Climatically promoted taxonomic homogenization of macroinvertebrates in unaffected streams varies along the river continuum

. 2023 Apr 18 ; 13 (1) : 6292. [epub] 20230418

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37072510
Odkazy

PubMed 37072510
PubMed Central PMC10113374
DOI 10.1038/s41598-023-32806-y
PII: 10.1038/s41598-023-32806-y
Knihovny.cz E-zdroje

Biotic homogenization appears to be a global consequence of anthropogenic change. However, the underlying environmental factors contributing to homogenization are difficult to identify because their effects usually interact and confound each other. This can be the reason why there is very little evidence on the role of climate warming in homogenization. By analysing macroinvertebrate assemblages in 65 streams that were as close to natural conditions as possible, we avoided the confounding effects of common anthropogenic stressors. This approach resulted in revealing a significant effect of increased temperature (both summer and winter) on changes in macroinvertebrate compositional over the past two decades. However, homogenization was significant only at opposite ends of the river continuum (submontane brooks, low-altitude rivers). Surprisingly, species of native origin predominated overall, increasing in frequency and abundance ("winners"), while only a minority of species declined or disappeared ("losers"). We hypothesise that undisturbed conditions mitigate species declines and thus homogenization, and that the temperature increase has so far been beneficial to most native species. Although we may have only captured a transitional state due to extinction debt, this underscores the importance of maintaining ecological conditions in stream to prevent species loss due to climate change.

Zobrazit více v PubMed

Vermeij GJ. When biotas meet: Understanding biotic interchange. Science. 1991;253:1099–1104. doi: 10.1126/science.253.5024.1099. PubMed DOI

Baiser B, Olden JD, Record S, Lockwood JL, McKinney ML. Pattern and process of biotic homogenization in the New Pangaea. Proc. R. Soc. B Biol. Sci. 2012;279:4772–4777. doi: 10.1098/rspb.2012.1651. PubMed DOI PMC

McKinney ML, Lockwood JL. Biotic homogenization: A few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 1999;14:450–453. doi: 10.1016/S0169-5347(99)01679-1. PubMed DOI

Olden JD, Rooney TP. On defining and quantifying biotic homogenization. Glob. Ecol. Biogeogr. 2006;15:113–120. doi: 10.1111/j.1466-822X.2006.00214.x. DOI

Rahel FJ, Olden JD. Assessing the effects of climate change on aquatic invasive species. Conserv. Biol. 2008;22:521–533. doi: 10.1111/j.1523-1739.2008.00950.x. PubMed DOI

Radinger J, Alcaraz-Hernández JD, García-Berthou E. Environmental filtering governs the spatial distribution of alien fishes in a large, human - impacted Mediterranean river. Divers. Distrib. 2019;25(5):701–714. doi: 10.1111/ddi.12895. DOI

Rahel FJ. Homogenization of freshwater faunas. Annu. Rev. Ecol. Syst. 2002;33:291–315. doi: 10.1146/annurev.ecolsys.33.010802.150429. DOI

Buisson L, Grenouillet G. Contrasted impacts of climate change on stream fish assemblages along an environmental gradient. Divers. Distrib. 2009;15:613–626. doi: 10.1111/j.1472-4642.2009.00565.x. DOI

Finderup Nielsen T, Sand-Jensen K, Dornelas M, Bruun HH. More is less: Net gain in species richness, but biotic homogenization over 140 years. Ecol. Lett. 2019;220:1650–1657. doi: 10.1111/ele.13361. PubMed DOI

Pool TK, Olden JD. Taxonomic and functional homogenization of an endemic desert fish fauna. Divers. Distrib. 2012;18:366–376. doi: 10.1111/j.1472-4642.2011.00836.x. DOI

Donohue I, Jackson AL, Pusch MT, Irvine K. Nutrient enrichment homogenizes lake benthic assemblages at local and regional scales. Ecology. 2009;90(12):3470–3477. doi: 10.1890/09-0415.1. PubMed DOI

Miyazono S, Patiño R, Taylor CM. Desertification, salinization, and biotic homogenization in a dryland river ecosystem. Sci. Total Environ. 2015;511:444–453. doi: 10.1016/j.scitotenv.2014.12.079. PubMed DOI

Siqueira T, Lacerda CGT, Saito VS. How does landscape modification induce biological homogenization in tropical stream metacommunities? Biotropica. 2015;47:509–516. doi: 10.1111/btp.12224. DOI

Olden JD. Biotic homogenization: A new research agenda for conservation biogeography. J. Biogeogr. 2006;33:2027–2039. doi: 10.1111/j.1365-2699.2006.01572.xKjjksdnp15. DOI

Clavel J, Julliard R, Devictor V. Worldwide decline of specialist species: Toward a global functional homogenization? Front. Ecol. Environ. 2011;9:222–228. doi: 10.1890/080216. DOI

Woodward G, Perkins DM, Brown LE. Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philos. Trans. R. Soc. B Biol. Sci. 2010;365:2093–2106. doi: 10.1098/rstb.2010.0055. PubMed DOI PMC

Seebacher F, White CR, Franklin CE. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change Nat. 2015;5:61–66. doi: 10.1038/nclimate2457. DOI

Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NLR, Syke MT, Walker BH, Walker M, Wall DH. Global biodiversity scenarios for the year 2100. Science. 2000;287:1770–1774. doi: 10.1126/science.287.5459.1770. PubMed DOI

Arora R, Tockner K, Venohr M. Changing river temperatures in northern Germany: Trends and drivers of change. Hydrol. Process. 2016;30:3084–3096. doi: 10.1002/hyp.10849. DOI

Domisch S, Araújo MB, Bonada N, Pauls SU, Jähnig SC, Haase P. Modelling distribution in European stream macroinvertebrates under future climates. Glob. Change Biol. 2013;19:752–762. doi: 10.1111/gcb.12107. PubMed DOI

Nukazawa K, Arai R, Kazama S, Takemon Y. Projection of invertebrate populations in the headwater streams of a temperate catchment under a changing climate. Sci. Total Environ. 2018;642:610–618. doi: 10.1016/j.scitotenv.2018.06.109. PubMed DOI

Buisson L, Thuiller W, Lek S, Lim P, Grenouillet G. Climate change hastens the turnover of stream fish assemblages. Glob. Change Biol. 2008;14:2232–2248. doi: 10.1111/j.1365-2486.2008.01657.x. DOI

Haase P, Pilotto F, Li F, Sundermann A, Lorenz AW, Tonkin JD, Stoll S. Moderate warming over the past 25 years has already reorganized stream invertebrate communities. Sci. Total Environ. 2019;658:1531–1538. doi: 10.1016/j.scitotenv.2018.12.234. PubMed DOI

Magurran AE, Dornelas M, Moyes F, Gotelli NJ, McGill B. Rapid biotic homogenization of marine fish assemblages. Nat. Commun. 2015;6:8405. doi: 10.1038/ncomms9405. PubMed DOI PMC

Mouton TL, Tonkin JD, Stephenson F, Verburg P, Floury M. Increasing climate-driven taxonomic homogenization but functional differentiation among river macroinvertebrate assemblages. Glob. Change Biol. 2020;26:6904–6915. doi: 10.1111/gcb.15389. PubMed DOI

Durance I, Ormerod SJ. Trends in water quality and discharge confound long-term warming effects on river macroinvertebrates. Freshw. Biol. 2009;54:388–405. doi: 10.1111/j.1365-2427.2008.02112.x. DOI

Oliver TH, Morecroft MD. Interactions between climate change and land use change on biodiversity: Attribution problems, risks, and opportunities. Wiley Interdiscip. Rev. Clim. Change. 2014;5:317–335. doi: 10.1002/wcc.271. DOI

Kuemmerlen M, Schmalz B, Cai Q, Haase P, Fohrer N, Jähnig SC. An attack on two fronts: Predicting how changes in land use and climate affect the distribution of stream macroinvertebrates. Freshw. Biol. 2015;60:1443–1458. doi: 10.1111/fwb.12580. DOI

Zedková B, Rádková V, Bojková J, Soldán T, Zahrádková S. Mayflies Ephemeroptera) as indicators of environmental changes in the past five decades: A case study from the Morava and Odra River Basins (Czech Republic) Aquat. Conserv. Mar. Freshwat. Ecosyst. 2015;25:622–638. doi: 10.1002/aqc.2529. DOI

Kokeš J, Zahrádková S, Němejcová D, Hodovský J, Jarkovský J, Soldán T. The PERLA system in the Czech Republic: A multivariate approach to assess ecological status of running waters. Hydrobiologia. 2006;566:343–354. doi: 10.1007/s10750-006-0085-4. DOI

Czech State Norm No. 75 7701. Water quality - Methodology for sampling and treatment of macroinvertebrates from running waters using method PERLA. Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, Praha (2008).

Birk, S., Strackbein, J. & Hering, D. WISER methods database. Version: March 2011. http://www.wiser.eu/results/method-database/ (2010).

Friberg N, Sandin L, Furse MT, Larsen SE, Clarke RT, Haase P. Comparison of macroinvertebrate sampling methods in Europe. Hydrobiologia. 2006;566:365–378. doi: 10.1007/s10750-006-0083-6. DOI

Rosendorf, P. Metodika hodnocení všeobecných fyzikálně chemických složek ekologického stavu útvarů povrchových vod tekoucích. Výzkumný ústav vodohospodářský (T.G. Masaryka, Praha, 2011).

Furse M. T., Moss D., Wright J. F., Armitage P. D. & Gunn R. J. M. A Practical Manual to the Classification and Prediction of Macroinvertebrate Communities in Running Water in Great Britain (Freshwater Biological Association, River laboratory, 1986).

Polášek, M., Zahrádková, S., Němejcová, D., Straka, M., Bareš, M., & Opatřilová, L. Monitoring of Long-Term Changes in the Biodiversity of Running Waters at the Time of Climate Change: Proposal, Implementation and Incorporation into the ARROW Public Information System (EHP-CZ02-OV-1-018-2014) (T. G. Masaryk Water Research Institute, Brno, 2017).

R Core Team . R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2018.

Oksanen, J., et al.vegan: Community Ecology Package. R package version 2.5–6. https://CRAN.R-project.org/package=vegan (2019).

Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

Floury M, Souchon Y, van Looy K. Climatic and trophic processes drive long-term changes in functional diversity of freshwater invertebrate communities. Ecography. 2018;41(1):209–218. doi: 10.1111/ecog.02701. DOI

Larsen S, Chase JM, Durance I, Ormerod SJ. Lifting the veil: Richness measurements fail to detect systematic biodiversity change over three decades. Ecology. 2018;99:1316–1326. doi: 10.1002/ecy.2213. PubMed DOI

Hillebrand H, Blasius B, Borer ET, Chase JM, Downing JA, Eriksson BK, Filstrup CT, Harpole WS, Hodapp D, Larsen S, Lewandowska AM, Seabloom EW, Van de Waal DB, Ryabov AB. Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. J. Appl. Ecol. 2018;55:169–184. doi: 10.1111/1365-2664.12959. DOI

Jyväsjärvi J, Marttila H, Rossi PM, Ala-Aho P, Olofsson B, Nisell J, Backman B, Ilmonen J, Virtanen R, Paasivirta L, Britschgi R, Kløve B, Muotka T. Climate-induced warming imposes a threat to north European spring ecosystems. Glob. Change Biol. 2015;21:4561–4569. doi: 10.1111/gcb.13067. PubMed DOI

Domisch S, Jähnig SC, Haase P. Climate-change winners and losers: Stream macroinvertebrates of a submontane region in Central Europe. Freshw. Biol. 2011;56:2009–2020. doi: 10.1111/j.1365-2427.2011.02631.x. DOI

Van Looy K, Floury M, Ferréol M, Prieto-Montes M, Souchon Y. Long-term changes in temperate stream invertebrate communities reveal a synchronous trophic amplification at the turn of the millennium. Sci. Total Environ. 2016;565:481–488. doi: 10.1016/j.scitotenv.2016.04.193. PubMed DOI

Bruno D, Belmar O, Maire A, Morel A, Dumont B, Datry T. Structural and functional responses of invertebrate communities to climate change and flow regulation in alpine catchments. Glob. Change Biol. 2019;25:1612–1628. doi: 10.1111/gcb.14581. PubMed DOI PMC

Schmidt-Kloiber A, Hering D. www.freshwaterecology.info—an online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecol. Ind. 2015;53:271–282. doi: 10.1016/j.ecolind.2015.02.007. DOI

Cardinale BJ, Gonzalez A, Allington GRH, Loreau M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Cons. 2018;219:175–183. doi: 10.1016/j.biocon.2017.12.021. DOI

Vaughan IP, Ormerod SJ. Large-scale, long-term trends in British river macroinvertebrates. Glob. Change Biol. 2012;18:2184–2194. doi: 10.1111/j.1365-2486.2012.02662.x. DOI

Floury M, Usseglio-Polatera P, Ferreol M, Delattre C, Souchon Y. Global climate change in large European rivers: Long-term effects on macroinvertebrate communities and potential local confounding factors. Glob. Change Biol. 2013;19:1085–1099. doi: 10.1111/gcb.12124. PubMed DOI

Baranov V, Jourdan J, Pilotto F, Wagner R, Haase P. Complex and nonlinear climate-driven changes in freshwater insect communities over 42 years. Conserv. Biol. 2020;34(5):1241–1251. doi: 10.1111/cobi.13477. PubMed DOI

Durance I, Ormerod SJ. Climate change effects on upland stream macroinvertebrates over a 25-year period. Glob. Change Biol. 2007;13:942–957. doi: 10.1111/j.1365-2486.2007.01340.x. DOI

Pyne MI, Poff NL. Vulnerability of stream community composition and function to projected thermal warming and hydrologic change across ecoregions in the western United States. Glob. Change Biol. 2017;23:77–93. doi: 10.1111/gcb.13437. PubMed DOI

Kakouei K, Kiesel J, Domisch S, Irving KS, Jähnig SC, Kail J. Projected effects of climate change induced flow alterations on stream macroinvertebrate abundances. Ecol. Evol. 2018;8:3393–3409. doi: 10.1002/ece3.3907. PubMed DOI PMC

Pařil P, Polášek M, Loskotová B, Straka M, Crabot J, Datry T. An unexpected source of invertebrate community recovery in intermittent streams from a humid continental climate. Freshw. Biol. 2019;64:1971–1983. doi: 10.1111/fwb.13386. DOI

Crabot J, Polášek M, Launay B, Pařil P, Datry T. Drying in newly intermittent rivers leads to higher variability of invertebrate communities. Freshw. Biol. 2020;66:730–744. doi: 10.1111/fwb.13673. DOI

Leigh C, Datry T. Drying as a primary hydrological determinant of biodiversity in river systems: A broad scale analysis. Ecography. 2017;40(4):487–499. doi: 10.1111/ecog.02230. DOI

Datry T, Larned ST, Fritz KM, Bogan MT, Wood PJ, Meyer EI, Santos AN. Broad-scale patterns of invertebrate richness and community composition in temporary rivers: Effects of flow intermittence. Ecography. 2014;37:94–104. doi: 10.1111/j.1600-0587.2013.00287.x. DOI

ESRI (2003) ArcGIS 8.3. Environmental Systems Research Institute, Redlands, CA, USA. http://www.esri.com. Accessed 2 Mar 2023.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...