• This record comes from PubMed

The recovery of European freshwater biodiversity has come to a halt

. 2023 Aug ; 620 (7974) : 582-588. [epub] 20230809

Language English Country Great Britain, England Media print-electronic

Document type Journal Article

Links

PubMed 37558875
PubMed Central PMC10432276
DOI 10.1038/s41586-023-06400-1
PII: 10.1038/s41586-023-06400-1
Knihovny.cz E-resources

Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.

Agencia Vasca del Agua Vitoria Gasteiz Spain

APEM Stockport UK

ARALEP Ecologie des Eaux Douces Villeurbanne France

Brain Capital Alliance San Francisco CA USA

Centre for Freshwater and Environmental Studies Dundalk Institute of Technology Dundalk Ireland

Chair of Hydrobiology and Fishery Centre for Limnology Estonian University of Life Sciences Elva vald Estonia

Conservation Ecology Center Smithsonian National Zoo and Conservation Biology Institute Front Royal VA USA

Departamento de Medio Ambiente y Obras Hidráulicas Diputación Foral de Gipuzkoa Donostia San Sebastián Spain

Department of Animal Sciences and Aquatic Ecology Ghent University Ghent Belgium

Department of Aquatic Ecology Eawag Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland

Department of Aquatic Ecosystems Institute of Biodiversity and Ecosystem Research Bulgarian Academy of Sciences Sofia Bulgaria

Department of Aquatic Sciences and Assessment Swedish University of Agricultural Sciences Uppsala Sweden

Department of Biological Sciences University of Bergen Bergen Norway

Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic

Department of Community and Ecosystem Ecology Leibniz Institute of Freshwater Ecology and Inland Fisheries Berlin Germany

Department of Earth and Environmental Sciences DISAT University of Milano Bicocca Milan Italy

Department of Ecology and Genetics University of Oulu Oulu Finland

Department of Ecology and Hydrology University of Murcia Murcia Spain

Department of Ecoscience Aarhus University Aarhus Denmark

Department of Ecosystem Services German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany

Department of Ecosystem Services Helmholtz Center for Environmental Research UFZ Leipzig Germany

Department of Environmental Planning Environmental Technology University of Applied Sciences Trier Birkenfeld Germany

Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland

Department of Forest Ecology and Management Swedish University of Agricultural Sciences Umeå Sweden

Department of Geography Ecology and Environment Protection Faculty of Mathematics and Natural Sciences South West University 'Neofit Rilski' Blagoevgrad Bulgaria

Department of Hydrobiology University of Pécs Pécs Hungary

Department of Hydrology and Water Resources Management Christian Albrechts University Kiel Institute for Natural Resource Conservation Kiel Germany

Department of Life Sciences University of Coimbra Marine and Environmental Sciences Centre ARNET Coimbra Portugal

Department of Plant Biology and Ecology University of the Basque Country Leioa Spain

Department of River Ecology and Conservation Senckenberg Research Institute and Natural History Museum Frankfurt Gelnhausen Germany

Department of Tisza River Research Centre for Ecological Research Institute of Aquatic Ecology Debrecen Hungary

Department of Water Atmosphere and Environment Institute of Hydrobiology and Aquatic Ecosystem Management University of Natural Resources and Life Sciences Vienna Austria

Ekolur Asesoría Ambiental SLL Oiartzun Spain

Environment Agency Wallingford UK

Environmental Research and Innovation Department Luxembourg Institute of Science and Technology Esch sur Alzette Luxembourg

Faculty of Biology University of Duisburg Essen Essen Germany

FEHM Lab Institute of Environmental Assessment and Water Research CSIC Barcelona Spain

FEHM Lab University of Barcelona Barcelona Spain

Fisheries Ecosystems Advisory Services Marine Institute Newport Ireland

Flanders Environment Agency Aalst Belgium

Freshwater Biological Section University of Copenhagen Copenhagen Denmark

Geography Department Humboldt Universität zu Berlin Berlin Germany

Geography Research Unit University of Oulu Oulu Finland

IHCantabria Instituto de Hidráulica Ambiental de la Universidad de Cantabria Santander Spain

IMPACT The Institute for Mental and Physical Health and Clinical Translation Deakin University Geelong Victoria Australia

INRAE UMR RECOVER Aix Marseille Univ Centre d'Aix en Provence Aix en Provence France

INRAE UR RiverLy Centre de Lyon Villeurbanne Villeurbanne France

Institute for Alpine Environment Eurac Research Bolzano Italy

Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam The Netherlands

Institute for Environmental Science RPTU Kaiserslautern Landau Landau Germany

Institute for Green Science Carnegie Mellon University Pittsburgh PA USA

Institute of Biodiversity Friedrich Schiller University Jena Jena Germany

Institute of Biology University of Latvia Riga Latvia

Laboratoire National d'Hydraulique et Environnement EDF Recherche et Développement Chatou France

Laboratory of Evolutionary Ecology of Hydrobionts Nature Research Centre Vilnius Lithuania

LFI The Laboratory for Freshwater Ecology and Inland Fisheries NORCE Norwegian Research Centre Bergen Norway

Norwegian Institute for Nature Research Oslo Norway

Norwegian Institute for Water Research Oslo Norway

Oulanka Research Station University of Oulu Infrastructure Platform Kuusamo Finland

School of Biological and Behavioural Sciences Queen Mary University of London London UK

School of Geography University of Leeds Leeds UK

School of Natural Resources University of Nebraska Lincoln Lincoln NE USA

School of Science and Technology Nottingham Trent University Nottingham UK

School of the Environment Yale University New Haven CT USA

T G Masaryk Water Research Institute Brno Czech Republic

UK Centre for Ecology and Hydrology Lancaster Environment Centre Lancaster UK

Univ Lyon Université Claude Bernard Lyon 1 CNRS ENTPE UMR 5023 LEHNA Villeurbanne France

Wageningen Environmental Research Wageningen University and Research Wageningen The Netherlands

Water Development Department Ministry of Agriculture Rural Development and Environment Nicosia Cyprus

Wessex Water Bath UK

See more in PubMed

Dudgeon D, et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 2006;81:163–182. doi: 10.1017/S1464793105006950. PubMed DOI

Vaughan IP, Ormerod SJ. Large-scale, long-term trends in British river macroinvertebrates. Glob. Change Biol. 2012;18:2184–2194. doi: 10.1111/j.1365-2486.2012.02662.x. DOI

Steffen W, Broadgate W, Deutsch L, Gaffney O, Ludwig C. The trajectory of the Anthropocene: the great acceleration. Anthr. Rev. 2015;2:81–98.

Windsor FM, Tilley RM, Tyler CR, Ormerod SJ. Microplastic ingestion by riverine macroinvertebrates. Sci. Total Environ. 2019;646:68–74. doi: 10.1016/j.scitotenv.2018.07.271. PubMed DOI

Reid AJ, et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019;94:849–873. doi: 10.1111/brv.12480. PubMed DOI

Mantyka-Pringle CS, Martin TG, Moffatt DB, Linke S, Rhodes JR. Understanding and predicting the combined effects of climate change and land-use change on freshwater macroinvertebrates and fish. J. Appl. Ecol. 2014;51:572–581. doi: 10.1111/1365-2664.12236. DOI

Seebens H, et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 2017;8:14435. doi: 10.1038/ncomms14435. PubMed DOI PMC

European Environment Agency (EEA). European Waters: Assessment of Status and Pressures 2018 EEA report 7/2018, https://www.eea.europa.eu/publications/state-of-water (2018).

Vaughan IP, Gotelli NJ. Water quality improvements offset the climatic debt for stream macroinvertebrates over twenty years. Nat. Commun. 2019;10:1956. doi: 10.1038/s41467-019-09736-3. PubMed DOI PMC

Schwarzbach SE, Albertson JD, Thomas CM. Effects of predation, flooding, and contamination on reproductive success of California clapper rails (Rallus longirostris obsoletus) in San Francisco Bay. Auk. 2006;123:45–60. doi: 10.1093/auk/123.1.45. DOI

Birk S, et al. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat. Ecol. Evol. 2020;4:1060–1068. doi: 10.1038/s41559-020-1216-4. PubMed DOI

Vaughn CC, Hakenkamp CC. The functional role of burrowing bivalves in freshwater ecosystems. Freshw. Biol. 2001;46:1431–1446. doi: 10.1046/j.1365-2427.2001.00771.x. DOI

Vanni MJ. Nutrient cycling by animals in freshwater ecosystems. Annu. Rev. Ecol. Evol. Syst. 2002;33:341–370. doi: 10.1146/annurev.ecolsys.33.010802.150519. DOI

Tilman, D. In Encyclopaedia of Biodiversity (ed. Levin, S. A.) 109–120 (Academic, 2001).

Santini L, et al. Assessing the suitability of diversity metrics to detect biodiversity change. Biol. Conserv. 2017;213:341–350. doi: 10.1016/j.biocon.2016.08.024. DOI

Tumolo BB, et al. Toward spatio‐temporal delineation of positive interactions in ecology. Ecol. Evol. 2020;10:9026–9036. doi: 10.1002/ece3.6616. PubMed DOI PMC

Blowes SA, et al. The geography of biodiversity change in marine and terrestrial assemblages. Science. 2019;366:339–345. doi: 10.1126/science.aaw1620. PubMed DOI

van Klink R, et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science. 2020;368:417–420. doi: 10.1126/science.aax9931. PubMed DOI

Pilotto F, et al. Meta-analysis of multidecadal biodiversity trends in Europe. Nat. Commun. 2020;11:3486. doi: 10.1038/s41467-020-17171-y. PubMed DOI PMC

Bouraoui F, Grizzetti B. Long term change of nutrient concentrations of rivers discharging in European seas. Sci. Total Environ. 2011;409:4899–4916. doi: 10.1016/j.scitotenv.2011.08.015. PubMed DOI

Haase P, et al. Moderate warming over the past 25 years has already reorganized stream invertebrate communities. Sci. Total Environ. 2019;658:1531–1538. doi: 10.1016/j.scitotenv.2018.12.234. PubMed DOI

Baker NJ, Pilotto F, Jourdan J, Beudert B, Haase P. Recovery from air pollution and subsequent acidification masks the effects of climate change on a freshwater macroinvertebrate community. Sci. Total Environ. 2021;758:143685. doi: 10.1016/j.scitotenv.2020.143685. PubMed DOI

Eriksen TE, et al. A global perspective on the application of riverine macroinvertebrates as biological indicators in Africa, South-Central America, Mexico and Southern Asia. Ecol. Indic. 2021;126:107609. doi: 10.1016/j.ecolind.2021.107609. DOI

Dornelas M, et al. BioTIME: a database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 2018;27:760–786. doi: 10.1111/geb.12729. PubMed DOI PMC

Clark TJ, Luis AD. Nonlinear population dynamics are ubiquitous in animals. Nat. Ecol. Evol. 2020;4:75–81. doi: 10.1038/s41559-019-1052-6. PubMed DOI

McGill B, Enquist B, Weiher E, Westoby M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 2006;21:178–185. doi: 10.1016/j.tree.2006.02.002. PubMed DOI

McGill BJ, Dornelas M, Gotelli NJ, Magurran AE. Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol. Evol. 2015;30:104–113. doi: 10.1016/j.tree.2014.11.006. PubMed DOI

Jarzyna MA, Jetz W. A near half‐century of temporal change in different facets of avian diversity. Glob. Change Biol. 2017;23:2999–3011. doi: 10.1111/gcb.13571. PubMed DOI

Deutsch CA, et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA. 2008;105:6668–6672. doi: 10.1073/pnas.0709472105. PubMed DOI PMC

Isaak DJ, et al. Slow climate velocities of mountain streams portend their role as refugia for cold-water biodiversity. Proc. Natl Acad. Sci. USA. 2016;113:4374–4379. doi: 10.1073/pnas.1522429113. PubMed DOI PMC

Zarfl C, Lumsdon AE, Berlekamp J, Tydecks L, Tockner K. A global boom in hydropower dam construction. Aquat. Sci. 2015;77:161–170. doi: 10.1007/s00027-014-0377-0. DOI

Cid N, et al. From meta‐system theory to the sustainable management of rivers in the Anthropocene. Front. Ecol. Environ. 2022;20:49–57. doi: 10.1002/fee.2417. PubMed DOI PMC

Wang J, et al. What explains the variation in dam impacts on riverine macroinvertebrates? A global quantitative synthesis. Environ. Res. Lett. 2020;15:124028. doi: 10.1088/1748-9326/abc4fc. DOI

Rosset V, et al. Is eutrophication really a major impairment for small waterbody biodiversity? J. Appl. Ecol. 2014;51:415–425. doi: 10.1111/1365-2664.12201. DOI

Bruno D, et al. Structural and functional responses of invertebrate communities to climate change and flow regulation in alpine catchments. Glob. Change Biol. 2019;25:1612–1628. doi: 10.1111/gcb.14581. PubMed DOI PMC

Gebauer R, et al. Distribution of alien animal species richness in the Czech Republic. Ecol. Evol. 2018;8:4455–4464. doi: 10.1002/ece3.4008. PubMed DOI PMC

Whelan MJ, et al. Is water quality in British rivers “better than at any time since the end of the Industrial Revolution”? Sci. Total Environ. 2022;843:157014. doi: 10.1016/j.scitotenv.2022.157014. PubMed DOI

Belletti B, et al. More than one million barriers fragment Europe’s rivers. Nature. 2020;588:436–441. doi: 10.1038/s41586-020-3005-2. PubMed DOI

Durance I, Ormerod SJ. Trends in water quality and discharge confound long-term warming effects on river macroinvertebrates. Freshw. Biol. 2009;54:388–405. doi: 10.1111/j.1365-2427.2008.02112.x. DOI

Wood PJ, Armitage PD. Biological effects of fine sediment in the lotic environment. Environ. Manage. 1997;21:203–217. doi: 10.1007/s002679900019. PubMed DOI

Lemm JU, et al. Multiple stressors determine river ecological status at the European scale: towards an integrated understanding of river status deterioration. Glob. Change Biol. 2021;27:1962–1975. doi: 10.1111/gcb.15504. PubMed DOI

Thorslund J, Bierkens MFP, Oude Essink GHP, Sutanudjaja EH, van Vliet MTH. Common irrigation drivers of freshwater salinisation in river basins worldwide. Nat. Commun. 2021;12:4232. doi: 10.1038/s41467-021-24281-8. PubMed DOI PMC

Verdonschot RCM, Kail J, McKie BG, Verdonschot PFM. The role of benthic microhabitats in determining the effects of hydromorphological river restoration on macroinvertebrates. Hydrobiologia. 2016;769:55–66. doi: 10.1007/s10750-015-2575-8. DOI

Romero GQ, et al. Pervasive decline of subtropical aquatic insects over 20 years driven by water transparency, non-native fish and stoichiometric imbalance. Biol. Lett. 2021;17:20210137. doi: 10.1098/rsbl.2021.0137. PubMed DOI PMC

Feio MJ, Dolédec S, Graça MAS. Human disturbance affects the long-term spatial synchrony of freshwater invertebrate communities. Environ. Pollut. 2015;196:300–308. doi: 10.1016/j.envpol.2014.09.026. PubMed DOI

Malaj E, et al. Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. Proc. Natl Acad. Sci. USA. 2014;111:9549–9554. doi: 10.1073/pnas.1321082111. PubMed DOI PMC

Jourdan J, et al. Reintroduction of freshwater macroinvertebrates: challenges and opportunities. Biol. Rev. 2019;94:368–387. doi: 10.1111/brv.12458. PubMed DOI

Bhide SV, et al. Addressing the contribution of indirect potable reuse to inland freshwater salinization. Nat. Sustain. 2021;4:699–707. doi: 10.1038/s41893-021-00713-7. DOI

Maasri A, et al. A global agenda for advancing freshwater biodiversity research. Ecol. Lett. 2022;25:255–263. doi: 10.1111/ele.13931. PubMed DOI

Haase P, et al. The next generation of site-based long-term ecological monitoring: Linking essential biodiversity variables and ecosystem integrity. Sci. Total Environ. 2018;613–614:1376–1384. doi: 10.1016/j.scitotenv.2017.08.111. PubMed DOI

Heino J, et al. Abruptly and irreversibly changing Arctic freshwaters urgently require standardized monitoring. J. Appl. Ecol. 2020;57:1192–1198. doi: 10.1111/1365-2664.13645. DOI

Didham RK, et al. Interpreting insect declines: seven challenges and a way forward. Insect Conserv. Divers. 2020;13:103–114. doi: 10.1111/icad.12408. DOI

Outhwaite CL, Gregory RD, Chandler RE, Collen B, Isaac NJB. Complex long-term biodiversity change among invertebrates, bryophytes and lichens. Nat. Ecol. Evol. 2020;4:384–392. doi: 10.1038/s41559-020-1111-z. PubMed DOI

Pandolfi JM, Staples TL, Kiessling W. Increased extinction in the emergence of novel ecological communities. Science. 2020;370:220–222. doi: 10.1126/science.abb3996. PubMed DOI

Arneth A, et al. Post-2020 biodiversity targets need to embrace climate change. Proc. Natl Acad. Sci. USA. 2020;117:30882–30891. doi: 10.1073/pnas.2009584117. PubMed DOI PMC

Chapman, D. Water Quality Assessments: A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring 2nd edn (Taylor & Francis, 1996).

Hallett, L. et al. codyn: community dynamics metrics. R package version 2.0.5 (2020).

Oksanen, A. J. et al. vegan: community ecology package. R package version 2.5-7 (2020).

Schmidt-Kloiber A, Hering D. www.freshwaterecology.info—an online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecol. Indic. 2015;53:271–282. doi: 10.1016/j.ecolind.2015.02.007. DOI

Sarremejane R, et al. DISPERSE, a trait database to assess the dispersal potential of European aquatic macroinvertebrates. Sci. Data. 2020;7:386. doi: 10.1038/s41597-020-00732-7. PubMed DOI PMC

Schmera D, Heino J, Podani J, Erős T, Dolédec S. Functional diversity: a review of methodology and current knowledge in freshwater macroinvertebrate research. Hydrobiologia. 2017;787:27–44. doi: 10.1007/s10750-016-2974-5. DOI

Schmera D, Heino J, Podani J. Characterising functional strategies and trait space of freshwater macroinvertebrates. Sci. Rep. 2022;12:12283. doi: 10.1038/s41598-022-16472-0. PubMed DOI PMC

Tachet, H., Richoux, P., Bournaud, M. & Usseglio‐Polatera, P. Invertébrés d’Eau Douce: Systématique, Biologie, Écologie (CNRS Editions, 2010).

Chevenet F, Dolédec S, Chessel D. A fuzzy coding approach for the analysis of long-term ecological data. Freshw. Biol. 1994;31:295–309. doi: 10.1111/j.1365-2427.1994.tb01742.x. DOI

Kunz S, et al. Tackling inconsistencies among freshwater invertebrate trait databases: harmonising across continents and aggregating taxonomic resolution. Freshw. Biol. 2022;67:275–291. doi: 10.1111/fwb.13840. DOI

Laliberté, E., Legendre, P. & Shipley, B. FD: measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. R package version 1.0-12 (2014). PubMed

Mouillot D, et al. The dimensionality and structure of species trait spaces. Ecol. Lett. 2021;24:1988–2009. doi: 10.1111/ele.13778. PubMed DOI

Baker NJ, Pilotto F, Haubrock PJ, Beudert B, Haase P. Multidecadal changes in functional diversity lag behind the recovery of taxonomic diversity. Ecol. Evol. 2021;11:17471–17484. doi: 10.1002/ece3.8381. PubMed DOI PMC

Pavoine, S. adiv: an R package to analyse biodiversity in ecology. R package version 2.0.1 (2020).

Ricotta C, et al. Measuring the functional redundancy of biological communities: a quantitative guide. Methods Ecol. Evol. 2016;7:1386–1395. doi: 10.1111/2041-210X.12604. DOI

Roy D. et al. Inventory of alien invasive species in Europe (DAISIE). Figshare10.15468/ybwd3x (2020).

Seebans, H. Alien species first records database (GAFRD). Figshare10.5281/zenodo.4632335 (2021).

Seebens H, et al. Global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl Acad. Sci. USA. 2018;115:E2264–E2273. doi: 10.1073/pnas.1719429115. PubMed DOI PMC

GBIF: The Global Biodiversity Information Facility, https://www.gbif.org/ (GBIF, 2022, accessed January 2021).

Yamazaki D, et al. MERIT Hydro: a high‐resolution global hydrography map based on latest topography dataset. Water Resour. Res. 2019;55:5053–5073. doi: 10.1029/2019WR024873. DOI

Amatulli G, et al. Hydrography90m: a new high-resolution global hydrographic dataset. Earth Syst. Sci. Data. 2022;14:4525–4550. doi: 10.5194/essd-14-4525-2022. DOI

Neteler M, Bowman MH, Landa M, Metz M. GRASS GIS: a multi-purpose open source GIS. Environ. Model. Softw. 2012;31:124–130. doi: 10.1016/j.envsoft.2011.11.014. DOI

Lehner B, et al. High‐resolution mapping of the world’s reservoirs and dams for sustainable river‐flow management. Front. Ecol. Environ. 2011;9:494–502. doi: 10.1890/100125. DOI

Abatzoglou JT, Dobrowski SZ, Parks SA, Hegewisch KC. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data. 2018;5:170191. doi: 10.1038/sdata.2017.191. PubMed DOI PMC

Bürkner, P.-C. brms: an R package for Bayesian multilevel models using stan. R package version 2.16.3 (2021).

Land Cover CCI Product User Guide Version 2, https://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (European Space Agency, 2017).

Ziebarth NL, Abbott KC, Ives AR. Weak population regulation in ecological time series. Ecol. Lett. 2010;13:21–31. doi: 10.1111/j.1461-0248.2009.01393.x. PubMed DOI

White ER. Minimum time required to detect population trends: the need for long-term monitoring programs. Bioscience. 2019;69:40–46. doi: 10.1093/biosci/biy144. DOI

Cusser S, Helms J, Bahlia CA, Haddad NM. How long do population level field experiments need to be? Utilising data from the 40-year-old LTER network. Ecol. Lett. 2021;24:1103–1111. doi: 10.1111/ele.13710. PubMed DOI

Arel-Bundock, V., Diniz, M. A., Greifer, N. & Bacher, E. marginaleffects: predictions, comparisons, slopes, marginal means, and hypothesis tests. R package version 4.2.1 (2023).

Kéry, M. & Schaub, M. Bayesian Population Analysis using WinBUGS: a Hierarchical Perspective (Elsevier, 2012).

Vehtari, A. et al. loo: efficient leave-one-out cross-validation and WAIC for Bayesian models. R package version 2.4.1 (2020).

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...