Bird population declines and species turnover are changing the acoustic properties of spring soundscapes

. 2021 Nov 02 ; 12 (1) : 6217. [epub] 20211102

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34728617
Odkazy

PubMed 34728617
PubMed Central PMC8564540
DOI 10.1038/s41467-021-26488-1
PII: 10.1038/s41467-021-26488-1
Knihovny.cz E-zdroje

Natural sounds, and bird song in particular, play a key role in building and maintaining our connection with nature, but widespread declines in bird populations mean that the acoustic properties of natural soundscapes may be changing. Using data-driven reconstructions of soundscapes in lieu of historical recordings, here we quantify changes in soundscape characteristics at more than 200,000 sites across North America and Europe. We integrate citizen science bird monitoring data with recordings of individual species to reveal a pervasive loss of acoustic diversity and intensity of soundscapes across both continents over the past 25 years, driven by changes in species richness and abundance. These results suggest that one of the fundamental pathways through which humans engage with nature is in chronic decline, with potentially widespread implications for human health and well-being.

Biodiversity Unit Department of Biology Lund University Ecology Building S 223 62 Lund Sweden

BirdLife Österreich Museumsplatz 1 10 8 A 1070 Wien Austria

British Trust for Ornithology The Nunnery Thetford Norfolk IP24 2PU UK

Centre d'Ecologie et des Sciences de la Conservation UMR7204 MNHN CNRS SU Paris France

CREAF Cerdanyola del Vallès 08193 Barcelona Spain

CSIC Cerdanyola del Vallès 08193 Barcelona Spain

Dachverband Deutscher Avifaunisten An den Speichern 2 48157 Münster Germany

Dansk Ornitologisk Forening BirdLife Denmark Vesterbrogade 138 140 DK 1620 København 5 Denmark

Department of Animal Ecology and Ecophysiology Institute for Water and Wetland Research Radboud University P O Box 9010 6500 GL Nijmegen Netherlands

Department of Zoology and Laboratory of Ornithology Faculty of Science Palacký University Olomouc 17 Listopadu 50 771 43 Olomouc Czechia

DOPPS BirdLife Slovenia Tržaška cesta 2 SI 1000 Ljubljana Slovenia

European Bird Census Council Catalan Ornithological Institute Natural History Museum of Barcelona Plaça Leonardo da Vinci 4 5 08019 Barcelona Catalonia Spain

European Bird Census Council Czech Society for Ornithology Na Bělidle 34 15000 Prague 5 Czechia

Evolutionary Ecology Group Hungarian Department of Biology and Ecology Babeș Bolyai University Cluj Napoca Romania

Faculty of Biology University of Latvia Jelgavas iela 1 Riga LV 1004 Latvia

Finnish Museum of Natural History FI 00014 University of Helsinki P O Box 17 Helsinki Finland

InForest JRU Solsona 25280 Spain

Institute for Environmental Studies Faculty of Science Charles University Prague Prague Czechia

Latvian Ornithological Society Skolas iela 3 Riga LV 1010 Latvia

Museum and Institute of Zoology Polish Academy of Sciences Wilcza 64 00 679 Warszawa Poland

Natagora Département Études Traverse des Muses 1 B 5000 Namur Belgium

NOF BirdLife Norway Sandgata 30 B NO 7012 Trondheim Norway

Norwegian Institute for Nature Research P O Box 5685 Torgarden NO 7485 Trondheim Norway

Polish Society for the Protection of Birds ul Odrowaza 24 05 270 Marki Poland

Romanian Ornithological Society BirdLife Romania Cluj Napoca Romania

School of Biological Sciences University of East Anglia Norwich UK

Sociedad Española de Ornitología Madrid Spain

Sovon Dutch Centre for Field Ornithology P O Box 6521 6503 GA Nijmegen Netherlands

Swiss Ornithological Institute Seerose 1 6204 Sempach Switzerland

University of Göttingen Department of Conservation Science Bürgerstr 50 37073 Göttingen Germany

Zobrazit více v PubMed

United Nations, Department of Economic and Social Affairs, Population Division (UNDESA). World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420) (United Nations, 2019).

Bauman, A. E., Petersen, C. B., Blond, K., Rangul, V. & Hardy, L. L. in Sedentary Behaviour Epidemiology (eds. Leitzmann, M., Jochem, C. & Schmid, D.) 73–106 (Springer, 2018).

Pergams OR, Zaradic PA. Is love of nature in the US becoming love of electronic media? 16-year downtrend in national park visits explained by watching movies, playing video games, internet use, and oil prices. J. Environ. Manag. 2006;80:387–393. doi: 10.1016/j.jenvman.2006.02.001. PubMed DOI

Skar M, Wold LC, Gundersen V, O’Brien L. Why do children not play in nearby nature? Results from a Norwegian study. J. Adventure Educ. Outdoor Learn. 2016;16:239–255. doi: 10.1080/14729679.2016.1140587. DOI

Soga M, Gaston KJ. Extinction of experience: the loss of human-nature interactions. Front. Ecol. Environ. 2016;14:94–101. doi: 10.1002/fee.1225. DOI

Bratman GN, et al. Nature and mental health: an ecosystem services perspective. Sci. Adv. 2019;5:eaax0903. doi: 10.1126/sciadv.aax0903. PubMed DOI PMC

Schebella MF, Weber D, Lindsey K, Daniels CB. For the love of nature: exploring the importance of species diversity and micro-variables associated with favourite outdoor places. Front. Psychol. 2017;8:2094. doi: 10.3389/fpsyg.2017.02094. PubMed DOI PMC

Shanahan DF, Fuller RA, Bush R, Lin BB, Gaston KJ. The health benefits of nature: how much do we need. BioScience. 2015;65:476–485. doi: 10.1093/biosci/biv032. DOI

Gaston KJ, Soga M. Extinction of experience: the need to be more specific. People Nat. 2020;2:575–581. doi: 10.1002/pan3.10118. DOI

Keniger LE, Gaston KJ, Irvine KN, Fuller RA. What are the benefits of interacting with nature? Int. J. Environ. Res. Public Health. 2013;10:913–935. doi: 10.3390/ijerph10030913. PubMed DOI PMC

Pouso S, et al. Contact with blue-green spaces during the COVID-19 pandemic lockdown beneficial to mental health. Sci. Total Environ. 2020;756:143984. doi: 10.1016/j.scitotenv.2020.143984. PubMed DOI PMC

Soga M, Evans MJ, Tsuchiya K, Fukano Y. A room with a green view: the importance of nearby nature for mental health during the COVID-19 pandemic. Ecol. Appl. 2020;31:e2248. PubMed PMC

Brondizio, E. S., Settele, J., Díaz, S. & Ngo, H. T. (eds). Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).

Methorst J, et al. The importance of species diversity for human well-being in Europe. Ecol. Econ. 2021;181:106917. doi: 10.1016/j.ecolecon.2020.106917. DOI

Ferraro DM, et al. The phantom chorus: birdsong boosts well-being in protected areas. Proc. R. Soc. B. 2020;287:20201811. doi: 10.1098/rspb.2020.1811. PubMed DOI PMC

Pijanowski BC, et al. Soundscape ecology: the science of sound in the landscape. BioScience. 2011;61:203–216. doi: 10.1525/bio.2011.61.3.6. DOI

Lynch E, Joyce D, Fristrup K. An assessment of noise audibility and sound levels in U.S. National Parks. Landsc. Ecol. 2011;26:1297–1309. doi: 10.1007/s10980-011-9643-x. DOI

Gasc A, Francomano D, Dunning JB, Pijanowski BC. Future directions for soundscape ecology: the importance of ornithological contributions. Auk. 2017;134:215–228. doi: 10.1642/AUK-16-124.1. DOI

Franco LS, Shanahan DR, Fuller RA. A review of the benefits of nature experiences: more than meets the eye. Int. J. Environ. Res. Public Health. 2017;14:864. doi: 10.3390/ijerph14080864. PubMed DOI PMC

Hedblom M, Heyman E, Antonsson H, Gunnarsson B. Bird song diversity influences young people’s appreciation of urban landscapes. Urban. Urban Green. 2014;13:469–474. doi: 10.1016/j.ufug.2014.04.002. DOI

Wang R, Zhao J. A good sound in the right place: exploring the effects of auditory-visual combinations on aesthetic preferences. Urban. Urban Green. 2019;43:126356. doi: 10.1016/j.ufug.2019.05.018. DOI

Rosenberg KV, et al. Decline of the North American avifauna. Science. 2019;366:120–124. doi: 10.1126/science.aaw1313. PubMed DOI

Johnson CN, et al. Biodiversity losses and conservation responses in the Anthropocene. Science. 2017;356:270–275. doi: 10.1126/science.aam9317. PubMed DOI

Olden JD, Poff NL, Douglas MB, Douglas ME, Fausch KD. Ecological and evolutionary consequences of biotic homogenization. Trends Ecol. Evol. 2004;19:18–24. doi: 10.1016/j.tree.2003.09.010. PubMed DOI

Fuller RA, Irvine KN, Devine-Wright P, Warren PH, Gaston KJ. Psychological benefits of greenspace increase with biodiversity. Biol. Lett. 2007;3:390–394. doi: 10.1098/rsbl.2007.0149. PubMed DOI PMC

Brewster JP, Simons TR. Testing the importance of auditory detections in avian point counts. J. Field Ornithol. 2009;80:178–182. doi: 10.1111/j.1557-9263.2009.00220.x. DOI

Darras K, et al. Autonomous sound recording outperforms human observation for sampling birds: a systematic map and user guide. Ecol. Appl. 2019;29:e01954. doi: 10.1002/eap.1954. PubMed DOI

Zhao Z, et al. How well do acoustic indices measure biodiversity? Computational experiments to determine effect of sound unit shape, vocalization intensity, and frequency of vocalization occurrence on performance of acoustic indices. Ecol. Indic. 2019;107:105588. doi: 10.1016/j.ecolind.2019.105588. DOI

Eldridge A, et al. Sounding out ecoacoustic metrics: avian species richness is predicted by acoustic indices in temperate but not tropical habitats. Ecol. Indic. 2018;95:939–952. doi: 10.1016/j.ecolind.2018.06.012. DOI

Villanueva-Rivera LC, Pijanowski BC, Doucette J, Pekin B. A primer of acoustic analysis for landscape ecologists. Landsc. Ecol. 2011;26:1233–1246. doi: 10.1007/s10980-011-9636-9. DOI

Boelman NT, Asner GP, Hart PJ, Martin RE. Multi-trophic invasion resistance in Hawaii: bioacoustics, field surveys, and airborne remote sensing. Ecol. Appl. 2007;17:2137–2144. doi: 10.1890/07-0004.1. PubMed DOI

Sueur J, Aubin T, Simonis C. Seewave, a free modular tool for sound analysis and synthesis. Bioacoustics. 2008;18:213–226. doi: 10.1080/09524622.2008.9753600. DOI

Mammides C, Goodale E, Dayananda SK, Kang L, Chen J. Do acoustic indices correlate with bird diversity? Insights from two biodiverse regions in Yunnan Province, south China. Ecol. Indic. 2017;82:470–477. doi: 10.1016/j.ecolind.2017.07.017. DOI

Francomano D, Gottesmann BL, Pijanowski BC. Biogeographical and analytical implications of temporal variability in geographically diverse soundscapes. Ecol. Indic. 2020;112:105845. doi: 10.1016/j.ecolind.2019.105845. DOI

Rodriguez A, et al. Temporal and spatial variability of animal sound within a neotropical forest. Ecol. Inform. 2014;21:133–143. doi: 10.1016/j.ecoinf.2013.12.006. DOI

Fuller S, Axel AC, Tucker D, Gage SH. Connecting soundscape to landscape: which acoustic index best describes landscape configuration? Ecol. Indic. 2015;58:207–215. doi: 10.1016/j.ecolind.2015.05.057. DOI

Furumo PR, Aide TM. Using soundscapes to assess biodiversity in Neotropical oil palm landscapes. Landsc. Ecol. 2019;34:911–923. doi: 10.1007/s10980-019-00815-w. DOI

Pilotto F, et al. Meta-analysis of multidecadal biodiversity trends in Europe. Nat. Commun. 2020;11:3486. doi: 10.1038/s41467-020-17171-y. PubMed DOI PMC

Rickleffs RE. A comprehensive framework for global patterns in biodiversity. Ecol. Lett. 2004;7:1–15. doi: 10.1046/j.1461-0248.2003.00554.x. DOI

Jarzayna MA, Jetz W. A near half-century of temporal change in different facets of avian diversity. Glob. Change Biol. 2017;23:2999–3011. doi: 10.1111/gcb.13571. PubMed DOI

Schipper AM, et al. Contrasting changes in the abundance and diversity of North American bird assemblages from 1971 to 2010. Glob. Change Biol. 2016;22:3948–3959. doi: 10.1111/gcb.13292. PubMed DOI

Dornelas M, et al. Assemblage time series reveal biodiversity change but not systematic loss. Science. 2014;344:296–299. doi: 10.1126/science.1248484. PubMed DOI

Daskalova GN, Myers-Smith IH, Godlee JL. Rare and common vertebrates span a wide spectrum of population trends. Nat. Commun. 2020;11:1–13. doi: 10.1038/s41467-020-17779-0. PubMed DOI PMC

Inger R, et al. Common European birds are declining rapidly while less abundance species’ numbers are rising. Ecol. Lett. 2015;18:28–36. doi: 10.1111/ele.12387. PubMed DOI

Stephens PA, et al. Consistent response of bird populations to climate change on two continents. Science. 2016;352:84–87. doi: 10.1126/science.aac4858. PubMed DOI

Hallmann CA, et al. More than 76 percent declines over 27 years in total flying insect biomass in protected areas. PLoS ONE. 2017;12:e0185809. doi: 10.1371/journal.pone.0185809. PubMed DOI PMC

Houlahan JE, Findlay CS, Schmidt BR, Meyer AH, Kuzman SL. Quantitative evidence for global amphibian population declines. Nature. 2000;404:752–755. doi: 10.1038/35008052. PubMed DOI

Buxton RT, et al. Noise pollution is pervasive in U.S. protected areas. Science. 2017;356:531–533. doi: 10.1126/science.aah4783. PubMed DOI

Dominoni DM, et al. Why conservation biology can benefit from sensory ecology. Nat. Ecol. Evol. 2020;4:502–511. doi: 10.1038/s41559-020-1135-4. PubMed DOI

Buxton RT, Pearson AL, Allou C, Fristrup K, Wittemyer G. A synthesis of health benefits of natural sounds and their distribution in national parks. Proc. Natl Acad. Sci. USA. 2021;118:e2013097118. doi: 10.1073/pnas.2013097118. PubMed DOI PMC

Francis CD, et al. Acoustic environments matter: synergistic benefits to humans and ecological communities. J. Environ. Manag. 2017;203:245–254. doi: 10.1016/j.jenvman.2017.07.041. PubMed DOI

Derryberry EP, Phillips JN, Derryberry GE, Blum MJ, Luther D. Singing in a silent spring: Birds respond to a half-century soundscape reversion during the COVID-19 shutdown. Science. 2020;370:575–579. doi: 10.1126/science.abd5777. PubMed DOI

Roca IT, et al. Shifting song frequencies in response to anthropogenic noise: a meta-analysis on birds and anurans. Behav. Ecol. 2016;27:1269–1274. doi: 10.1093/beheco/arw060. DOI

Soga M, Gaston KJ. Shifting baseline syndrome: causes, consequences, and implications. Front. Ecol. Environ. 2018;16:222–230. doi: 10.1002/fee.1794. DOI

Roe, P. et al. The Australian acoustic observatory. Methods Ecol. Evol. 10.1111/2041-210X.13660 (2021).

Smith JW, Pijanowski BC. Human and policy dimensions of soundscape ecology. Glob. Environ. Change. 2014;28:63–74. doi: 10.1016/j.gloenvcha.2014.05.007. DOI

Whitburn J, Linklater W, Abrahamse W. Meta-analysis of human connection to nature and proenvironmental behaviour. Conserv. Biol. 2019;50:179–214. PubMed PMC

Oh RRY, et al. Connection to nature is predicted by family values, social norms and personal experiences. Glob. Ecol. Conserv. 2021;28:e01632. doi: 10.1016/j.gecco.2021.e01632. DOI

Sauer JR, et al. The first 50 years of the North American Breeding Bird Survey. Condor. 2017;119:576–593. doi: 10.1650/CONDOR-17-83.1. DOI

Brlík V, et al. Long-term and large-scale multispecies dataset tracking population changes of common European breeding birds. Sci. Data. 2021;8:21. doi: 10.1038/s41597-021-00804-2. PubMed DOI PMC

Villanueva-Rivera, L. J. & Pijanowski, B. C. Soundecology: Soundscape Ecology. R package version 1.3.2 (2016).

Ligges, U. et al. tuneR: Analysis of Music and Speech. R package version 1.3.3 (2018)

R Core Team. R: a Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

Schielzeth H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 2010;1:103–113. doi: 10.1111/j.2041-210X.2010.00012.x. DOI

Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI

Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–290. doi: 10.1093/bioinformatics/btg412. PubMed DOI

Morrison, C. et al. Source data and R code from: Bird population declines and species turnover are changing the acoustic properties of spring soundscapes. Open Science Framework https://osf.io/jyuxk/ (2021). PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Bird population declines and species turnover are changing the acoustic properties of spring soundscapes

. 2021 Nov 02 ; 12 (1) : 6217. [epub] 20211102

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...