Human scent signature on cartridge case survives gun being fired: A preliminary study on a potential of scent residues as an identification tool
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36947531
PubMed Central
PMC10032514
DOI
10.1371/journal.pone.0283259
PII: PONE-D-22-24020
Knihovny.cz E-zdroje
- MeSH
- chromatografie plynová MeSH
- feromony MeSH
- lidé MeSH
- odoranty * analýza MeSH
- soudní lékařství * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- feromony MeSH
This paper focuses on a chemical analysis of human scent samples that were obtained from cartridge cases after being fired and their comparison with scent samples collected under laboratory conditions. Scent samples were analyzed by comprehensive two-dimensional gas chromatography coupled with the time-of-flight mass spectrometer. The results obtained from the chemical analyzes confirmed the desired stability of the human scent evidence and outlined the possible application for forensic purposes. The qualitative results of the study converge with the findings of previous studies on the composition of human scent and the chemical composition of human fingerprints. Furthermore, statistical analyzes were performed employing similarity algorithms such as Pearson's and Spearman's correlations, or Kendall's tau. The resulting comparison of the scent samples secured on fired cartridge cases compared with those samples collected under laboratory conditions yielded ten out of ten correct identifications of the scent inflictor.
Faculty of Chemical Engineering Department of Analytical Chemistry UCT Prague Prague Czech Republic
Faculty of Chemical Engineering Department of Mathematics UCT Prague Prague Czech Republic
Faculty of Chemical Engineering Department of Physical Chemistry UCT Prague Prague Czech Republic
Zobrazit více v PubMed
Marchal S, Bregeras O, Puaux D, Gervais R, Ferry B. Rigorous training of dogs leads to high accuracy in human scent matching-to-sample performance. Plos one. 2016;11(2):e0146963. doi: 10.1371/journal.pone.0146963 PubMed DOI PMC
Pinc L, Bartoš L, Reslova A, Kotrba R. Dogs discriminate identical twins. PLoS One. 2011;6(6):e20704. doi: 10.1371/journal.pone.0020704 PubMed DOI PMC
Hepper PG. The discrimination of human odour by the dog. Perception. 1988;17(4):549–54. Epub 1988/01/01. doi: 10.1068/p170549 . PubMed DOI
Stockham RA, Slavin DL, Kift W, editors. Specialized Use of Human Scent in Criminal Investigations 2004.
Souza SL, Graça G, Oliva A. Characterization of sweat induced with pilocarpine, physical exercise, and collected passively by metabolomic analysis. Skin Research and Technology. 2018;24(2):187–95. doi: 10.1111/srt.12412 PubMed DOI
Curran AM, Ramirez CF, Schoon AA, Furton KG. The frequency of occurrence and discriminatory power of compounds found in human scent across a population determined by SPME-GC/MS. Journal of Chromatography B. 2007;846(1):86–97. doi: 10.1016/j.jchromb.2006.08.039 PubMed DOI
Gower DB, Holland KT, Mallet AI, Rennie PJ, Watkins WJ. Comparison of 16-Androstene steroid concentrations in sterile apocrine sweat and axillary secretions: Interconversions of 16-Androstenes by the axillary microflora—a mechanism for axillary odour production in man? The Journal of Steroid Biochemistry and Molecular Biology. 1994;48(4):409–18. doi: 10.1016/0960-0760(94)90082-5 PubMed DOI
James AG, Hyliands D, Johnston H. Generation of volatile fatty acids by axillary bacteria. Int J Cosmet Sci. 2004;26(3):149–56. Epub 2008/05/23. doi: 10.1111/j.1467-2494.2004.00214.x . PubMed DOI
Stockham RA, Slavin DL, Kift W. Survivability of Human Scent. Forensic Science Communications. 2004;6.
Curran AM, Prada PA, Furton KG. Canine human scent identifications with post-blast debris collected from improvised explosive devices. Forensic Science International. 2010;199(1):103–8. doi: 10.1016/j.forsciint.2010.03.021 PubMed DOI
Doležal P, Furton KG, Lněničková J, Kyjaková P, Škeříková V, Valterová I, et al.. Multiplicity of human scent signature. Egyptian Journal of Forensic Sciences. 2019;9(1):7. doi: 10.1186/s41935-019-0112-z DOI
Pojmanová P, Ladislavová N, Urban Š. Development of a Method for the Measurement of Human Scent Samples Using Comprehensive Two-Dimensional Gas Chromatography with Mass Detection. Separations. 2021;8(12):232. doi: 10.3390/separations8120232 DOI
Kankainen A, Taskinen S, Oja H, editors. On Mardia’s Tests of Multinormality2004; Basel: Birkhäuser Basel.
Bro R, Smilde AK. Principal component analysis. Anal Methods-UK. 2014;6(9):2812–31. doi: 10.1039/C3AY41907J DOI
Fix E, Hodges JL. Discriminatory analysis, nonparametric discrimination: consistency properties. Int Stat Rev. 1989;57(3):238–47. doi: 10.2307/1403797 DOI
Thomas T P. Vijayaraghavan A, Emmanuel S. Nearest Neighbor and Fingerprint Classification. Machine Learning Approaches in Cyber Security Analytics. Singapore: Springer Singapore; 2020. p. 107–28. doi: 10.1007/978-981-15-1706-8_6 DOI
Song YY, Lu Y. Decision tree methods: applications for classification and prediction. Shanghai Arch Psychiatry. 2015;27(2):130–5. doi: 10.11919/j.issn.1002-0829.215044 ; PubMed Central PMCID: PMC4466856. PubMed DOI PMC
Liashchynskyi P, Liashchynskyi P. Grid search, random search, genetic algorithm: a big comparison for NAS. arXiv preprint arXiv:191206059. 2019. doi: 10.48550/arXiv.1912.06059 DOI
Powers DM. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv preprint arXiv:201016061. 2020. doi: 10.48550/arXiv.2010.16061 DOI
Han J, Kamber M, Pei J. 2—Getting to Know Your Data. Data Mining (Third Edition). Boston: Morgan Kaufmann; 2012. p. 39–82.10.1016/B978-0-12-381479-1.00002-2 DOI
Berman JJ. 11—Indispensable Tips for Fast and Simple Big Data Analysis. Principles and Practice of Big Data (Second Edition): Academic Press; 2018. p. 231–57.10.1016/B978-0-12-815609-4.00011-X DOI
Mukaka MM. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med J. 2012;24(3):69–71. . PubMed PMC
Rivals I, Sautier C, Cognon G, Cuzuel V. Evaluation of distance-based approaches for forensic comparison: Application to hand odor evidence. Journal of Forensic Sciences. 2021;66(6):2208–17. doi: 10.1111/1556-4029.14818 PubMed DOI
Arndt S, Turvey C, Andreasen NC. Correlating and predicting psychiatric symptom ratings: Spearmans r versus Kendalls tau correlation. J Psychiat Res. 1999;33(2):97–104. doi: 10.1016/s0022-3956(98)90046-2 PubMed DOI
Hunter JD. Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering. 2007;9(3):90–5. doi: 10.1109/MCSE.2007.55 DOI
Harris CR, Millman KJ, Van Der Walt SJ, Gommers R, Virtanen P, Cournapeau D, et al.. Array programming with NumPy. Nature. 2020;585(7825):357–62. doi: 10.1038/s41586-020-2649-2 PubMed DOI PMC
McKinney W. pandas: a foundational Python library for data analysis and statistics. Python for high performance and scientific computing. 2011;14(9):1–9. doi: 10.5281/zenodo.3509134 DOI
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.. Scikit-learn: Machine learning in Python. the Journal of machine Learning research. 2011;12:2825–30.
de Lacy Costello B, Amann A, Al-Kateb H, Flynn C, Filipiak W, Khalid T, et al.. A review of the volatiles from the healthy human body. J Breath Res. 2014;8(1):014001. doi: 10.1088/1752-7155/8/1/014001 PubMed DOI
Penn DJ, Oberzaucher E, Grammer K, Fischer G, Soini HA, Wiesler D, et al.. Individual and gender fingerprints in human body odour. J R Soc Interface. 2007;4(13):331–40. doi: 10.1098/rsif.2006.0182 PubMed DOI PMC
Gallagher M, Wysocki CJ, Leyden JJ, Spielman AI, Sun X, Preti G. Analyses of volatile organic compounds from human skin. Br J Dermatol. 2008;159(4):780–91. Epub 20080714. doi: 10.1111/j.1365-2133.2008.08748.x ; PubMed Central PMCID: PMC2574753. PubMed DOI PMC
Bernier UR, Kline DL, Barnard DR, Schreck CE, Yost RA. Analysis of Human Skin Emanations by Gas Chromatography/Mass Spectrometry. 2. Identification of Volatile Compounds That Are Candidate Attractants for the Yellow Fever Mosquito (Aedes aegypti). Anal Chem. 2000;72(4):747–56. doi: 10.1021/ac990963k PubMed DOI
Decréau RA, Marson CM, Smith KE, Behan JM. Production of malodorous steroids from androsta-5,16-dienes and androsta-4,16-dienes by Corynebacteria and other human axillary bacteria. J Steroid Biochem Mol Biol. 2003;87(4–5):327–36. doi: 10.1016/j.jsbmb.2003.09.005 . PubMed DOI
Zhou S-S, Li D, Zhou Y-M, Cao J-M. The skin function: a factor of anti-metabolic syndrome. Diabetol Metab Syndr. 2012;4(1):15–. doi: 10.1186/1758-5996-4-15 . PubMed DOI PMC
Hartzell-Baguley B, Hipp RE, Morgan NR, Morgan SL. Chemical Composition of Latent Fingerprints by Gas Chromatography–Mass Spectrometry. An Experiment for an Instrumental Analysis Course. J Chem Educ. 2007;84(4):689. doi: 10.1021/ed084p689 DOI
Fisher RA. On the" Probable Error" of a Coefficient of Correlation Deduced from a Small Sample. 1921.
Fieller EC, Hartley HO, Pearson ES. Tests for Rank Correlation Coefficients. I. Biometrika. 1957;44(3/4):470–81. doi: 10.2307/2332878 DOI
Analysis of the Human Scent on Fired Cartridge Cases from a Simulated Crime Scene