Meta-analysis of multidecadal biodiversity trends in Europe

. 2020 Jul 13 ; 11 (1) : 3486. [epub] 20200713

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, metaanalýza, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32661354
Odkazy

PubMed 32661354
PubMed Central PMC7359034
DOI 10.1038/s41467-020-17171-y
PII: 10.1038/s41467-020-17171-y
Knihovny.cz E-zdroje

Local biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15-91 years) collected across Europe, using a comprehensive dataset comprising ~6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe.

Białowieża Geobotanical Station Faculty of Biology University of Warsaw Białowieża Poland

Biological Laboratory Agency for Environment and Climate Protection Bolzano Italy

Carabinieri Biodiversity and Park Protection Department Castel di Sangro Biodiversity Unit L'Aquila Italy

CEAB 17300 Blanes Spain

CEBC UMR7372 CNRS and La Rochelle University 79360 Villiers en bois France

Centre for Environmental Sciences Hasselt University Hasselt Belgium

Centre For Functional Ecology Department of Life Sciences University of Coimbra Coimbra Portugal

CIIMAR Interdisciplinary Centre of Marine and Environmental Research of the University of Porto Porto Portugal

Czech Academy of Sciences Biology Centre Institute of Entomology Ceske Budejovice Czech Republic

Department of Animal Ecology Netherlands Institute of Ecology Wageningen The Netherlands

Department of Aquatic Sciences and Assessment Swedish University of Agricultural Sciences Uppsala Sweden

Department of Community Ecology Helmholtz Centre for Environmental Research UFZ Halle Germany

Department of Ecology and Genetics University of Oulu Oulu Finland

Department of Ecosystem Research Leibniz Institute of Freshwater Ecology and Inland Fisheries and Department of Biology Chemistry and Pharmacy Freie Universität Berlin Berlin Germany

Department of Natural Forests Forest Research Institute Białowieża Poland

Dipartimento di Architettura Design e Urbanistica Università degli Studi di Sassari Sassari Italy

Dynafor INRAE University of Toulouse France and CESCO Muséum National d'Histoire Naturelle Sorbonne Univ Paris France and LTSER Zone Atelier Pyrénées Garonne Auzeville Tolosane France

Ecological Sciences James Hutton Institute Craigiebuckler Aberdeen UK

Environmental Archaeology Lab Department of Historical Philosophical and Religious Studies Umeå University Umeå Sweden

Finnish Environment Institute Biodiversity Centre Helsinki Finland

Flanders Marine Institute Ostend Belgium

Flanders Research Institute for Agriculture Fishery and Food Oostende Belgium

Forest Research Farnham UK

Forest Services Autonomous Province of Bolzano South Tyrol Bolzano Italy

Geosciences and Natural Resource Management University of Copenhagen Copenhagen Denmark

German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany

IMEDEA 07190 Esporles Spain

Institute for Atmospheric and Earth system Research Department of Forest Sciences University of Helsinki Helsinki Finland

Institute of Biodiversity and Ecosystem Research Bulgarian Academy of Sciences Sofia Bulgaria

Institute of Biology University of Latvia Salaspils Latvia

Institute of Landscape Ecology SAS Branch Nitra Slovakia

Institute of Landscape Ecology SAS Bratislava Slovakia

Institute of Marine Sciences National Research Council Venice Italy

Instituto Pirenaico de Ecología Jaca Spain

Kainuu Centre for Economic Development Transport and the Environment Kajaani Finland

LTSER Zone Atelier Armorique 35042 Rennes France

LTSER Zone Atelier Plaine and Val de Sèvre 79360 Beauvoir sur Niort France

Martin Luther University Halle Wittenberg Geobotany and Botanical Garden Halle Germany

MTA Centre for Ecological Research Institute of Ecology and Botany Vácrátót Hungary

Northwest German Forest Research Institute Göttingen Germany

Norwegian Institute for Nature Research NINA Oslo Norway

Norwegian Institute for Water Research Oslo Norway

Oulanka Research Station University of Oulu Infrastructure Platform Kuusamo Finland

Ramat Hanadiv Zikhron Ya'akov Israel

Research Institute for Nature and Forest Brussels Belgium

Rothamsted Research North Wyke Okehampton Devon UK

Royal Netherlands Institute for Sea Research and Utrecht University Yerseke The Netherlands

School of Biosciences and Veterinary Medicine unit Plant Diversity and Ecosystems Management University of Camerino Camerino Italy

Senckenberg am Meer Marine Research Department Wilhelmshaven Germany

Senckenberg Research Institute and Natural History Museum Frankfurt Gelnhausen Germany

Sovon Dutch Centre for Field Ornithology Nijmegen The Netherlands

Swedish Meteorological and Hydrological Institute Gothenburg Sweden

Swiss Federal Institute for Forest Snow and Landscape Research WSL Birmensdorf Switzerland

UK Centre for Ecology and Hydrology Bush Estate Penicuik Midlothian UK

UK Centre for Ecology and Hydrology Lancaster Environment Centre Lancaster UK

UK Centre for Ecology and Hydrology Wallingford UK

UMR 0980 BAGAP INRAE Institut Agro ESA Rennes France

University of Applied Sciences Trier Environmental Campus Birkenfeld Birkenfeld Germany

University of Duisburg Essen Essen Germany

University of South Bohemia Faculty of Science Department of Ecosystem Biology and Soil and Water Research Infrastructure Ceske Budejovice Czech Republic

ZRC SAZU Karst Research Institute Ljubljana and UNESCO Chair on Karst Education University of Nova Gorica Vipava Slovenia

Zobrazit více v PubMed

WWF. Living Planet Report 2016. Risk and Resilience in a New Era. (Gland, Switzerland: WWW International, 2016).

Johnson CN, et al. Biodiversity losses and conservation responses in the Anthropocene. Science. 2017;356:270–275. PubMed

Dirzo R, et al. Defaunation in the Anthropocene. Science. 2014;345:401–406. PubMed

IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (IPBES secretariat, 2019).

Sax DF, Gaines SD. Species diversity: from global decreases to local increases. Trends Ecol. Evol. 2003;18:561–566.

Dornelas M, et al. Assemblage time series reveal biodiversity change but not systematic loss. Science. 2014;344:296–299. PubMed

Conrad KF, Warren MS, Fox R, Parsons MS, Woiwod IP. Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol. Conserv. 2006;132:279–291.

Goulson D, Lye GC, Darvill B. Decline and conservation of bumble bees. Annu. Rev. Entomol. 2008;53:191–208. PubMed

Thomas JA. Butterfly communities under threat. Science. 2016;353:216–218. PubMed

Hallmann CA, et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE. 2017;12:e0185809. PubMed PMC

Chamberlain DE, Fuller RJ. Local extinctions and changes in species richness of lowland farmland birds in England and Wales in relation to recent changes in agricultural land-use. Agric. Ecosyst. Environ. 2000;78:1–17.

Inger R, et al. Common European birds are declining rapidly while less abundant species’ numbers are rising. Ecol. Lett. 2015;18:28–36. PubMed

Rosenberg KV, et al. Decline of the North American avifauna. Science. 2019;366:120–124. PubMed

Haase P, et al. Moderate warming over the past 25 years has already reorganized stream invertebrate communities. Sci. Total Environ. 2019;658:1531–1538. PubMed

Baranov, V., Jourdan, J., Pilotto, F., Wagner, R. & Haase, P. Complex and nonlinear climate-driven changes in freshwater insect communities over 42 years. Conserv. Biol. 10.1111/cobi.13477 (2020). PubMed

Martinho F, et al. Does the flatfish community of the Mondego estuary (Portugal) reflect environmental changes? J. Appl. Ichthyol. 2010;26:843–852.

Knapp S, Kühn I, Stolle J, Klotz S. Changes in the functional composition of a Central European urban flora over three centuries. Perspect. Plant Ecol. Evol. Syst. 2010;12:235–244.

Förster A, Becker T, Gerlach A, Meesenburg H, Leuschner C. Long-term change in understorey plant communities of conventionally managed temperate deciduous forests: effects of nitrogen deposition and forest management. J. Veg. Sci. 2017;28:747–761.

Steinbauer MJ, et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature. 2018;556:231–234. PubMed

Vellend M, et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA. 2013;110:19456–19459. PubMed PMC

Primack RB, et al. Biodiversity gains? The debate on changes in local- vs global-scale species richness. Biol. Conserv. 2018;219:A1–A3.

Blowes SA, et al. The geography of biodiversity change in marine and terrestrial assemblages. Science. 2019;366:339–345. PubMed

Bowler DE, et al. Cross-realm assessment of climate change impacts on species’ abundance trends. Nat. Ecol. Evol. 2017;1:s41559–016. PubMed

Gibson-Reinemer DK, Sheldon KS, Rahel FJ. Climate change creates rapid species turnover in montane communities. Ecol. Evol. 2015;5:2340–2347. PubMed PMC

Domisch S, et al. Modelling distribution in European stream macroinvertebrates under future climates. Glob. Change Biol. 2013;19:752–762. PubMed

Mirtl M, et al. Genesis, goals and achievements of Long-Term Ecological Research at the global scale: a critical review of ILTER and future directions. Sci. Total Environ. 2018;626:1439–1462. PubMed

Parmesan C, et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature. 1999;399:579–583.

Walther G-R, et al. Ecological responses to recent climate change. Nature. 2002;416:389–395. PubMed

Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003;421:37–42. doi: 10.1038/nature01286. PubMed DOI

Pöyry J, Luoto M, Heikkinen RK, Kuussaari M, Saarinen K. Species traits explain recent range shifts of Finnish butterflies. Glob. Change Biol. 2009;15:732–743.

Seibold S, et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature. 2019;574:671–674. PubMed

Sánchez-Bayo F, Wyckhuys KAG. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 2019;232:8–27.

Simmons BI, et al. Worldwide insect declines: an important message, but interpret with caution. Ecol. Evol. 2019;9:3678–3680. PubMed PMC

Valtonen A, et al. Long‐term species loss and homogenization of moth communities in Central Europe. J. Anim. Ecol. 2017;86:730–738. PubMed

Thomas CD. Local diversity stays about the same, regional diversity increases, and global diversity declines. Proc. Natl Acad. Sci. USA. 2013;110:19187–19188. PubMed PMC

Larsen S, Chase JM, Durance I, Ormerod SJ. Lifting the veil: richness measurements fail to detect systematic biodiversity change over three decades. Ecology. 2018;99:1316–1326. PubMed

Olden JD, Poff NL. Toward a mechanistic understanding and prediction of biotic homogenization. Am. Nat. 2003;162:442–460. PubMed

Winter M, et al. Plant extinctions and introductions lead to phylogenetic and taxonomic homogenization of the European flora. Proc. Natl Acad. Sci. USA. 2009;106:21721–21725. PubMed PMC

Hillebrand H, et al. Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. J. Appl. Ecol. 2018;55:169–184.

Antão LH, Pöyry J, Leinonen R, Roslin T. Contrasting latitudinal patterns in diversity and stability in a high-latitude species-rich moth community. Glob. Ecol. Biogeogr. 2020;29:896–907.

Hastings A, et al. Transient phenomena in ecology. Science. 2018;361:eaat6412. PubMed

Gaüzère, P., Iversen, L. L., Barnagaud, J.-Y., Svenning, J.-C. & Blonder, B. Empirical predictability of community responses to climate change. Front. Ecol. Evol. 6, 186 (2018).

Essl F, et al. Socioeconomic legacy yields an invasion debt. Proc. Natl Acad. Sci. USA. 2011;108:203–207. PubMed PMC

Monteith DT, et al. Biological responses to the chemical recovery of acidified fresh waters in the UK. Environ. Pollut. 2005;137:83–101. PubMed

Rose R, et al. Evidence for increases in vegetation species richness across UK Environmental Change Network sites linked to changes in air pollution and weather patterns. Ecol. Indic. 2016;68:52–62.

Kuemmerle T, et al. Hotspots of land use change in Europe. Environ. Res. Lett. 2016;11:064020.

Didham RK, Tylianakis JM, Hutchison MA, Ewers RM, Gemmell NJ. Are invasive species the drivers of ecological change? Trends Ecol. Evol. 2005;20:470–474. PubMed

Martínez‐Abraín A, Jiménez J, Oro D. Pax Romana: ‘refuge abandonment’ and spread of fearless behavior in a reconciling world. Anim. Conserv. 2019;22:3–13.

Kröel-Dulay G, et al. Increased sensitivity to climate change in disturbed ecosystems. Nat. Commun. 2015;6:1–7. PubMed

Simmons BI, et al. Worldwide insect declines: an important message, but interpret with caution. Ecol. Evol. 2019;9:3678–3680. PubMed PMC

Cardinale BJ, Gonzalez A, Allington GRH, Loreau M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Conserv. 2018;219:175–183.

Gonzalez A, et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology. 2016;97:1949–1960. PubMed

Habel JC, et al. Butterfly community shifts over two centuries. Conserv. Biol. 2016;30:754–762. PubMed

Soga M, Gaston KJ. Shifting baseline syndrome: causes, consequences, and implications. Front. Ecol. Environ. 2018;16:222–230.

Silliman BR, et al. Are the ghosts of nature’s past haunting ecology today? Curr. Biol. 2018;28:R532–R537. PubMed

Battarbee RW, et al. Recovery of UK lakes from acidification: An assessment using combined palaeoecological and contemporary diatom assemblage data. Ecol. Indic. 2014;37:365–380.

Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science355, eaah4787 (2017). PubMed

Albrecht J, et al. Logging and forest edges reduce redundancy in plant-frugivore networks in an old-growth European forest. J. Ecol. 2013;101:990–999.

Kareiva, P., Marvier, M. & Silliman, B. Effective Conservation Science: Data Not Dogma. (Oxford University Press, 2017).

Haase P, et al. The next generation of site-based long-term ecological monitoring: Linking essential biodiversity variables and ecosystem integrity. Sci. Total Environ. 2018;613–614:1376–1384. PubMed

Heffernan JB, et al. Macrosystems ecology: understanding ecological patterns and processes at continental scales. Front. Ecol. Environ. 2014;12:5–14.

Harvey JA, et al. International scientists formulate a roadmap for insect conservation and recovery. Nat. Ecol. Evol. 2020;4:174–176. PubMed

Hallett, L. et al. codyn: Community Dynamics Metrics. R package version 2.0.0. (2018).

Haylock, M. R. et al. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. Atmospheres113, (2008).

Kendall, M. G. Rank correlation methods. (1948).

Mann HB. Nonparametric Tests Against Trend. Econometrica. 1945;13:245–259.

Venerables, W. N. & Ripley, B. D. Modern applied statistics with S. (new york: Springer, 2002).

Hamed KH, Rao AR. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998;204:182–196.

Daufresne M, Lengfellner K, Sommer U. Global warming benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci. USA. 2009;106:12788–12793. PubMed PMC

Viechtbauer W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 2010;36:1–48.

Everaert G, Deschutter Y, De Troch M, Janssen CR, De Schamphelaere K. Multimodel inference to quantify the relative importance of abiotic factors in the population dynamics of marine zooplankton. J. Mar. Syst. 2018;181:91–98.

Anderson DR, Burnham KP. Avoiding pitfalls when using information-theoretic methods. J. Wildl. Manag. 2002;66:912–918.

Calcagno, V. glmulti: Model selection and multimodel inference made easy. R package version 1.0.7. (2013).

EEA. Biogeographical regions and Marine regions and subregions under the Marine Strategy Framework Directive. https://www.eea.europa.eu/data-and-maps (2016).

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace