electron nanodiffraction and high-resolution electron microscopy studies of the structure and composition of physiological and pathological ferritin. J. Struct. Biol. 2004;147:166–178. doi: 10.1016/j.jsb.2004.03.001. PubMed DOI

Bulte J.W.M., Douglas T., Mann S., Frankel R.B., Moskowitz B.M., Brooks R.A., Baumgarner C.D., Vymazal J., Strub M.P., Frank J.A. Magnetoferritin: Characterisation of a novel superparamagnetic MR contrast agent. J. Magn. Reson. Imaging. 1994;4:497–505. doi: 10.1002/jmri.1880040343. PubMed DOI

Strbak O., Balejcikova L., Kmetova M., Gombos J., Kovac J., Dobrota D., Kopcansky P. Longitudinal and transverse relaxivityanalysis of native ferritin and magnetoferritin at 7 T MRI. Int. J. Mol. Sci. 2021;22:8487. doi: 10.3390/ijms22168487. PubMed DOI PMC

Kell D.B., Pretorius E. Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics. 2014;6:748–773. doi: 10.1039/C3MT00347G. PubMed DOI

Strbak O., Balejcikova L., Kmetova M., Gombos J., Trancikova A., Pokusa M., Kopcansky P. Quantification of iron release from native ferritin and magnetoferritin induced by vitamins B2 and C. Int. J. Mol. Sci. 2020;21:6332. doi: 10.3390/ijms21176332. PubMed DOI PMC

Kamnev A.A., Tugarova A.V. Sample treatment in Mössbauer spectroscopy for protein-related analyses: Nondestructive possibilities to look inside metal-containing biosystems. Talanta. 2017;174:819–837. doi: 10.1016/j.talanta.2017.06.057. PubMed DOI

Oshtrakh M.I. Applications of Mössbauer spectroscopy in biomedical research. Cell Biochem. Biophys. 2019;77:15–32. doi: 10.1007/s12013-018-0843-8. PubMed DOI

Kamnev A.A., Tugarova A.V. Bioanalytical applications of Mössbauer spectroscopy. Russ. Chem. Rev. 2021;90:1415–1453. doi: 10.1070/RCR5006. DOI

Hagemeier J., Geurts J.J.G., Zivadinov R. Brain iron accumulation in aging and neurodegenerative disorders. Expert Rev. Neurother. 2012;12:1467–1480. doi: 10.1586/ern.12.128. PubMed DOI

Dugger B.N., Dickson D.W. Pathology of neurodegenerative disease. Cold Spring Harb. Perspect. Biol. 2016;9:a028035. doi: 10.1101/cshperspect.a028035. PubMed DOI PMC

Kobayashi A., Yamamoto N., Kirschvink J. Studies of inorganic crystals in biological tissue: Magnetite in human tumor. J. Jpn. Soc. Powder Powder Metall. 1997;44:294–300. doi: 10.2497/jjspm.44.294. DOI

Olsson T.T., Klementieva O., Gouras G.K. Prion-like seeding and nucleation of intracellular amyloid-β. Neurobiol. Dis. 2018;113:1–10. doi: 10.1016/j.nbd.2018.01.015. PubMed DOI

Roeters S., Iyer A., Pletikapić G., Kogan V., Subramaniam V., Woutersen S. Evidence for intramolecular antiparallel beta-sheet structure in alpha-synuclein fibrils from a combination of two-dimensional infrared spectroscopy and atomic force microscopy. Sci. Rep. 2017;7:41051. doi: 10.1038/srep41051. PubMed DOI PMC

Wilkins H.M., Swerdlow R.H. Amyloid precursor protein processing and bioenergetics. Brain Res. Bull. 2017;133:71–79. doi: 10.1016/j.brainresbull.2016.08.009. PubMed DOI PMC

Haass C., Selkoe D. Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell. Biol. 2007;8:101–112. doi: 10.1038/nrm2101. PubMed DOI

Krebs M.R., Wilkins D.K., Chung E.W., Pitkeathly M.C., Chamberlain A.K., Zurdo J., Robinson C.V., Dobson C.M. Formation and seeding of amyloid fibrils from wild-type hen lysozyme and a peptide fragment from the beta-domain. J. Mol. Biol. 2000;300:541–549. doi: 10.1006/jmbi.2000.3862. PubMed DOI

Balejčíková L., Petrenko V.I., Baťková M., Šipošová K., Garamus V.M., Bulavin L.A., Avdeev M.V., Almasy L., Kopčanský P. Disruption of amyloid aggregates by artificial ferritins. J. Magn. Magn. Mater. 2019;473:215–220. doi: 10.1016/j.jmmm.2018.10.055. DOI

Harrison P.M. The structure of apoferritin: Molecular size, shape and symmetry from X-ray data. J. Mol. Biol. 1963;6:404–422, IN3–IN9. doi: 10.1016/S0022-2836(63)80052-2. PubMed DOI

Jáklová K., Feglarová T., Rex S., Heger Z., Eckschlager T., Hraběta J., Hodek P., Kolárik M., Indra R. Apoferritin/Vandetanib Association Is Long-Term Stable But Does Not Improve Pharmacological Properties of Vandetanib. Int. J. Mol. Sci. 2021;22:4250. doi: 10.3390/ijms22084250. PubMed DOI PMC

LeVine H., 3rd, Thioflavine T. interaction with synthetic Alzheimer’s disease beta-amyloid peptides: Detection of amyloid aggregation in solution. Protein Sci. 1993;2:404–410. doi: 10.1002/pro.5560020312. PubMed DOI PMC

Sulatsky M.I., Sulatskaya A.I., Povarova O.I., Antifeeva I.A., Kuznetsova I.M., Turoverov K.K. Effect of the fluorescent probes ThT and ANS on the mature amyloid fibrils. Prion. 2020;14:67–75. doi: 10.1080/19336896.2020.1720487. PubMed DOI PMC

Bossoni L., Moursel L.G., Bulk M., Simon B.G., Webb A., Weerd A., Weerd L., Huber M., Carretta P., Lascialfari A., et al. Human-brain ferritin studied by muon spin rotation: A pilot study. J. Phys. Condens. Matter. 2017;29:415801. doi: 10.1088/1361-648X/aa80b3. PubMed DOI

Quintana C., Gutierrez L. Could a dysfunction of ferritin be a determinant factor in the aetiology of some neurodegenerative disease? Biochim. Biophys. Acta. 2010;1800:770–782. doi: 10.1016/j.bbagen.2010.04.012. PubMed DOI

Friedman A., Arosio P., Finazzi D., Koziorowski D., Galazka-Friedman J. Ferritin as an important player in neurodegeneration. Parkinsonism Relat. Disord. 2011;17:423–430. doi: 10.1016/j.parkreldis.2011.03.016. PubMed DOI

Ndayisaba A., Kaindlstorfer C., Wenning G.K. Iron in Neurodegeneration–Cause or Consequence? Front. Neurosci. 2019;13:180. doi: 10.3389/fnins.2019.00180. PubMed DOI PMC

Balejcikova L., Siposova K., Kopcansky P., Safarik I. Fe(II) formation after interaction of the amyloid β-peptide with iron-storage protein ferritin. J. Biol. Phys. 2018;44:237–243. doi: 10.1007/s10867-018-9498-3. PubMed DOI PMC

Everett J., Brooks J., Lermyte F., O’Connor P.B., Sadler P.J., Dobson J., Collingwood J.F., Telling N.D. Iron stored in ferritin is chemically reduced in the presence of aggregating Aβ(1-42) Sci. Rep. 2020;10:10332. doi: 10.1038/s41598-020-67117-z. PubMed DOI PMC

Kopcansky P., Siposova K., Melnikova L., Bednarikova Z., Timko T., Mitroova Z., Antosova A., Garamus V.M., Petrenko V.I., Avdeev M.V., et al. Destroying activity of magnetoferritin on lysozyme amyloid fibrils. J. Magn. Magn. Mater. 2015;377:267–271. doi: 10.1016/j.jmmm.2014.10.017. DOI

Xiao W., Jones A.M., Collins R.N., Waite T.D. Investigating the effect of ascorbate on the Fe(II)-catalyzed transformation of the poorly crystalline iron mineral ferrihydrite. Biochim. Biophys. Acta-Gen. Subj. 2018;1862:1760–1769. doi: 10.1016/j.bbagen.2018.05.005. PubMed DOI

Cullis J.O., Fitzsimons E.J., Griffiths W.J., Tsochatzis E., Thomas D.W., British Society for Haematology Investigation and management of a raised serum ferritin. Br. J. Haematol. 2018;181:331–340. doi: 10.1111/bjh.15166. PubMed DOI

Knovich M.A., Storey J.A., Coffman L.G., Torti S.V., Torti F.M. Ferritin for the clinician. Blood Rev. 2009;23:95–104. doi: 10.1016/j.blre.2008.08.001. PubMed DOI PMC

Bellova A., Bystrenova E., Koneracka M., Kopcansky P., Valle F., Tomasovicova N., Timko M., Bagelova J., Biscarini F., Gazova Z. Effect of Fe3O4 magnetic nanoparticles on lysozyme amyloid aggregation. Nanotechnology. 2010;21:065103. doi: 10.1088/0957-4484/21/6/065103. PubMed DOI

Antosova A., Koneracka M., Siposova K., Zavisova V., Daxnerova Z., Vavra I., Fabian M., Kopcansky P., Gazova Z. Magnetic fluids have ability to decrease amyloid aggregation associated with amyloid-related disease. AIP Conf. Proc. 2010;1311:317.

Lucas M.J., Keitz B.K. Influence of Zeolites on Amyloid-β Aggregation. Langmuir. 2018;34:9789–9797. doi: 10.1021/acs.langmuir.8b01496. PubMed DOI

Wang Z., Gao H., Zhang Y., Liu G., Niu G., Chen X. Functional ferritin nanoparticles for biomedical applications. Front. Chem. Sci. Eng. 2017;11:633–646. doi: 10.1007/s11705-017-1620-8. PubMed DOI PMC

Carmen J.M., Shrivastava S., Lu Z., Anderson A., Morrison E.B., Sankhala R.S., Chen W.-H., Chang W.C., Bolton J.S., Matyas G.R., et al. SARS-CoV-2 ferritin anoparticle vaccine induces robust innate immune activity driving polyfunctional spike-specific T cell responses. NPJ Vaccines. 2021;6:151. doi: 10.1038/s41541-021-00414-4. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...