Meta-analysis of multidecadal biodiversity trends in Europe
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, metaanalýza, práce podpořená grantem
PubMed
32661354
PubMed Central
PMC7359034
DOI
10.1038/s41467-020-17171-y
PII: 10.1038/s41467-020-17171-y
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- ekosystém * MeSH
- klimatické změny MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
Local biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15-91 years) collected across Europe, using a comprehensive dataset comprising ~6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe.
Białowieża Geobotanical Station Faculty of Biology University of Warsaw Białowieża Poland
Biological Laboratory Agency for Environment and Climate Protection Bolzano Italy
CEBC UMR7372 CNRS and La Rochelle University 79360 Villiers en bois France
Centre for Environmental Sciences Hasselt University Hasselt Belgium
Centre For Functional Ecology Department of Life Sciences University of Coimbra Coimbra Portugal
Czech Academy of Sciences Biology Centre Institute of Entomology Ceske Budejovice Czech Republic
Department of Animal Ecology Netherlands Institute of Ecology Wageningen The Netherlands
Department of Community Ecology Helmholtz Centre for Environmental Research UFZ Halle Germany
Department of Ecology and Genetics University of Oulu Oulu Finland
Department of Natural Forests Forest Research Institute Białowieża Poland
Dipartimento di Architettura Design e Urbanistica Università degli Studi di Sassari Sassari Italy
Ecological Sciences James Hutton Institute Craigiebuckler Aberdeen UK
Finnish Environment Institute Biodiversity Centre Helsinki Finland
Flanders Marine Institute Ostend Belgium
Flanders Research Institute for Agriculture Fishery and Food Oostende Belgium
Forest Services Autonomous Province of Bolzano South Tyrol Bolzano Italy
Geosciences and Natural Resource Management University of Copenhagen Copenhagen Denmark
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Institute of Biodiversity and Ecosystem Research Bulgarian Academy of Sciences Sofia Bulgaria
Institute of Biology University of Latvia Salaspils Latvia
Institute of Landscape Ecology SAS Branch Nitra Slovakia
Institute of Landscape Ecology SAS Bratislava Slovakia
Institute of Marine Sciences National Research Council Venice Italy
Instituto Pirenaico de Ecología Jaca Spain
Kainuu Centre for Economic Development Transport and the Environment Kajaani Finland
LTSER Zone Atelier Armorique 35042 Rennes France
LTSER Zone Atelier Plaine and Val de Sèvre 79360 Beauvoir sur Niort France
Martin Luther University Halle Wittenberg Geobotany and Botanical Garden Halle Germany
MTA Centre for Ecological Research Institute of Ecology and Botany Vácrátót Hungary
Northwest German Forest Research Institute Göttingen Germany
Norwegian Institute for Nature Research NINA Oslo Norway
Norwegian Institute for Water Research Oslo Norway
Oulanka Research Station University of Oulu Infrastructure Platform Kuusamo Finland
Ramat Hanadiv Zikhron Ya'akov Israel
Research Institute for Nature and Forest Brussels Belgium
Rothamsted Research North Wyke Okehampton Devon UK
Royal Netherlands Institute for Sea Research and Utrecht University Yerseke The Netherlands
Senckenberg am Meer Marine Research Department Wilhelmshaven Germany
Senckenberg Research Institute and Natural History Museum Frankfurt Gelnhausen Germany
Sovon Dutch Centre for Field Ornithology Nijmegen The Netherlands
Swedish Meteorological and Hydrological Institute Gothenburg Sweden
Swiss Federal Institute for Forest Snow and Landscape Research WSL Birmensdorf Switzerland
UK Centre for Ecology and Hydrology Bush Estate Penicuik Midlothian UK
UK Centre for Ecology and Hydrology Lancaster Environment Centre Lancaster UK
UK Centre for Ecology and Hydrology Wallingford UK
UMR 0980 BAGAP INRAE Institut Agro ESA Rennes France
University of Applied Sciences Trier Environmental Campus Birkenfeld Birkenfeld Germany
Zobrazit více v PubMed
WWF. Living Planet Report 2016. Risk and Resilience in a New Era. (Gland, Switzerland: WWW International, 2016).
Johnson CN, et al. Biodiversity losses and conservation responses in the Anthropocene. Science. 2017;356:270–275. PubMed
Dirzo R, et al. Defaunation in the Anthropocene. Science. 2014;345:401–406. PubMed
IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (IPBES secretariat, 2019).
Sax DF, Gaines SD. Species diversity: from global decreases to local increases. Trends Ecol. Evol. 2003;18:561–566.
Dornelas M, et al. Assemblage time series reveal biodiversity change but not systematic loss. Science. 2014;344:296–299. PubMed
Conrad KF, Warren MS, Fox R, Parsons MS, Woiwod IP. Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol. Conserv. 2006;132:279–291.
Goulson D, Lye GC, Darvill B. Decline and conservation of bumble bees. Annu. Rev. Entomol. 2008;53:191–208. PubMed
Thomas JA. Butterfly communities under threat. Science. 2016;353:216–218. PubMed
Hallmann CA, et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE. 2017;12:e0185809. PubMed PMC
Chamberlain DE, Fuller RJ. Local extinctions and changes in species richness of lowland farmland birds in England and Wales in relation to recent changes in agricultural land-use. Agric. Ecosyst. Environ. 2000;78:1–17.
Inger R, et al. Common European birds are declining rapidly while less abundant species’ numbers are rising. Ecol. Lett. 2015;18:28–36. PubMed
Rosenberg KV, et al. Decline of the North American avifauna. Science. 2019;366:120–124. PubMed
Haase P, et al. Moderate warming over the past 25 years has already reorganized stream invertebrate communities. Sci. Total Environ. 2019;658:1531–1538. PubMed
Baranov, V., Jourdan, J., Pilotto, F., Wagner, R. & Haase, P. Complex and nonlinear climate-driven changes in freshwater insect communities over 42 years. Conserv. Biol. 10.1111/cobi.13477 (2020). PubMed
Martinho F, et al. Does the flatfish community of the Mondego estuary (Portugal) reflect environmental changes? J. Appl. Ichthyol. 2010;26:843–852.
Knapp S, Kühn I, Stolle J, Klotz S. Changes in the functional composition of a Central European urban flora over three centuries. Perspect. Plant Ecol. Evol. Syst. 2010;12:235–244.
Förster A, Becker T, Gerlach A, Meesenburg H, Leuschner C. Long-term change in understorey plant communities of conventionally managed temperate deciduous forests: effects of nitrogen deposition and forest management. J. Veg. Sci. 2017;28:747–761.
Steinbauer MJ, et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature. 2018;556:231–234. PubMed
Vellend M, et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA. 2013;110:19456–19459. PubMed PMC
Primack RB, et al. Biodiversity gains? The debate on changes in local- vs global-scale species richness. Biol. Conserv. 2018;219:A1–A3.
Blowes SA, et al. The geography of biodiversity change in marine and terrestrial assemblages. Science. 2019;366:339–345. PubMed
Bowler DE, et al. Cross-realm assessment of climate change impacts on species’ abundance trends. Nat. Ecol. Evol. 2017;1:s41559–016. PubMed
Gibson-Reinemer DK, Sheldon KS, Rahel FJ. Climate change creates rapid species turnover in montane communities. Ecol. Evol. 2015;5:2340–2347. PubMed PMC
Domisch S, et al. Modelling distribution in European stream macroinvertebrates under future climates. Glob. Change Biol. 2013;19:752–762. PubMed
Mirtl M, et al. Genesis, goals and achievements of Long-Term Ecological Research at the global scale: a critical review of ILTER and future directions. Sci. Total Environ. 2018;626:1439–1462. PubMed
Parmesan C, et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature. 1999;399:579–583.
Walther G-R, et al. Ecological responses to recent climate change. Nature. 2002;416:389–395. PubMed
Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003;421:37–42. doi: 10.1038/nature01286. PubMed DOI
Pöyry J, Luoto M, Heikkinen RK, Kuussaari M, Saarinen K. Species traits explain recent range shifts of Finnish butterflies. Glob. Change Biol. 2009;15:732–743.
Seibold S, et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature. 2019;574:671–674. PubMed
Sánchez-Bayo F, Wyckhuys KAG. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 2019;232:8–27.
Simmons BI, et al. Worldwide insect declines: an important message, but interpret with caution. Ecol. Evol. 2019;9:3678–3680. PubMed PMC
Valtonen A, et al. Long‐term species loss and homogenization of moth communities in Central Europe. J. Anim. Ecol. 2017;86:730–738. PubMed
Thomas CD. Local diversity stays about the same, regional diversity increases, and global diversity declines. Proc. Natl Acad. Sci. USA. 2013;110:19187–19188. PubMed PMC
Larsen S, Chase JM, Durance I, Ormerod SJ. Lifting the veil: richness measurements fail to detect systematic biodiversity change over three decades. Ecology. 2018;99:1316–1326. PubMed
Olden JD, Poff NL. Toward a mechanistic understanding and prediction of biotic homogenization. Am. Nat. 2003;162:442–460. PubMed
Winter M, et al. Plant extinctions and introductions lead to phylogenetic and taxonomic homogenization of the European flora. Proc. Natl Acad. Sci. USA. 2009;106:21721–21725. PubMed PMC
Hillebrand H, et al. Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. J. Appl. Ecol. 2018;55:169–184.
Antão LH, Pöyry J, Leinonen R, Roslin T. Contrasting latitudinal patterns in diversity and stability in a high-latitude species-rich moth community. Glob. Ecol. Biogeogr. 2020;29:896–907.
Hastings A, et al. Transient phenomena in ecology. Science. 2018;361:eaat6412. PubMed
Gaüzère, P., Iversen, L. L., Barnagaud, J.-Y., Svenning, J.-C. & Blonder, B. Empirical predictability of community responses to climate change. Front. Ecol. Evol. 6, 186 (2018).
Essl F, et al. Socioeconomic legacy yields an invasion debt. Proc. Natl Acad. Sci. USA. 2011;108:203–207. PubMed PMC
Monteith DT, et al. Biological responses to the chemical recovery of acidified fresh waters in the UK. Environ. Pollut. 2005;137:83–101. PubMed
Rose R, et al. Evidence for increases in vegetation species richness across UK Environmental Change Network sites linked to changes in air pollution and weather patterns. Ecol. Indic. 2016;68:52–62.
Kuemmerle T, et al. Hotspots of land use change in Europe. Environ. Res. Lett. 2016;11:064020.
Didham RK, Tylianakis JM, Hutchison MA, Ewers RM, Gemmell NJ. Are invasive species the drivers of ecological change? Trends Ecol. Evol. 2005;20:470–474. PubMed
Martínez‐Abraín A, Jiménez J, Oro D. Pax Romana: ‘refuge abandonment’ and spread of fearless behavior in a reconciling world. Anim. Conserv. 2019;22:3–13.
Kröel-Dulay G, et al. Increased sensitivity to climate change in disturbed ecosystems. Nat. Commun. 2015;6:1–7. PubMed
Simmons BI, et al. Worldwide insect declines: an important message, but interpret with caution. Ecol. Evol. 2019;9:3678–3680. PubMed PMC
Cardinale BJ, Gonzalez A, Allington GRH, Loreau M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Conserv. 2018;219:175–183.
Gonzalez A, et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology. 2016;97:1949–1960. PubMed
Habel JC, et al. Butterfly community shifts over two centuries. Conserv. Biol. 2016;30:754–762. PubMed
Soga M, Gaston KJ. Shifting baseline syndrome: causes, consequences, and implications. Front. Ecol. Environ. 2018;16:222–230.
Silliman BR, et al. Are the ghosts of nature’s past haunting ecology today? Curr. Biol. 2018;28:R532–R537. PubMed
Battarbee RW, et al. Recovery of UK lakes from acidification: An assessment using combined palaeoecological and contemporary diatom assemblage data. Ecol. Indic. 2014;37:365–380.
Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science355, eaah4787 (2017). PubMed
Albrecht J, et al. Logging and forest edges reduce redundancy in plant-frugivore networks in an old-growth European forest. J. Ecol. 2013;101:990–999.
Kareiva, P., Marvier, M. & Silliman, B. Effective Conservation Science: Data Not Dogma. (Oxford University Press, 2017).
Haase P, et al. The next generation of site-based long-term ecological monitoring: Linking essential biodiversity variables and ecosystem integrity. Sci. Total Environ. 2018;613–614:1376–1384. PubMed
Heffernan JB, et al. Macrosystems ecology: understanding ecological patterns and processes at continental scales. Front. Ecol. Environ. 2014;12:5–14.
Harvey JA, et al. International scientists formulate a roadmap for insect conservation and recovery. Nat. Ecol. Evol. 2020;4:174–176. PubMed
Hallett, L. et al. codyn: Community Dynamics Metrics. R package version 2.0.0. (2018).
Haylock, M. R. et al. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. Atmospheres113, (2008).
Kendall, M. G. Rank correlation methods. (1948).
Mann HB. Nonparametric Tests Against Trend. Econometrica. 1945;13:245–259.
Venerables, W. N. & Ripley, B. D. Modern applied statistics with S. (new york: Springer, 2002).
Hamed KH, Rao AR. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998;204:182–196.
Daufresne M, Lengfellner K, Sommer U. Global warming benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci. USA. 2009;106:12788–12793. PubMed PMC
Viechtbauer W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 2010;36:1–48.
Everaert G, Deschutter Y, De Troch M, Janssen CR, De Schamphelaere K. Multimodel inference to quantify the relative importance of abiotic factors in the population dynamics of marine zooplankton. J. Mar. Syst. 2018;181:91–98.
Anderson DR, Burnham KP. Avoiding pitfalls when using information-theoretic methods. J. Wildl. Manag. 2002;66:912–918.
Calcagno, V. glmulti: Model selection and multimodel inference made easy. R package version 1.0.7. (2013).
EEA. Biogeographical regions and Marine regions and subregions under the Marine Strategy Framework Directive. https://www.eea.europa.eu/data-and-maps (2016).
The recovery of European freshwater biodiversity has come to a halt
Multidecadal changes in functional diversity lag behind the recovery of taxonomic diversity