Temporal niche dynamics of spreading native invertebrates underlie doubling of richness in pristine temperate streams

. 2025 Apr ; 94 (4) : 693-705. [epub] 20250217

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39957326

Grantová podpora
P505/23-05268S Grantová Agentura České Republiky

While biodiversity loss is undeniably a global phenomenon, an increase in taxonomic richness has recently been reported from some ecosystems and spatial scales. A striking increase in abundance and/or species richness has been documented from temperate rivers over the last 25 years, with many of the expanding species (i.e. winners) being native species. However, the lack of repeatedly collected local environmental data prevents the exploration of their niche dynamics and also makes it difficult to distinguish between possible causes. We fill this gap by using species occurrence data from 65 pristine Czech rivers sampled in 1997-2000 and 2015. The same methods were used for sampling macroinvertebrates and measuring environmental parameters in both periods. We selected 43 winners, defined as taxonomically validated and originally non-rare native macroinvertebrate species whose occupancy increased by at least six sites between the time periods. We searched for consistent patterns of niche dynamics (i.e. stability, expansion and restriction) among species that might contribute most to the overall increase in species richness. Using several biological traits, we also compared the winners with the other 253 taxa collected to look for differences. Analysis of the occurrence data showed that niche stability was by far the predominant pattern of the niche dynamics. This clearly indicates that the winners fill their original niches, with a limited contribution of niche shift or expansion, depending on the species. As no significant differences in either temperature preferences or the other biological traits were found between the winners and the other taxa, there is no unique set of functional traits that explain the success of the winners. The observed mechanism of filling the original niche space by the spreading native species not only explains the increase in local species richness, but also contributes to support the hypothesis of a climate-driven increase in ecosystem energy flow from a new perspective. The increased metabolism of the system may relax interspecific competition allowing it to carry more individuals and species, even without the need for an increase in nutrients and ecosystem recovery.

Zobrazit více v PubMed

Anderson, M. J. (2001). A new method for non‐parametric multivariate analysis of variance. Austral Ecology, 26, 32–46.

Aravind, N. A. , Shaanker, M. U. , Bhat, H. N. P. , Bipin, C. , Shaanker, U. R. , Shah, M. A. , & Ravikanth, G. (2022). Niche shift in invasive species: Is it a case of “home away from home” or finding a “new home”? Biodiversity and Conservation, 31, 2625–2638. 10.1007/s10531-022-02447-0 DOI

Arora, R. , Tockner, K. , & Venohr, M. (2016). Changing river temperatures in northern Germany: Trends and drivers of change. Hydrological Processes, 30, 3084–3096. 10.1002/hyp.10849 DOI

Bates, O. K. , & Bertelsmeier, C. (2021). Climatic niche shifts in introduced species. Current Biology, 31, R1252–R1266. 10.1016/j.cub.2021.08.035 PubMed DOI

Beck, M. , Billoir, E. , Floury, M. , Usseglio‐Polatera, P. , & Danger, M. (2023). A 34‐year survey under phosphorus decline and warming: Consequences on stoichiometry and functional trait composition of freshwater macroinvertebrate communities. Science of the Total Environment, 858, 159786. PubMed

Bojková, J. , Komprdová, K. , Soldán, T. , & Zahrádková, S. (2012). Species loss of stoneflies (Plecoptera) in The Czech Republic during the 20th century. Freshwater Biology, 57, 2550–2567.

Bowler, D. E. , Eichenberg, D. , Conze, K.‐J. , Suhling, F. , Baumann, K. , Benken, T. , Bönsel, A. , Bittner, T. , Drews, A. , Günther, A. , Isaac, N. J. B. , Petzold, F. , Seyring, M. , Spengler, T. , Trockur, B. , Willigalla, C. , Bruelheide, H. , Jansen, F. , & Bonn, A. (2021). Winners and losers over 35 years of dragonfly and damselfly distributional change in Germany. Diversity and Distributions, 27, 1353–1366. 10.1111/ddi.13274 DOI

Broennimann, O. , Fitzpatrick, M. C. , Pearman, P. B. , Petitpierre, B. , Pellissier, L. , Yoccoz, N. G. , Thuiller, W. , Fortin, M.‐J. , Randin, C. , Zimmermann, N. E. , Graham, C. H. , & Guisan, A. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21, 481–497. 10.1111/j.1466-8238.2011.00698.x DOI

Broennimann, O. , Di Cola, V. , & Guisan, A. (2023). Ecospat: Spatial ecology miscellaneous methods. R Package Version 3.5. https://CRAN.R‐project.org/package=ecospat

Bruno, D. , Belmar, O. , Maire, A. , Morel, A. , Dumont, B. , & Datry, T. (2019). Structural and functional responses of invertebrate communities to climate change and flow regulation in alpine catchments. Global Change Biology, 25, 1612–1628. 10.1111/gcb.14581 PubMed DOI PMC

Calosi, P. , Bilton, D. T. , & Spicer, J. I. (2008). Thermal tolerance, acclimatory capacity and vulnerability to global climate change. Biology Letters, 4, 99–102. 10.1098/rsbl.2007.0408 PubMed DOI PMC

Carbonell, A. , Pallarés, S. , Velasco, J. , Millán, A. , Picazo, F. , & Abellán, P. (2024). Thermal biology of aquatic insects in alpine lakes: Insights from diving beetles. Freshwater Biology, 69, 34–46. 10.1111/fwb.14190 DOI

Cardinale, B. J. , Duffy, J. E. , Gonzalez, A. , Hooper, D. U. , Perrings, C. , Venail, P. , Narwani, A. , Mace, G. M. , Tilman, D. , Wardle, D. A. , Kinzig, A. P. , Daily, G. C. , Loreau, M. , Grace, J. B. , Larigauderie, A. , Srivastava, D. S. , & Naeem, S. (2012). Biodiversity loss and its impact on humanity. Nature, 486, 59–67. 10.1038/nature11148 PubMed DOI

Chessel, D. , Dufour, A. , & Thioulouse, J. (2004). The ade4 package ‐ I: One‐Table methods. R News, 4(1), 5–10. https://cran.r‐project.org/doc/Rnews/

Chevenet, F. , Dolédec, S. , & Chessel, D. (1994). A fuzzy coding approach for the analysis of long‐term ecological data. Freshwater Biology, 31, 295–309.

Comte, L. , & Grenouillet, G. (2013). Do stream fish track climate change? Assessing distribution shifts in recent decades. Ecography, 36, 1236–1246. 10.1111/j.1600-0587.2013.00282.x DOI

Conrad, K. F. , Warren, M. S. , Fox, R. , Parsons, M. S. , & Woiwod, I. P. (2006). Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biological Conservation, 132, 279–291. 10.1016/j.biocon.2006.04.020 DOI

Dallas, H. F. (2016). The influence of thermal history on upper thermal limits of two species of riverine insects: The stonefly, Aphanicerca capensis, and the mayfly, Lestagella penicillata . Hydrobiologia, 781, 95–108.

Daufresne, M. , Bady, P. , & Fruget, J. F. (2007). Impacts of global changes and extreme hydroclimatic events on macroinvertebrate community structures in the French Rhone River. Oecologia, 151, 544–559. PubMed

Daufresne, M. , Roger, M. C. , Capra, H. , & Lamouroux, N. (2004). Long‐term changes within the invertebrate and fish communities of the upper Rhône River: Effects of climatic factors. Global Change Biology, 10, 124–140.

De Bie, T. , De Meester, L. , Brendonck, L. , Martens, K. , Goddeeris, B. , Ercken, D. , Hampel, H. , Denys, L. , Vanhecke, L. , Van der Gucht, K. , Van Wichelen, J. , Vyverman, W. , & Declerck, S. A. (2012). Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecology Letters, 15, 740–747. PubMed

Domisch, S. , Araújo, M. B. , Bonada, N. , Pauls, S. U. , Jähnig, S. C. , & Haase, P. (2013). Modelling distribution in European stream macroinvertebrates under future climates. Global Change Biology, 19, 752–762. 10.1111/gcb.12107 PubMed DOI

Domisch, S. , Jähnig, S. C. , & Haase, P. (2011). Climate‐change winners and losers: Stream macroinvertebrates of a submontane region in Central Europe. Freshwater Biology, 56, 2009–2020. 10.1111/j.1365-2427.2011.02631.x DOI

Essl, F. , Dullinger, S. , Genovesi, P. , Hulme, P. E. , Jeschke, J. M. , Katsanevakis, S. , Kühn, I. , Lenzner, B. , Pauchard, A. , Pyšek, P. , Rabitsch, W. , Richardson, D. M. , Seebens, H. , van Kleunen, M. , van der Putten, W. H. , Vilà, M. , & Bacher, S. (2019). A conceptual framework for range‐expanding species that track human‐induced environmental change. Bioscience, 69, 908–919. 10.1093/biosci/biz101 DOI

Fanin, N. , Gundale, M. J. , Farrell, M. , Ciobanu, M. , Baldock, J. A. , Nilsson, M. C. , Kardol, P. , & Wardle, D. A. (2018). Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nature Ecology & Evolution, 2, 269–278. 10.1038/s41559-017-0415-0 PubMed DOI

Floury, M. , Souchon, Y. , & Van Looy, K. (2018). Climatic and trophic processes drive long‐term changes in functional diversity of freshwater invertebrate communities. Ecography, 41, 209–218. 10.1111/ecog.02701 DOI

Freeman, B. G. , Lee‐Yaw, J. A. , Sunday, J. M. , & Hargreaves, A. L. (2018). Expanding, shifting and shrinking: The impact of global warming on species' elevational distributions. Global Ecology and Biogeography, 27, 1268–1276. 10.1111/geb.12774 DOI

Friberg, N. , Skriver, J. , Larsen, S. E. , Pedersen, M. L. , & Buffagni, A. (2010). Stream macroinvertebrate occurrence along gradients in organic pollution and eutrophication. Freshwater Biology, 55, 1405–1419. 10.1111/j.1365-2427.2008.02164.x DOI

Gibson‐Reinemer, D. K. , & Rahel, F. J. (2015). Inconsistent range shifts within species highlight idiosyncratic responses to climate warming. PLoS One, 10, e0132103. 10.1371/journal.pone.0132103 PubMed DOI PMC

Gillooly, J. F. , Charnov, E. L. , West, G. B. , Savage, V. M. , & Brown, J. H. (2002). Effects of size and temperature on developmental time. Nature, 417, 70–73. 10.1038/417070a PubMed DOI

Graf, W. , Murphy, J. , Dahl, J. , Zamora‐Munoz, C. , & López‐Rodríguez, M. J. (2008). Distribution and ecological preferences of European freshwater organisms. Trichoptera (Vol. 1, p. 388). Pensoft Publishing.

Guisan, A. , Petitpierre, B. , Broennimann, O. , Daehler, C. , & Kueffer, C. (2014). Unifying niche shift studies: Insights from biological invasions. Trends in Ecology & Evolution, 29, 260–269. PubMed

Haase, P. , Pilotto, F. , Li, F. , Sundermann, A. , Lorenz, A. W. , Tonkin, J. D. , & Stoll, S. (2019). Moderate warming over the past 25 years has already reorganized stream invertebrate communities. Science of the Total Environment, 658, 1531–1538. PubMed

Hallmann, C. A. , Sorg, M. , Jongejans, E. , Siepel, H. , Hofland, N. , Schwan, H. , Stenmans, W. , Müller, A. , Sumser, H. , Hörren, T. , Goulson, D. , & de Kroon, H. (2017). More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One, 12, e0185809. 10.1371/journal.pone.0185809 PubMed DOI PMC

Hamburger, K. , & Dall, P. C. (1990). The respiration of common benthic invertebrate species from the shallow littoral zone of Lake Esrom, Denmark. Hydrobiologia, 199, 117–130.

Haubrock, P. J. , Pilotto, F. , & Haase, P. (2023). Multidecadal data indicate increase of aquatic insects in central European streams. Science of the Total Environment, 879, 163017. PubMed

Hooper, D. U. , Adair, E. C. , Cardinale, B. J. , Byrnes, J. E. K. , Hungate, B. A. , Matulich, K. L. , Gonzalez, A. , Duffy, J. E. , Gamfeldt, L. , & O'Connor, M. I. (2012). A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 486, 105–108. 10.1038/nature11118 PubMed DOI

Horsák, M. , Janáč, M. , Zhai, M. , & Bojková, J. (2025). Data from: Temporal niche dynamics of spreading native invertebrates underlie doubling of richness in pristine temperate streams. Dryad Digital Repository. 10.5061/dryad.zpc866tk0 PubMed DOI PMC

Illies, J. , & Botosaneanu, L. (1963). Problèmes et méthodes de la classification et de la zonation écologique des eaux courantes, considerées surtout du point de vue faunistique: Avec 18 figures dans le texte et en supplément. Internationale Vereinigung für Theoretische und Angewandte Limnologie: Mitteilungen, 12, 1–57.

Janssens, L. , Van Dievel, M. , & Stoks, R. (2015). Warming reinforses nonconsumptive predator effects on prey growth, physiology, and body stoichiometry. Ecology, 96, 3270–3280. 10.1890/15-0030.1 PubMed DOI

Jarzyna, M. A. , & Jetz, W. (2018). Taxonomic and functional diversity change is scale dependent. Nature Communications, 9, 1–8. 10.1038/s41467-018-04889-z PubMed DOI PMC

Kirk, M. A. , & Rahel, F. J. (2022). Climate disequilibrium of fishes along elevation and latitudinal gradients: Implications for climate tracking. Journal of Biogeography, 49, 2145–2155.

Kokeš, J. , Zahrádková, S. , Němejcová, D. , Hodovský, J. , Jarkovský, J. , & Soldán, T. (2006). The PERLA system in The Czech Republic: A multivariate approach for assessing the ecological status of running waters. Hydrobiologia, 566, 343–354.

Krebs, C. J. (2014). Ecology: The experimental analysis of distribution and abundance. Pearson Education Limited.

Latli, A. , Descy, J. P. , Mondy, C. P. , Floury, M. , Viroux, L. , Otjacques, W. , Marescaux, J. , Depiereux, E. , Ovidio, M. , Usseglio‐Polatera, P. , & Kestemont, P. (2017). Long‐term trends in trait structure of riverine communities facing predation risk increase and trophic resource decline. Ecological Applications, 27, 2458–2474. PubMed

Liu, C. L. , Wolter, C. , Xian, W. W. , & Jeschke, J. M. (2020). Most invasive species largely conserve their climatic niche. Proceedings of the National Academy of Sciences of the United States of America, 117, 23643–23651. 10.1073/pnas.2004289117 PubMed DOI PMC

Lopez, G. R. , & Holopainen, I. J. (1987). Interstitial suspension‐feeding by Pisidium spp. (Pisidiidae: Bivalvia): A new guild in the lentic benthos? American Malacological Bulletin, 5, 21–30.

Lustenhouwer, N. , & Parker, I. M. (2022). Beyond tracking climate: Niche shifts during native range expansion and their implications for novel invasions. Journal of Biogeography, 49, 1481–1493. 10.1111/jbi.14395 DOI

McCormick, P. V. , Shuford, R. B. E. , & Rawlik, P. S. (2004). Changes in macroinvertebrate community structure and function along a phosphorous gradient in the Florida Everglades. Hydrobiologia, 529, 113–132. 10.1007/s10750-004-5737-7 DOI

Mondy, C. P. , & Usseglio‐Polatera, P. (2014). Using fuzzy‐coded traits to elucidate the non‐random role of anthropogenic stress in the functional homogenisation of invertebrate assemblages. Freshwater Biology, 59, 584–600. 10.1111/fwb.12289 DOI

Nijboer, R. C. , Johnson, R. K. , Verdonschot, P. F. M. , Sommerhäuser, M. , & Buffagni, A. (2004). Establishing reference conditions for European streams. Hydrobiologia, 516, 91–105.

Nordberg, E. J. , & Schwarzkopf, L. (2019). Reduced competition may allow generalist species to benefit from habitat homogenization. Journal of Applied Ecology, 56, 305–318.

Novický, O. , Treml, P. , Mrkvičková, M. , Kašpárek, L. , Brzáková, J. , Horáček, S. , & Vaculík, M. (2009). Teploty vody v tocích České republiky (p. 135). Výzkumný ústav vodohospodářský T. G. Masaryka, v.v.i.

Oksanen, J. , Blanchet, F. G. , Friendly, M. , Kindt, R. , Legendre, P. , McGlinn, D. , Minchin, P. R. , O'Hara, R. B. , Simpson, G. L. , Solymos, P. , Stevens, M. H. H. , Szöcs, E. , & Wagner, H. H. (2020). Vegan: Community ecology package. R Package Version 2.5–7. https://CRAN.R‐project.org/package=vegan

Pastore, A. I. , Barabas, G. , Bimler, M. D. , Mayfield, M. M. , & Miller, T. E. (2021). The evolution of niche overlap and competitive differences. Nature Ecology & Evolution, 5, 330–337. 10.1038/s41559-020-01383-y PubMed DOI

Petitpierre, B. , Kueffer, C. , Broennimann, O. , Randin, C. , Daehler, C. , & Guisan, A. (2012). Climatic niche shifts are rare among terrestrial plant invaders. Science, 335, 1344–1348. PubMed

Pilotto, F. , Kühn, I. , Adrian, R. , Alber, R. , Alignier, A. , Andrews, C. , Bäck, J. , Barbaro, L. , Beaumont, D. , Beenaerts, N. , Benham, S. , Boukal, D. S. , Bretagnolle, V. , Camatti, E. , Canullo, R. , Cardoso, P. G. , Ens, B. J. , Everaert, G. , Evtimova, V. , … Haase, P. (2020). Meta‐analysis of multidecadal biodiversity trends in Europe. Nature Communications, 11, 1–11. 10.1038/s41467-020-17171-y PubMed DOI PMC

Polášek, M. , Zahrádková, S. , Němejcová, D. , Straka, M. , Bareš, M. , & Opatřilová, L. (2017). Monitoring of long‐term changes in the biodiversity of running waters at the time of climate change: Proposal, implementation and incorporation into the ARROW public information system (EHP‐CZ02‐OV‐1‐018‐2014). T. G. Masaryk Water Research Institute.

Powell, K. E. , Oliver, T. H. , Johns, T. , González‐Suárez, M. , England, J. , & Roy, D. B. (2023). Abundance trends for river macroinvertebrates vary across taxa, trophic group and river typology. Global Change Biology, 29, 1282–1295. PubMed PMC

Pöckl, M. (1992). Effects of temperature, age and body size on moulting and growth in the freshwater amphipods Gammarus fossarum and G. Roeseli . Freshwater Biology, 27, 211–225.

R Core Team . (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org/

Raven, P. H. , & Wagner, D. L. (2021). Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 118, 1–6. PubMed PMC

Rumschlag, S. L. , Mahon, M. B. , Jones, D. K. , Battaglin, W. , Behrens, J. , Bernhardt, E. S. , Bradley, P. , Brown, E. , De Laender, F. , Hill, R. , Kunz, S. , Lee, S. , Rosi, E. , Schäfer, R. , Schmidt, T. S. , Simonin, M. , Smalling, K. , Voss, K. , & Rohr, J. R. (2023). Density declines, richness increases, and composition shifts in stream macroinvertebrates. Science Advances, 9(18), eadf4896. PubMed PMC

Sarremejane, R. , Cid, N. , Stubbington, R. , Datry, T. , Alp, M. , Cañedo‐Argüelles, M. , Cordero‐Rivera, A. , Csabai, Z. , Gutiérrez‐Cánovas, C. , Heino, J. , Forcellini, M. , Millán, A. , Paillex, A. , Pařil, P. , Polášek, M. , Tierno de Figueroa, J. M. , Usseglio‐Polatera, P. , Zamora‐Muñoz, C. , & Bonada, N. (2020). DISPERSE, a trait database to assess the dispersal potential of European aquatic macroinvertebrates. Scientific Data, 7, 386. PubMed PMC

Schmidt‐Kloiber, A. , & Hering, D. (2015). www.freshwaterecology.info—An online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecological Indicators, 53, 271–282.

Schoener, T. W. (1968). The Anolis lizards of Bimini: Resource partitioning in a complex Fauna. Ecology, 49, 704–726.

Soberón, J. , & Arroyo‐Peña, B. (2017). Are fundamental niches larger than the realized? Testing a 50‐year‐old prediction by Hutchinson. PLoS One, 12, e0175138. PubMed PMC

Šidagytė‐Copilas, E. , & Copilaș‐Ciocianu, D. (2023). Climatic niche differentiation between native and non‐native ranges is widespread in Ponto‐Caspian amphipods. Freshwater Biology, 69(2), 277–287. 10.1111/fwb.14210 DOI

Tachet, H. , Richoux, P. , & Bournaud, M. (2000). Invertébrés d'Eau Douce. Systématique, biologie, écologie. CNRS.

Tison‐Rosebery, J. , Leboucher, T. , Archaimbault, V. , Belliard, J. , Carayon, D. , Ferréol, M. , Floury, M. , Jeliazkov, A. , Tales, E. , Villeneuve, B. , & Passy, S. I. (2022). Decadal biodiversity trends in rivers reveal recent community rearrangements. Science of the Total Environment, 823, 153431. PubMed

Torres, U. , Godsoe, W. , Buckley, H. L. , Parry, M. , Lustig, A. , & Worner, S. P. (2018). Using niche conservatism information to prioritize hotspots of invasion by non‐native freshwater invertebrates in New Zealand. Diversity and Distributions, 24, 1802–1815.

Van Looy, K. , Floury, M. , Ferréol, M. , Prieto‐Montes, M. , & Souchon, Y. (2016). Long‐term changes in temperate stream invertebrate communities reveal a synchronous trophic amplification at the turn of the millennium. Science of the Total Environment, 565, 481–488. 10.1016/j.scitotenv.2016.04.193 PubMed DOI

Vaughan, I. P. , & Ormerod, S. J. (2012). Large‐scale, long‐term trends in British river macroinvertebrates. Global Change Biology, 18, 2184–2194. 10.1111/j.1365-2486.2012.02662.x DOI

Viana, D. S. , Oficialdegui, F. J. , Soriano, M. D. C. , Hermoso, V. , & Clavero, M. (2023). Niche dynamics along two centuries of multiple crayfish invasions. The Journal of Animal Ecology, 92, 2138–2150. 10.1111/1365-2656.14007 PubMed DOI

Warren, D. L. , Glor, R. E. , & Turelli, M. (2008). Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution, 62, 2868–2883. PubMed

Wiens, J. J. , Litvinenko, Y. , Harris, L. , & Jezkova, T. (2019). Rapid niche shifts in introduced species can be a million times faster than changes among native species and ten times faster than climate change. Journal of Biogeography, 46, 2115–2125.

Woodward, G. , Perkins, D. M. , & Brown, L. E. (2010). Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philosophical Transactions of the Royal Society, B: Biological Sciences, 365, 2093–2106. 10.1098/rstb.2010 PubMed DOI PMC

Zhai, M. , Bojková, J. , Němejcová, D. , Polášek, M. , Syrovátka, V. , & Horsák, M. (2023). Climatically promoted taxonomic homogenization of macroinvertebrates in unaffected streams varies along the river continuum. Scientific Reports, 13(1), 6292. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...