Bird population declines and species turnover are changing the acoustic properties of spring soundscapes
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34728617
PubMed Central
PMC8564540
DOI
10.1038/s41467-021-26488-1
PII: 10.1038/s41467-021-26488-1
Knihovny.cz E-zdroje
- MeSH
- akustika * MeSH
- biodiverzita MeSH
- lidé MeSH
- populační dynamika MeSH
- ptáci klasifikace fyziologie MeSH
- roční období MeSH
- vokalizace zvířat klasifikace fyziologie MeSH
- zachování přírodních zdrojů MeSH
- zvířata MeSH
- zvuk MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Severní Amerika MeSH
Natural sounds, and bird song in particular, play a key role in building and maintaining our connection with nature, but widespread declines in bird populations mean that the acoustic properties of natural soundscapes may be changing. Using data-driven reconstructions of soundscapes in lieu of historical recordings, here we quantify changes in soundscape characteristics at more than 200,000 sites across North America and Europe. We integrate citizen science bird monitoring data with recordings of individual species to reveal a pervasive loss of acoustic diversity and intensity of soundscapes across both continents over the past 25 years, driven by changes in species richness and abundance. These results suggest that one of the fundamental pathways through which humans engage with nature is in chronic decline, with potentially widespread implications for human health and well-being.
Biodiversity Unit Department of Biology Lund University Ecology Building S 223 62 Lund Sweden
BirdLife Österreich Museumsplatz 1 10 8 A 1070 Wien Austria
British Trust for Ornithology The Nunnery Thetford Norfolk IP24 2PU UK
Centre d'Ecologie et des Sciences de la Conservation UMR7204 MNHN CNRS SU Paris France
CREAF Cerdanyola del Vallès 08193 Barcelona Spain
CSIC Cerdanyola del Vallès 08193 Barcelona Spain
Dachverband Deutscher Avifaunisten An den Speichern 2 48157 Münster Germany
Dansk Ornitologisk Forening BirdLife Denmark Vesterbrogade 138 140 DK 1620 København 5 Denmark
DOPPS BirdLife Slovenia Tržaška cesta 2 SI 1000 Ljubljana Slovenia
European Bird Census Council Czech Society for Ornithology Na Bělidle 34 15000 Prague 5 Czechia
Faculty of Biology University of Latvia Jelgavas iela 1 Riga LV 1004 Latvia
Finnish Museum of Natural History FI 00014 University of Helsinki P O Box 17 Helsinki Finland
InForest JRU Solsona 25280 Spain
Institute for Environmental Studies Faculty of Science Charles University Prague Prague Czechia
Latvian Ornithological Society Skolas iela 3 Riga LV 1010 Latvia
Museum and Institute of Zoology Polish Academy of Sciences Wilcza 64 00 679 Warszawa Poland
Natagora Département Études Traverse des Muses 1 B 5000 Namur Belgium
NOF BirdLife Norway Sandgata 30 B NO 7012 Trondheim Norway
Norwegian Institute for Nature Research P O Box 5685 Torgarden NO 7485 Trondheim Norway
Polish Society for the Protection of Birds ul Odrowaza 24 05 270 Marki Poland
Romanian Ornithological Society BirdLife Romania Cluj Napoca Romania
School of Biological Sciences University of East Anglia Norwich UK
Sociedad Española de Ornitología Madrid Spain
Sovon Dutch Centre for Field Ornithology P O Box 6521 6503 GA Nijmegen Netherlands
Swiss Ornithological Institute Seerose 1 6204 Sempach Switzerland
University of Göttingen Department of Conservation Science Bürgerstr 50 37073 Göttingen Germany
Zobrazit více v PubMed
United Nations, Department of Economic and Social Affairs, Population Division (UNDESA). World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420) (United Nations, 2019).
Bauman, A. E., Petersen, C. B., Blond, K., Rangul, V. & Hardy, L. L. in Sedentary Behaviour Epidemiology (eds. Leitzmann, M., Jochem, C. & Schmid, D.) 73–106 (Springer, 2018).
Pergams OR, Zaradic PA. Is love of nature in the US becoming love of electronic media? 16-year downtrend in national park visits explained by watching movies, playing video games, internet use, and oil prices. J. Environ. Manag. 2006;80:387–393. doi: 10.1016/j.jenvman.2006.02.001. PubMed DOI
Skar M, Wold LC, Gundersen V, O’Brien L. Why do children not play in nearby nature? Results from a Norwegian study. J. Adventure Educ. Outdoor Learn. 2016;16:239–255. doi: 10.1080/14729679.2016.1140587. DOI
Soga M, Gaston KJ. Extinction of experience: the loss of human-nature interactions. Front. Ecol. Environ. 2016;14:94–101. doi: 10.1002/fee.1225. DOI
Bratman GN, et al. Nature and mental health: an ecosystem services perspective. Sci. Adv. 2019;5:eaax0903. doi: 10.1126/sciadv.aax0903. PubMed DOI PMC
Schebella MF, Weber D, Lindsey K, Daniels CB. For the love of nature: exploring the importance of species diversity and micro-variables associated with favourite outdoor places. Front. Psychol. 2017;8:2094. doi: 10.3389/fpsyg.2017.02094. PubMed DOI PMC
Shanahan DF, Fuller RA, Bush R, Lin BB, Gaston KJ. The health benefits of nature: how much do we need. BioScience. 2015;65:476–485. doi: 10.1093/biosci/biv032. DOI
Gaston KJ, Soga M. Extinction of experience: the need to be more specific. People Nat. 2020;2:575–581. doi: 10.1002/pan3.10118. DOI
Keniger LE, Gaston KJ, Irvine KN, Fuller RA. What are the benefits of interacting with nature? Int. J. Environ. Res. Public Health. 2013;10:913–935. doi: 10.3390/ijerph10030913. PubMed DOI PMC
Pouso S, et al. Contact with blue-green spaces during the COVID-19 pandemic lockdown beneficial to mental health. Sci. Total Environ. 2020;756:143984. doi: 10.1016/j.scitotenv.2020.143984. PubMed DOI PMC
Soga M, Evans MJ, Tsuchiya K, Fukano Y. A room with a green view: the importance of nearby nature for mental health during the COVID-19 pandemic. Ecol. Appl. 2020;31:e2248. PubMed PMC
Brondizio, E. S., Settele, J., Díaz, S. & Ngo, H. T. (eds). Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).
Methorst J, et al. The importance of species diversity for human well-being in Europe. Ecol. Econ. 2021;181:106917. doi: 10.1016/j.ecolecon.2020.106917. DOI
Ferraro DM, et al. The phantom chorus: birdsong boosts well-being in protected areas. Proc. R. Soc. B. 2020;287:20201811. doi: 10.1098/rspb.2020.1811. PubMed DOI PMC
Pijanowski BC, et al. Soundscape ecology: the science of sound in the landscape. BioScience. 2011;61:203–216. doi: 10.1525/bio.2011.61.3.6. DOI
Lynch E, Joyce D, Fristrup K. An assessment of noise audibility and sound levels in U.S. National Parks. Landsc. Ecol. 2011;26:1297–1309. doi: 10.1007/s10980-011-9643-x. DOI
Gasc A, Francomano D, Dunning JB, Pijanowski BC. Future directions for soundscape ecology: the importance of ornithological contributions. Auk. 2017;134:215–228. doi: 10.1642/AUK-16-124.1. DOI
Franco LS, Shanahan DR, Fuller RA. A review of the benefits of nature experiences: more than meets the eye. Int. J. Environ. Res. Public Health. 2017;14:864. doi: 10.3390/ijerph14080864. PubMed DOI PMC
Hedblom M, Heyman E, Antonsson H, Gunnarsson B. Bird song diversity influences young people’s appreciation of urban landscapes. Urban. Urban Green. 2014;13:469–474. doi: 10.1016/j.ufug.2014.04.002. DOI
Wang R, Zhao J. A good sound in the right place: exploring the effects of auditory-visual combinations on aesthetic preferences. Urban. Urban Green. 2019;43:126356. doi: 10.1016/j.ufug.2019.05.018. DOI
Rosenberg KV, et al. Decline of the North American avifauna. Science. 2019;366:120–124. doi: 10.1126/science.aaw1313. PubMed DOI
Johnson CN, et al. Biodiversity losses and conservation responses in the Anthropocene. Science. 2017;356:270–275. doi: 10.1126/science.aam9317. PubMed DOI
Olden JD, Poff NL, Douglas MB, Douglas ME, Fausch KD. Ecological and evolutionary consequences of biotic homogenization. Trends Ecol. Evol. 2004;19:18–24. doi: 10.1016/j.tree.2003.09.010. PubMed DOI
Fuller RA, Irvine KN, Devine-Wright P, Warren PH, Gaston KJ. Psychological benefits of greenspace increase with biodiversity. Biol. Lett. 2007;3:390–394. doi: 10.1098/rsbl.2007.0149. PubMed DOI PMC
Brewster JP, Simons TR. Testing the importance of auditory detections in avian point counts. J. Field Ornithol. 2009;80:178–182. doi: 10.1111/j.1557-9263.2009.00220.x. DOI
Darras K, et al. Autonomous sound recording outperforms human observation for sampling birds: a systematic map and user guide. Ecol. Appl. 2019;29:e01954. doi: 10.1002/eap.1954. PubMed DOI
Zhao Z, et al. How well do acoustic indices measure biodiversity? Computational experiments to determine effect of sound unit shape, vocalization intensity, and frequency of vocalization occurrence on performance of acoustic indices. Ecol. Indic. 2019;107:105588. doi: 10.1016/j.ecolind.2019.105588. DOI
Eldridge A, et al. Sounding out ecoacoustic metrics: avian species richness is predicted by acoustic indices in temperate but not tropical habitats. Ecol. Indic. 2018;95:939–952. doi: 10.1016/j.ecolind.2018.06.012. DOI
Villanueva-Rivera LC, Pijanowski BC, Doucette J, Pekin B. A primer of acoustic analysis for landscape ecologists. Landsc. Ecol. 2011;26:1233–1246. doi: 10.1007/s10980-011-9636-9. DOI
Boelman NT, Asner GP, Hart PJ, Martin RE. Multi-trophic invasion resistance in Hawaii: bioacoustics, field surveys, and airborne remote sensing. Ecol. Appl. 2007;17:2137–2144. doi: 10.1890/07-0004.1. PubMed DOI
Sueur J, Aubin T, Simonis C. Seewave, a free modular tool for sound analysis and synthesis. Bioacoustics. 2008;18:213–226. doi: 10.1080/09524622.2008.9753600. DOI
Mammides C, Goodale E, Dayananda SK, Kang L, Chen J. Do acoustic indices correlate with bird diversity? Insights from two biodiverse regions in Yunnan Province, south China. Ecol. Indic. 2017;82:470–477. doi: 10.1016/j.ecolind.2017.07.017. DOI
Francomano D, Gottesmann BL, Pijanowski BC. Biogeographical and analytical implications of temporal variability in geographically diverse soundscapes. Ecol. Indic. 2020;112:105845. doi: 10.1016/j.ecolind.2019.105845. DOI
Rodriguez A, et al. Temporal and spatial variability of animal sound within a neotropical forest. Ecol. Inform. 2014;21:133–143. doi: 10.1016/j.ecoinf.2013.12.006. DOI
Fuller S, Axel AC, Tucker D, Gage SH. Connecting soundscape to landscape: which acoustic index best describes landscape configuration? Ecol. Indic. 2015;58:207–215. doi: 10.1016/j.ecolind.2015.05.057. DOI
Furumo PR, Aide TM. Using soundscapes to assess biodiversity in Neotropical oil palm landscapes. Landsc. Ecol. 2019;34:911–923. doi: 10.1007/s10980-019-00815-w. DOI
Pilotto F, et al. Meta-analysis of multidecadal biodiversity trends in Europe. Nat. Commun. 2020;11:3486. doi: 10.1038/s41467-020-17171-y. PubMed DOI PMC
Rickleffs RE. A comprehensive framework for global patterns in biodiversity. Ecol. Lett. 2004;7:1–15. doi: 10.1046/j.1461-0248.2003.00554.x. DOI
Jarzayna MA, Jetz W. A near half-century of temporal change in different facets of avian diversity. Glob. Change Biol. 2017;23:2999–3011. doi: 10.1111/gcb.13571. PubMed DOI
Schipper AM, et al. Contrasting changes in the abundance and diversity of North American bird assemblages from 1971 to 2010. Glob. Change Biol. 2016;22:3948–3959. doi: 10.1111/gcb.13292. PubMed DOI
Dornelas M, et al. Assemblage time series reveal biodiversity change but not systematic loss. Science. 2014;344:296–299. doi: 10.1126/science.1248484. PubMed DOI
Daskalova GN, Myers-Smith IH, Godlee JL. Rare and common vertebrates span a wide spectrum of population trends. Nat. Commun. 2020;11:1–13. doi: 10.1038/s41467-020-17779-0. PubMed DOI PMC
Inger R, et al. Common European birds are declining rapidly while less abundance species’ numbers are rising. Ecol. Lett. 2015;18:28–36. doi: 10.1111/ele.12387. PubMed DOI
Stephens PA, et al. Consistent response of bird populations to climate change on two continents. Science. 2016;352:84–87. doi: 10.1126/science.aac4858. PubMed DOI
Hallmann CA, et al. More than 76 percent declines over 27 years in total flying insect biomass in protected areas. PLoS ONE. 2017;12:e0185809. doi: 10.1371/journal.pone.0185809. PubMed DOI PMC
Houlahan JE, Findlay CS, Schmidt BR, Meyer AH, Kuzman SL. Quantitative evidence for global amphibian population declines. Nature. 2000;404:752–755. doi: 10.1038/35008052. PubMed DOI
Buxton RT, et al. Noise pollution is pervasive in U.S. protected areas. Science. 2017;356:531–533. doi: 10.1126/science.aah4783. PubMed DOI
Dominoni DM, et al. Why conservation biology can benefit from sensory ecology. Nat. Ecol. Evol. 2020;4:502–511. doi: 10.1038/s41559-020-1135-4. PubMed DOI
Buxton RT, Pearson AL, Allou C, Fristrup K, Wittemyer G. A synthesis of health benefits of natural sounds and their distribution in national parks. Proc. Natl Acad. Sci. USA. 2021;118:e2013097118. doi: 10.1073/pnas.2013097118. PubMed DOI PMC
Francis CD, et al. Acoustic environments matter: synergistic benefits to humans and ecological communities. J. Environ. Manag. 2017;203:245–254. doi: 10.1016/j.jenvman.2017.07.041. PubMed DOI
Derryberry EP, Phillips JN, Derryberry GE, Blum MJ, Luther D. Singing in a silent spring: Birds respond to a half-century soundscape reversion during the COVID-19 shutdown. Science. 2020;370:575–579. doi: 10.1126/science.abd5777. PubMed DOI
Roca IT, et al. Shifting song frequencies in response to anthropogenic noise: a meta-analysis on birds and anurans. Behav. Ecol. 2016;27:1269–1274. doi: 10.1093/beheco/arw060. DOI
Soga M, Gaston KJ. Shifting baseline syndrome: causes, consequences, and implications. Front. Ecol. Environ. 2018;16:222–230. doi: 10.1002/fee.1794. DOI
Roe, P. et al. The Australian acoustic observatory. Methods Ecol. Evol. 10.1111/2041-210X.13660 (2021).
Smith JW, Pijanowski BC. Human and policy dimensions of soundscape ecology. Glob. Environ. Change. 2014;28:63–74. doi: 10.1016/j.gloenvcha.2014.05.007. DOI
Whitburn J, Linklater W, Abrahamse W. Meta-analysis of human connection to nature and proenvironmental behaviour. Conserv. Biol. 2019;50:179–214. PubMed PMC
Oh RRY, et al. Connection to nature is predicted by family values, social norms and personal experiences. Glob. Ecol. Conserv. 2021;28:e01632. doi: 10.1016/j.gecco.2021.e01632. DOI
Sauer JR, et al. The first 50 years of the North American Breeding Bird Survey. Condor. 2017;119:576–593. doi: 10.1650/CONDOR-17-83.1. DOI
Brlík V, et al. Long-term and large-scale multispecies dataset tracking population changes of common European breeding birds. Sci. Data. 2021;8:21. doi: 10.1038/s41597-021-00804-2. PubMed DOI PMC
Villanueva-Rivera, L. J. & Pijanowski, B. C. Soundecology: Soundscape Ecology. R package version 1.3.2 (2016).
Ligges, U. et al. tuneR: Analysis of Music and Speech. R package version 1.3.3 (2018)
R Core Team. R: a Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).
Schielzeth H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 2010;1:103–113. doi: 10.1111/j.2041-210X.2010.00012.x. DOI
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI
Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–290. doi: 10.1093/bioinformatics/btg412. PubMed DOI
Morrison, C. et al. Source data and R code from: Bird population declines and species turnover are changing the acoustic properties of spring soundscapes. Open Science Framework https://osf.io/jyuxk/ (2021). PubMed PMC