The recovery of European freshwater biodiversity has come to a halt
Language English Country Great Britain, England Media print-electronic
Document type Journal Article
PubMed
37558875
PubMed Central
PMC10432276
DOI
10.1038/s41586-023-06400-1
PII: 10.1038/s41586-023-06400-1
Knihovny.cz E-resources
- MeSH
- Invertebrates * classification physiology MeSH
- Biodiversity * MeSH
- Time Factors MeSH
- Global Warming MeSH
- Hydrobiology MeSH
- Water Pollutants analysis MeSH
- Human Activities MeSH
- Environmental Monitoring * MeSH
- Conservation of Water Resources * statistics & numerical data trends MeSH
- Crop Production MeSH
- Fresh Water * MeSH
- Urbanization MeSH
- Introduced Species trends MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Europe MeSH
- Names of Substances
- Water Pollutants MeSH
Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.
Agencia Vasca del Agua Vitoria Gasteiz Spain
ARALEP Ecologie des Eaux Douces Villeurbanne France
Brain Capital Alliance San Francisco CA USA
Centre for Freshwater and Environmental Studies Dundalk Institute of Technology Dundalk Ireland
Department of Animal Sciences and Aquatic Ecology Ghent University Ghent Belgium
Department of Biological Sciences University of Bergen Bergen Norway
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Department of Earth and Environmental Sciences DISAT University of Milano Bicocca Milan Italy
Department of Ecology and Genetics University of Oulu Oulu Finland
Department of Ecology and Hydrology University of Murcia Murcia Spain
Department of Ecoscience Aarhus University Aarhus Denmark
Department of Ecosystem Services Helmholtz Center for Environmental Research UFZ Leipzig Germany
Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
Department of Forest Ecology and Management Swedish University of Agricultural Sciences Umeå Sweden
Department of Hydrobiology University of Pécs Pécs Hungary
Department of Plant Biology and Ecology University of the Basque Country Leioa Spain
Ekolur Asesoría Ambiental SLL Oiartzun Spain
Environment Agency Wallingford UK
Faculty of Biology University of Duisburg Essen Essen Germany
FEHM Lab Institute of Environmental Assessment and Water Research CSIC Barcelona Spain
FEHM Lab University of Barcelona Barcelona Spain
Fisheries Ecosystems Advisory Services Marine Institute Newport Ireland
Flanders Environment Agency Aalst Belgium
Freshwater Biological Section University of Copenhagen Copenhagen Denmark
Geography Department Humboldt Universität zu Berlin Berlin Germany
Geography Research Unit University of Oulu Oulu Finland
IHCantabria Instituto de Hidráulica Ambiental de la Universidad de Cantabria Santander Spain
INRAE UMR RECOVER Aix Marseille Univ Centre d'Aix en Provence Aix en Provence France
INRAE UR RiverLy Centre de Lyon Villeurbanne Villeurbanne France
Institute for Alpine Environment Eurac Research Bolzano Italy
Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam The Netherlands
Institute for Environmental Science RPTU Kaiserslautern Landau Landau Germany
Institute for Green Science Carnegie Mellon University Pittsburgh PA USA
Institute of Biodiversity Friedrich Schiller University Jena Jena Germany
Institute of Biology University of Latvia Riga Latvia
Laboratoire National d'Hydraulique et Environnement EDF Recherche et Développement Chatou France
Laboratory of Evolutionary Ecology of Hydrobionts Nature Research Centre Vilnius Lithuania
Norwegian Institute for Nature Research Oslo Norway
Norwegian Institute for Water Research Oslo Norway
Oulanka Research Station University of Oulu Infrastructure Platform Kuusamo Finland
School of Biological and Behavioural Sciences Queen Mary University of London London UK
School of Geography University of Leeds Leeds UK
School of Natural Resources University of Nebraska Lincoln Lincoln NE USA
School of Science and Technology Nottingham Trent University Nottingham UK
School of the Environment Yale University New Haven CT USA
T G Masaryk Water Research Institute Brno Czech Republic
UK Centre for Ecology and Hydrology Lancaster Environment Centre Lancaster UK
Univ Lyon Université Claude Bernard Lyon 1 CNRS ENTPE UMR 5023 LEHNA Villeurbanne France
Wageningen Environmental Research Wageningen University and Research Wageningen The Netherlands
See more in PubMed
Dudgeon D, et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 2006;81:163–182. doi: 10.1017/S1464793105006950. PubMed DOI
Vaughan IP, Ormerod SJ. Large-scale, long-term trends in British river macroinvertebrates. Glob. Change Biol. 2012;18:2184–2194. doi: 10.1111/j.1365-2486.2012.02662.x. DOI
Steffen W, Broadgate W, Deutsch L, Gaffney O, Ludwig C. The trajectory of the Anthropocene: the great acceleration. Anthr. Rev. 2015;2:81–98.
Windsor FM, Tilley RM, Tyler CR, Ormerod SJ. Microplastic ingestion by riverine macroinvertebrates. Sci. Total Environ. 2019;646:68–74. doi: 10.1016/j.scitotenv.2018.07.271. PubMed DOI
Reid AJ, et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019;94:849–873. doi: 10.1111/brv.12480. PubMed DOI
Mantyka-Pringle CS, Martin TG, Moffatt DB, Linke S, Rhodes JR. Understanding and predicting the combined effects of climate change and land-use change on freshwater macroinvertebrates and fish. J. Appl. Ecol. 2014;51:572–581. doi: 10.1111/1365-2664.12236. DOI
Seebens H, et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 2017;8:14435. doi: 10.1038/ncomms14435. PubMed DOI PMC
European Environment Agency (EEA). European Waters: Assessment of Status and Pressures 2018 EEA report 7/2018, https://www.eea.europa.eu/publications/state-of-water (2018).
Vaughan IP, Gotelli NJ. Water quality improvements offset the climatic debt for stream macroinvertebrates over twenty years. Nat. Commun. 2019;10:1956. doi: 10.1038/s41467-019-09736-3. PubMed DOI PMC
Schwarzbach SE, Albertson JD, Thomas CM. Effects of predation, flooding, and contamination on reproductive success of California clapper rails (Rallus longirostris obsoletus) in San Francisco Bay. Auk. 2006;123:45–60. doi: 10.1093/auk/123.1.45. DOI
Birk S, et al. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat. Ecol. Evol. 2020;4:1060–1068. doi: 10.1038/s41559-020-1216-4. PubMed DOI
Vaughn CC, Hakenkamp CC. The functional role of burrowing bivalves in freshwater ecosystems. Freshw. Biol. 2001;46:1431–1446. doi: 10.1046/j.1365-2427.2001.00771.x. DOI
Vanni MJ. Nutrient cycling by animals in freshwater ecosystems. Annu. Rev. Ecol. Evol. Syst. 2002;33:341–370. doi: 10.1146/annurev.ecolsys.33.010802.150519. DOI
Tilman, D. In Encyclopaedia of Biodiversity (ed. Levin, S. A.) 109–120 (Academic, 2001).
Santini L, et al. Assessing the suitability of diversity metrics to detect biodiversity change. Biol. Conserv. 2017;213:341–350. doi: 10.1016/j.biocon.2016.08.024. DOI
Tumolo BB, et al. Toward spatio‐temporal delineation of positive interactions in ecology. Ecol. Evol. 2020;10:9026–9036. doi: 10.1002/ece3.6616. PubMed DOI PMC
Blowes SA, et al. The geography of biodiversity change in marine and terrestrial assemblages. Science. 2019;366:339–345. doi: 10.1126/science.aaw1620. PubMed DOI
van Klink R, et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science. 2020;368:417–420. doi: 10.1126/science.aax9931. PubMed DOI
Pilotto F, et al. Meta-analysis of multidecadal biodiversity trends in Europe. Nat. Commun. 2020;11:3486. doi: 10.1038/s41467-020-17171-y. PubMed DOI PMC
Bouraoui F, Grizzetti B. Long term change of nutrient concentrations of rivers discharging in European seas. Sci. Total Environ. 2011;409:4899–4916. doi: 10.1016/j.scitotenv.2011.08.015. PubMed DOI
Haase P, et al. Moderate warming over the past 25 years has already reorganized stream invertebrate communities. Sci. Total Environ. 2019;658:1531–1538. doi: 10.1016/j.scitotenv.2018.12.234. PubMed DOI
Baker NJ, Pilotto F, Jourdan J, Beudert B, Haase P. Recovery from air pollution and subsequent acidification masks the effects of climate change on a freshwater macroinvertebrate community. Sci. Total Environ. 2021;758:143685. doi: 10.1016/j.scitotenv.2020.143685. PubMed DOI
Eriksen TE, et al. A global perspective on the application of riverine macroinvertebrates as biological indicators in Africa, South-Central America, Mexico and Southern Asia. Ecol. Indic. 2021;126:107609. doi: 10.1016/j.ecolind.2021.107609. DOI
Dornelas M, et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 2018;27:760–786. doi: 10.1111/geb.12729. PubMed DOI PMC
Clark TJ, Luis AD. Nonlinear population dynamics are ubiquitous in animals. Nat. Ecol. Evol. 2020;4:75–81. doi: 10.1038/s41559-019-1052-6. PubMed DOI
McGill B, Enquist B, Weiher E, Westoby M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 2006;21:178–185. doi: 10.1016/j.tree.2006.02.002. PubMed DOI
McGill BJ, Dornelas M, Gotelli NJ, Magurran AE. Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol. Evol. 2015;30:104–113. doi: 10.1016/j.tree.2014.11.006. PubMed DOI
Jarzyna MA, Jetz W. A near half‐century of temporal change in different facets of avian diversity. Glob. Change Biol. 2017;23:2999–3011. doi: 10.1111/gcb.13571. PubMed DOI
Deutsch CA, et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA. 2008;105:6668–6672. doi: 10.1073/pnas.0709472105. PubMed DOI PMC
Isaak DJ, et al. Slow climate velocities of mountain streams portend their role as refugia for cold-water biodiversity. Proc. Natl Acad. Sci. USA. 2016;113:4374–4379. doi: 10.1073/pnas.1522429113. PubMed DOI PMC
Zarfl C, Lumsdon AE, Berlekamp J, Tydecks L, Tockner K. A global boom in hydropower dam construction. Aquat. Sci. 2015;77:161–170. doi: 10.1007/s00027-014-0377-0. DOI
Cid N, et al. From meta‐system theory to the sustainable management of rivers in the Anthropocene. Front. Ecol. Environ. 2022;20:49–57. doi: 10.1002/fee.2417. PubMed DOI PMC
Wang J, et al. What explains the variation in dam impacts on riverine macroinvertebrates? A global quantitative synthesis. Environ. Res. Lett. 2020;15:124028. doi: 10.1088/1748-9326/abc4fc. DOI
Rosset V, et al. Is eutrophication really a major impairment for small waterbody biodiversity? J. Appl. Ecol. 2014;51:415–425. doi: 10.1111/1365-2664.12201. DOI
Bruno D, et al. Structural and functional responses of invertebrate communities to climate change and flow regulation in alpine catchments. Glob. Change Biol. 2019;25:1612–1628. doi: 10.1111/gcb.14581. PubMed DOI PMC
Gebauer R, et al. Distribution of alien animal species richness in the Czech Republic. Ecol. Evol. 2018;8:4455–4464. doi: 10.1002/ece3.4008. PubMed DOI PMC
Whelan MJ, et al. Is water quality in British rivers “better than at any time since the end of the Industrial Revolution”? Sci. Total Environ. 2022;843:157014. doi: 10.1016/j.scitotenv.2022.157014. PubMed DOI
Belletti B, et al. More than one million barriers fragment Europe’s rivers. Nature. 2020;588:436–441. doi: 10.1038/s41586-020-3005-2. PubMed DOI
Durance I, Ormerod SJ. Trends in water quality and discharge confound long-term warming effects on river macroinvertebrates. Freshw. Biol. 2009;54:388–405. doi: 10.1111/j.1365-2427.2008.02112.x. DOI
Wood PJ, Armitage PD. Biological effects of fine sediment in the lotic environment. Environ. Manage. 1997;21:203–217. doi: 10.1007/s002679900019. PubMed DOI
Lemm JU, et al. Multiple stressors determine river ecological status at the European scale: towards an integrated understanding of river status deterioration. Glob. Change Biol. 2021;27:1962–1975. doi: 10.1111/gcb.15504. PubMed DOI
Thorslund J, Bierkens MFP, Oude Essink GHP, Sutanudjaja EH, van Vliet MTH. Common irrigation drivers of freshwater salinisation in river basins worldwide. Nat. Commun. 2021;12:4232. doi: 10.1038/s41467-021-24281-8. PubMed DOI PMC
Verdonschot RCM, Kail J, McKie BG, Verdonschot PFM. The role of benthic microhabitats in determining the effects of hydromorphological river restoration on macroinvertebrates. Hydrobiologia. 2016;769:55–66. doi: 10.1007/s10750-015-2575-8. DOI
Romero GQ, et al. Pervasive decline of subtropical aquatic insects over 20 years driven by water transparency, non-native fish and stoichiometric imbalance. Biol. Lett. 2021;17:20210137. doi: 10.1098/rsbl.2021.0137. PubMed DOI PMC
Feio MJ, Dolédec S, Graça MAS. Human disturbance affects the long-term spatial synchrony of freshwater invertebrate communities. Environ. Pollut. 2015;196:300–308. doi: 10.1016/j.envpol.2014.09.026. PubMed DOI
Malaj E, et al. Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. Proc. Natl Acad. Sci. USA. 2014;111:9549–9554. doi: 10.1073/pnas.1321082111. PubMed DOI PMC
Jourdan J, et al. Reintroduction of freshwater macroinvertebrates: challenges and opportunities. Biol. Rev. 2019;94:368–387. doi: 10.1111/brv.12458. PubMed DOI
Bhide SV, et al. Addressing the contribution of indirect potable reuse to inland freshwater salinization. Nat. Sustain. 2021;4:699–707. doi: 10.1038/s41893-021-00713-7. DOI
Maasri A, et al. A global agenda for advancing freshwater biodiversity research. Ecol. Lett. 2022;25:255–263. doi: 10.1111/ele.13931. PubMed DOI
Haase P, et al. The next generation of site-based long-term ecological monitoring: Linking essential biodiversity variables and ecosystem integrity. Sci. Total Environ. 2018;613–614:1376–1384. doi: 10.1016/j.scitotenv.2017.08.111. PubMed DOI
Heino J, et al. Abruptly and irreversibly changing Arctic freshwaters urgently require standardized monitoring. J. Appl. Ecol. 2020;57:1192–1198. doi: 10.1111/1365-2664.13645. DOI
Didham RK, et al. Interpreting insect declines: seven challenges and a way forward. Insect Conserv. Divers. 2020;13:103–114. doi: 10.1111/icad.12408. DOI
Outhwaite CL, Gregory RD, Chandler RE, Collen B, Isaac NJB. Complex long-term biodiversity change among invertebrates, bryophytes and lichens. Nat. Ecol. Evol. 2020;4:384–392. doi: 10.1038/s41559-020-1111-z. PubMed DOI
Pandolfi JM, Staples TL, Kiessling W. Increased extinction in the emergence of novel ecological communities. Science. 2020;370:220–222. doi: 10.1126/science.abb3996. PubMed DOI
Arneth A, et al. Post-2020 biodiversity targets need to embrace climate change. Proc. Natl Acad. Sci. USA. 2020;117:30882–30891. doi: 10.1073/pnas.2009584117. PubMed DOI PMC
Chapman, D. Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring 2nd edn (Taylor & Francis, 1996).
Hallett, L. et al. codyn: community dynamics metrics. R package version 2.0.5 (2020).
Oksanen, A. J. et al. vegan: community ecology package. R package version 2.5-7 (2020).
Schmidt-Kloiber A, Hering D. www.freshwaterecology.info—an online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecol. Indic. 2015;53:271–282. doi: 10.1016/j.ecolind.2015.02.007. DOI
Sarremejane R, et al. DISPERSE, a trait database to assess the dispersal potential of European aquatic macroinvertebrates. Sci. Data. 2020;7:386. doi: 10.1038/s41597-020-00732-7. PubMed DOI PMC
Schmera D, Heino J, Podani J, Erős T, Dolédec S. Functional diversity: a review of methodology and current knowledge in freshwater macroinvertebrate research. Hydrobiologia. 2017;787:27–44. doi: 10.1007/s10750-016-2974-5. DOI
Schmera D, Heino J, Podani J. Characterising functional strategies and trait space of freshwater macroinvertebrates. Sci. Rep. 2022;12:12283. doi: 10.1038/s41598-022-16472-0. PubMed DOI PMC
Tachet, H., Richoux, P., Bournaud, M. & Usseglio‐Polatera, P. Invertébrés d’Eau Douce: Systématique, Biologie, Écologie (CNRS Editions, 2010).
Chevenet F, Dolédec S, Chessel D. A fuzzy coding approach for the analysis of long-term ecological data. Freshw. Biol. 1994;31:295–309. doi: 10.1111/j.1365-2427.1994.tb01742.x. DOI
Kunz S, et al. Tackling inconsistencies among freshwater invertebrate trait databases: harmonising across continents and aggregating taxonomic resolution. Freshw. Biol. 2022;67:275–291. doi: 10.1111/fwb.13840. DOI
Laliberté, E., Legendre, P. & Shipley, B. FD: measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. R package version 1.0-12 (2014). PubMed
Mouillot D, et al. The dimensionality and structure of species trait spaces. Ecol. Lett. 2021;24:1988–2009. doi: 10.1111/ele.13778. PubMed DOI
Baker NJ, Pilotto F, Haubrock PJ, Beudert B, Haase P. Multidecadal changes in functional diversity lag behind the recovery of taxonomic diversity. Ecol. Evol. 2021;11:17471–17484. doi: 10.1002/ece3.8381. PubMed DOI PMC
Pavoine, S. adiv: an R package to analyse biodiversity in ecology. R package version 2.0.1 (2020).
Ricotta C, et al. Measuring the functional redundancy of biological communities: a quantitative guide. Methods Ecol. Evol. 2016;7:1386–1395. doi: 10.1111/2041-210X.12604. DOI
Roy D. et al. Inventory of alien invasive species in Europe (DAISIE). Figshare10.15468/ybwd3x (2020).
Seebans, H. Alien species first records database (GAFRD). Figshare10.5281/zenodo.4632335 (2021).
Seebens H, et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl Acad. Sci. USA. 2018;115:E2264–E2273. doi: 10.1073/pnas.1719429115. PubMed DOI PMC
GBIF: The Global Biodiversity Information Facility, https://www.gbif.org/ (GBIF, 2022, accessed January 2021).
Yamazaki D, et al. MERIT Hydro: a high‐resolution global hydrography map based on latest topography dataset. Water Resour. Res. 2019;55:5053–5073. doi: 10.1029/2019WR024873. DOI
Amatulli G, et al. Hydrography90m: a new high-resolution global hydrographic dataset. Earth Syst. Sci. Data. 2022;14:4525–4550. doi: 10.5194/essd-14-4525-2022. DOI
Neteler M, Bowman MH, Landa M, Metz M. GRASS GIS: a multi-purpose open source GIS. Environ. Model. Softw. 2012;31:124–130. doi: 10.1016/j.envsoft.2011.11.014. DOI
Lehner B, et al. High‐resolution mapping of the world’s reservoirs and dams for sustainable river‐flow management. Front. Ecol. Environ. 2011;9:494–502. doi: 10.1890/100125. DOI
Abatzoglou JT, Dobrowski SZ, Parks SA, Hegewisch KC. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data. 2018;5:170191. doi: 10.1038/sdata.2017.191. PubMed DOI PMC
Bürkner, P.-C. brms: an R package for Bayesian multilevel models using stan. R package version 2.16.3 (2021).
Land Cover CCI Product User Guide Version 2, https://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (European Space Agency, 2017).
Ziebarth NL, Abbott KC, Ives AR. Weak population regulation in ecological time series. Ecol. Lett. 2010;13:21–31. doi: 10.1111/j.1461-0248.2009.01393.x. PubMed DOI
White ER. Minimum time required to detect population trends: the need for long-term monitoring programs. Bioscience. 2019;69:40–46. doi: 10.1093/biosci/biy144. DOI
Cusser S, Helms J, Bahlia CA, Haddad NM. How long do population level field experiments need to be? Utilising data from the 40-year-old LTER network. Ecol. Lett. 2021;24:1103–1111. doi: 10.1111/ele.13710. PubMed DOI
Arel-Bundock, V., Diniz, M. A., Greifer, N. & Bacher, E. marginaleffects: predictions, comparisons, slopes, marginal means, and hypothesis tests. R package version 4.2.1 (2023).
Kéry, M. & Schaub, M. Bayesian Population Analysis using WinBUGS: a Hierarchical Perspective (Elsevier, 2012).
Vehtari, A. et al. loo: efficient leave-one-out cross-validation and WAIC for Bayesian models. R package version 2.4.1 (2020).
Analysing factors underlying the reporting of established non-native species