Climatically promoted taxonomic homogenization of macroinvertebrates in unaffected streams varies along the river continuum
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37072510
PubMed Central
PMC10113374
DOI
10.1038/s41598-023-32806-y
PII: 10.1038/s41598-023-32806-y
Knihovny.cz E-zdroje
- MeSH
- bezobratlí * MeSH
- ekosystém * MeSH
- klimatické změny MeSH
- monitorování životního prostředí metody MeSH
- řeky MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Biotic homogenization appears to be a global consequence of anthropogenic change. However, the underlying environmental factors contributing to homogenization are difficult to identify because their effects usually interact and confound each other. This can be the reason why there is very little evidence on the role of climate warming in homogenization. By analysing macroinvertebrate assemblages in 65 streams that were as close to natural conditions as possible, we avoided the confounding effects of common anthropogenic stressors. This approach resulted in revealing a significant effect of increased temperature (both summer and winter) on changes in macroinvertebrate compositional over the past two decades. However, homogenization was significant only at opposite ends of the river continuum (submontane brooks, low-altitude rivers). Surprisingly, species of native origin predominated overall, increasing in frequency and abundance ("winners"), while only a minority of species declined or disappeared ("losers"). We hypothesise that undisturbed conditions mitigate species declines and thus homogenization, and that the temperature increase has so far been beneficial to most native species. Although we may have only captured a transitional state due to extinction debt, this underscores the importance of maintaining ecological conditions in stream to prevent species loss due to climate change.
Department of Botany and Zoology Masaryk University Kotlářská 2 611 37 Brno Czech Republic
T G Masaryk Water Research Institute p r i Podbabská 2582 30 160 00 Prague 6 Czech Republic
Zobrazit více v PubMed
Vermeij GJ. When biotas meet: Understanding biotic interchange. Science. 1991;253:1099–1104. doi: 10.1126/science.253.5024.1099. PubMed DOI
Baiser B, Olden JD, Record S, Lockwood JL, McKinney ML. Pattern and process of biotic homogenization in the New Pangaea. Proc. R. Soc. B Biol. Sci. 2012;279:4772–4777. doi: 10.1098/rspb.2012.1651. PubMed DOI PMC
McKinney ML, Lockwood JL. Biotic homogenization: A few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 1999;14:450–453. doi: 10.1016/S0169-5347(99)01679-1. PubMed DOI
Olden JD, Rooney TP. On defining and quantifying biotic homogenization. Glob. Ecol. Biogeogr. 2006;15:113–120. doi: 10.1111/j.1466-822X.2006.00214.x. DOI
Rahel FJ, Olden JD. Assessing the effects of climate change on aquatic invasive species. Conserv. Biol. 2008;22:521–533. doi: 10.1111/j.1523-1739.2008.00950.x. PubMed DOI
Radinger J, Alcaraz-Hernández JD, García-Berthou E. Environmental filtering governs the spatial distribution of alien fishes in a large, human - impacted Mediterranean river. Divers. Distrib. 2019;25(5):701–714. doi: 10.1111/ddi.12895. DOI
Rahel FJ. Homogenization of freshwater faunas. Annu. Rev. Ecol. Syst. 2002;33:291–315. doi: 10.1146/annurev.ecolsys.33.010802.150429. DOI
Buisson L, Grenouillet G. Contrasted impacts of climate change on stream fish assemblages along an environmental gradient. Divers. Distrib. 2009;15:613–626. doi: 10.1111/j.1472-4642.2009.00565.x. DOI
Finderup Nielsen T, Sand-Jensen K, Dornelas M, Bruun HH. More is less: Net gain in species richness, but biotic homogenization over 140 years. Ecol. Lett. 2019;220:1650–1657. doi: 10.1111/ele.13361. PubMed DOI
Pool TK, Olden JD. Taxonomic and functional homogenization of an endemic desert fish fauna. Divers. Distrib. 2012;18:366–376. doi: 10.1111/j.1472-4642.2011.00836.x. DOI
Donohue I, Jackson AL, Pusch MT, Irvine K. Nutrient enrichment homogenizes lake benthic assemblages at local and regional scales. Ecology. 2009;90(12):3470–3477. doi: 10.1890/09-0415.1. PubMed DOI
Miyazono S, Patiño R, Taylor CM. Desertification, salinization, and biotic homogenization in a dryland river ecosystem. Sci. Total Environ. 2015;511:444–453. doi: 10.1016/j.scitotenv.2014.12.079. PubMed DOI
Siqueira T, Lacerda CGT, Saito VS. How does landscape modification induce biological homogenization in tropical stream metacommunities? Biotropica. 2015;47:509–516. doi: 10.1111/btp.12224. DOI
Olden JD. Biotic homogenization: A new research agenda for conservation biogeography. J. Biogeogr. 2006;33:2027–2039. doi: 10.1111/j.1365-2699.2006.01572.xKjjksdnp15. DOI
Clavel J, Julliard R, Devictor V. Worldwide decline of specialist species: Toward a global functional homogenization? Front. Ecol. Environ. 2011;9:222–228. doi: 10.1890/080216. DOI
Woodward G, Perkins DM, Brown LE. Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philos. Trans. R. Soc. B Biol. Sci. 2010;365:2093–2106. doi: 10.1098/rstb.2010.0055. PubMed DOI PMC
Seebacher F, White CR, Franklin CE. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change Nat. 2015;5:61–66. doi: 10.1038/nclimate2457. DOI
Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NLR, Syke MT, Walker BH, Walker M, Wall DH. Global biodiversity scenarios for the year 2100. Science. 2000;287:1770–1774. doi: 10.1126/science.287.5459.1770. PubMed DOI
Arora R, Tockner K, Venohr M. Changing river temperatures in northern Germany: Trends and drivers of change. Hydrol. Process. 2016;30:3084–3096. doi: 10.1002/hyp.10849. DOI
Domisch S, Araújo MB, Bonada N, Pauls SU, Jähnig SC, Haase P. Modelling distribution in European stream macroinvertebrates under future climates. Glob. Change Biol. 2013;19:752–762. doi: 10.1111/gcb.12107. PubMed DOI
Nukazawa K, Arai R, Kazama S, Takemon Y. Projection of invertebrate populations in the headwater streams of a temperate catchment under a changing climate. Sci. Total Environ. 2018;642:610–618. doi: 10.1016/j.scitotenv.2018.06.109. PubMed DOI
Buisson L, Thuiller W, Lek S, Lim P, Grenouillet G. Climate change hastens the turnover of stream fish assemblages. Glob. Change Biol. 2008;14:2232–2248. doi: 10.1111/j.1365-2486.2008.01657.x. DOI
Haase P, Pilotto F, Li F, Sundermann A, Lorenz AW, Tonkin JD, Stoll S. Moderate warming over the past 25 years has already reorganized stream invertebrate communities. Sci. Total Environ. 2019;658:1531–1538. doi: 10.1016/j.scitotenv.2018.12.234. PubMed DOI
Magurran AE, Dornelas M, Moyes F, Gotelli NJ, McGill B. Rapid biotic homogenization of marine fish assemblages. Nat. Commun. 2015;6:8405. doi: 10.1038/ncomms9405. PubMed DOI PMC
Mouton TL, Tonkin JD, Stephenson F, Verburg P, Floury M. Increasing climate-driven taxonomic homogenization but functional differentiation among river macroinvertebrate assemblages. Glob. Change Biol. 2020;26:6904–6915. doi: 10.1111/gcb.15389. PubMed DOI
Durance I, Ormerod SJ. Trends in water quality and discharge confound long-term warming effects on river macroinvertebrates. Freshw. Biol. 2009;54:388–405. doi: 10.1111/j.1365-2427.2008.02112.x. DOI
Oliver TH, Morecroft MD. Interactions between climate change and land use change on biodiversity: Attribution problems, risks, and opportunities. Wiley Interdiscip. Rev. Clim. Change. 2014;5:317–335. doi: 10.1002/wcc.271. DOI
Kuemmerlen M, Schmalz B, Cai Q, Haase P, Fohrer N, Jähnig SC. An attack on two fronts: Predicting how changes in land use and climate affect the distribution of stream macroinvertebrates. Freshw. Biol. 2015;60:1443–1458. doi: 10.1111/fwb.12580. DOI
Zedková B, Rádková V, Bojková J, Soldán T, Zahrádková S. Mayflies Ephemeroptera) as indicators of environmental changes in the past five decades: A case study from the Morava and Odra River Basins (Czech Republic) Aquat. Conserv. Mar. Freshwat. Ecosyst. 2015;25:622–638. doi: 10.1002/aqc.2529. DOI
Kokeš J, Zahrádková S, Němejcová D, Hodovský J, Jarkovský J, Soldán T. The PERLA system in the Czech Republic: A multivariate approach to assess ecological status of running waters. Hydrobiologia. 2006;566:343–354. doi: 10.1007/s10750-006-0085-4. DOI
Czech State Norm No. 75 7701. Water quality - Methodology for sampling and treatment of macroinvertebrates from running waters using method PERLA. Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, Praha (2008).
Birk, S., Strackbein, J. & Hering, D. WISER methods database. Version: March 2011. http://www.wiser.eu/results/method-database/ (2010).
Friberg N, Sandin L, Furse MT, Larsen SE, Clarke RT, Haase P. Comparison of macroinvertebrate sampling methods in Europe. Hydrobiologia. 2006;566:365–378. doi: 10.1007/s10750-006-0083-6. DOI
Rosendorf, P. Metodika hodnocení všeobecných fyzikálně chemických složek ekologického stavu útvarů povrchových vod tekoucích. Výzkumný ústav vodohospodářský (T.G. Masaryka, Praha, 2011).
Furse M. T., Moss D., Wright J. F., Armitage P. D. & Gunn R. J. M. A Practical Manual to the Classification and Prediction of Macroinvertebrate Communities in Running Water in Great Britain (Freshwater Biological Association, River laboratory, 1986).
Polášek, M., Zahrádková, S., Němejcová, D., Straka, M., Bareš, M., & Opatřilová, L. Monitoring of Long-Term Changes in the Biodiversity of Running Waters at the Time of Climate Change: Proposal, Implementation and Incorporation into the ARROW Public Information System (EHP-CZ02-OV-1-018-2014) (T. G. Masaryk Water Research Institute, Brno, 2017).
R Core Team . R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2018.
Oksanen, J., et al.vegan: Community Ecology Package. R package version 2.5–6. https://CRAN.R-project.org/package=vegan (2019).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
Floury M, Souchon Y, van Looy K. Climatic and trophic processes drive long-term changes in functional diversity of freshwater invertebrate communities. Ecography. 2018;41(1):209–218. doi: 10.1111/ecog.02701. DOI
Larsen S, Chase JM, Durance I, Ormerod SJ. Lifting the veil: Richness measurements fail to detect systematic biodiversity change over three decades. Ecology. 2018;99:1316–1326. doi: 10.1002/ecy.2213. PubMed DOI
Hillebrand H, Blasius B, Borer ET, Chase JM, Downing JA, Eriksson BK, Filstrup CT, Harpole WS, Hodapp D, Larsen S, Lewandowska AM, Seabloom EW, Van de Waal DB, Ryabov AB. Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. J. Appl. Ecol. 2018;55:169–184. doi: 10.1111/1365-2664.12959. DOI
Jyväsjärvi J, Marttila H, Rossi PM, Ala-Aho P, Olofsson B, Nisell J, Backman B, Ilmonen J, Virtanen R, Paasivirta L, Britschgi R, Kløve B, Muotka T. Climate-induced warming imposes a threat to north European spring ecosystems. Glob. Change Biol. 2015;21:4561–4569. doi: 10.1111/gcb.13067. PubMed DOI
Domisch S, Jähnig SC, Haase P. Climate-change winners and losers: Stream macroinvertebrates of a submontane region in Central Europe. Freshw. Biol. 2011;56:2009–2020. doi: 10.1111/j.1365-2427.2011.02631.x. DOI
Van Looy K, Floury M, Ferréol M, Prieto-Montes M, Souchon Y. Long-term changes in temperate stream invertebrate communities reveal a synchronous trophic amplification at the turn of the millennium. Sci. Total Environ. 2016;565:481–488. doi: 10.1016/j.scitotenv.2016.04.193. PubMed DOI
Bruno D, Belmar O, Maire A, Morel A, Dumont B, Datry T. Structural and functional responses of invertebrate communities to climate change and flow regulation in alpine catchments. Glob. Change Biol. 2019;25:1612–1628. doi: 10.1111/gcb.14581. PubMed DOI PMC
Schmidt-Kloiber A, Hering D. www.freshwaterecology.info—an online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecol. Ind. 2015;53:271–282. doi: 10.1016/j.ecolind.2015.02.007. DOI
Cardinale BJ, Gonzalez A, Allington GRH, Loreau M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Cons. 2018;219:175–183. doi: 10.1016/j.biocon.2017.12.021. DOI
Vaughan IP, Ormerod SJ. Large-scale, long-term trends in British river macroinvertebrates. Glob. Change Biol. 2012;18:2184–2194. doi: 10.1111/j.1365-2486.2012.02662.x. DOI
Floury M, Usseglio-Polatera P, Ferreol M, Delattre C, Souchon Y. Global climate change in large European rivers: Long-term effects on macroinvertebrate communities and potential local confounding factors. Glob. Change Biol. 2013;19:1085–1099. doi: 10.1111/gcb.12124. PubMed DOI
Baranov V, Jourdan J, Pilotto F, Wagner R, Haase P. Complex and nonlinear climate-driven changes in freshwater insect communities over 42 years. Conserv. Biol. 2020;34(5):1241–1251. doi: 10.1111/cobi.13477. PubMed DOI
Durance I, Ormerod SJ. Climate change effects on upland stream macroinvertebrates over a 25-year period. Glob. Change Biol. 2007;13:942–957. doi: 10.1111/j.1365-2486.2007.01340.x. DOI
Pyne MI, Poff NL. Vulnerability of stream community composition and function to projected thermal warming and hydrologic change across ecoregions in the western United States. Glob. Change Biol. 2017;23:77–93. doi: 10.1111/gcb.13437. PubMed DOI
Kakouei K, Kiesel J, Domisch S, Irving KS, Jähnig SC, Kail J. Projected effects of climate change induced flow alterations on stream macroinvertebrate abundances. Ecol. Evol. 2018;8:3393–3409. doi: 10.1002/ece3.3907. PubMed DOI PMC
Pařil P, Polášek M, Loskotová B, Straka M, Crabot J, Datry T. An unexpected source of invertebrate community recovery in intermittent streams from a humid continental climate. Freshw. Biol. 2019;64:1971–1983. doi: 10.1111/fwb.13386. DOI
Crabot J, Polášek M, Launay B, Pařil P, Datry T. Drying in newly intermittent rivers leads to higher variability of invertebrate communities. Freshw. Biol. 2020;66:730–744. doi: 10.1111/fwb.13673. DOI
Leigh C, Datry T. Drying as a primary hydrological determinant of biodiversity in river systems: A broad scale analysis. Ecography. 2017;40(4):487–499. doi: 10.1111/ecog.02230. DOI
Datry T, Larned ST, Fritz KM, Bogan MT, Wood PJ, Meyer EI, Santos AN. Broad-scale patterns of invertebrate richness and community composition in temporary rivers: Effects of flow intermittence. Ecography. 2014;37:94–104. doi: 10.1111/j.1600-0587.2013.00287.x. DOI
ESRI (2003) ArcGIS 8.3. Environmental Systems Research Institute, Redlands, CA, USA. http://www.esri.com. Accessed 2 Mar 2023.