DISPERSE, a trait database to assess the dispersal potential of European aquatic macroinvertebrates
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu dataset, časopisecké články, práce podpořená grantem
PubMed
33177529
PubMed Central
PMC7658241
DOI
10.1038/s41597-020-00732-7
PII: 10.1038/s41597-020-00732-7
Knihovny.cz E-zdroje
- MeSH
- bezobratlí * MeSH
- ekologie MeSH
- monitorování životního prostředí MeSH
- rozšíření zvířat * MeSH
- vodní organismy * MeSH
- zachování přírodních zdrojů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
Dispersal is an essential process in population and community dynamics, but is difficult to measure in the field. In freshwater ecosystems, information on biological traits related to organisms' morphology, life history and behaviour provides useful dispersal proxies, but information remains scattered or unpublished for many taxa. We compiled information on multiple dispersal-related biological traits of European aquatic macroinvertebrates in a unique resource, the DISPERSE database. DISPERSE includes nine dispersal-related traits subdivided into 39 trait categories for 480 taxa, including Annelida, Mollusca, Platyhelminthes, and Arthropoda such as Crustacea and Insecta, generally at the genus level. Information within DISPERSE can be used to address fundamental research questions in metapopulation ecology, metacommunity ecology, macroecology and evolutionary ecology. Information on dispersal proxies can be applied to improve predictions of ecological responses to global change, and to inform improvements to biomonitoring, conservation and management strategies. The diverse sources used in DISPERSE complement existing trait databases by providing new information on dispersal traits, most of which would not otherwise be accessible to the scientific community.
Department of Hydrobiology University of Pécs Ifjúság útja 6 H7624 Pécs Hungary
ECOEVO Lab E E Forestal Univesidade de Vigo Campus A Xunqueira 36005 Pontevedra Spain
ECOTEC Environment SA 1203 Geneva Switzerland
Finnish Environment Institute Freshwater Centre Paavo Havaksen Tie 3 FI 90570 Oulu Finland
Institute of Science and Innovation for Bio Sustainability University of Minho Braga Portugal
School of Science and Technology Nottingham Trent University Nottingham NG11 8NS UK
Zobrazit více v PubMed
Bohonak AJ, Jenkins DG. Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecol. Lett. 2003;6:783–796. doi: 10.1046/j.1461-0248.2003.00486.x. DOI
Clobert, J., Baguette, M., Benton, T. G. & Bullock, J. M. Dispersal Ecology and Evolution (Oxford Univ. Press, 2012).
Heino J, et al. Metacommunity organisation, spatial extent and dispersal in aquatic systems: Patterns, processes and prospects. Freshw. Biol. 2015;60:845–869. doi: 10.1111/fwb.12533. DOI
Barton PS, et al. Guidelines for using movement science to inform biodiversity policy. Environ. Manage. 2015;56:791–801. doi: 10.1007/s00267-015-0570-5. PubMed DOI
Heino J, et al. Integrating dispersal proxies in ecological and environmental research in the freshwater realm. Environ. Rev. 2017;25:334–349. doi: 10.1139/er-2016-0110. DOI
Rundle, S. D., Bilton, D. T. & Foggo, A. in Body Size: The Structure and Function of Aquatic Ecosystems (eds. Hildrew, A. G., Raffaelli, D. G. & Edmonds-Brown, R.) 186–209 (Cambridge Univ. Press, 2007).
Macneale KH, Peckarsky BL, Likens GE. Stable isotopes identify dispersal patterns of stonefly populations living along stream corridors. Freshw. Biol. 2005;50:1117–1130. doi: 10.1111/j.1365-2427.2005.01387.x. DOI
Troast D, Suhling F, Jinguji H, Sahlén G, Ware J. A global population genetic study of Pantala flavescens. PLoS One. 2016;11:e0148949. doi: 10.1371/journal.pone.0148949. PubMed DOI PMC
French SK, McCauley SJ. The movement responses of three libellulid dragonfly species to open and closed landscape cover. Insect Conserv. Divers. 2019;12:437–447. doi: 10.1111/icad.12355. DOI
Arribas P, et al. Dispersal ability rather than ecological tolerance drives differences in range size between lentic and lotic water beetles (Coleoptera: Hydrophilidae) J. Biogeogr. 2012;39:984–994. doi: 10.1111/j.1365-2699.2011.02641.x. DOI
Lancaster J, Downes BJ. Dispersal traits may reflect dispersal distances, but dispersers may not connect populations demographically. Oecologia. 2017;184:171–182. doi: 10.1007/s00442-017-3856-x. PubMed DOI
Lancaster, J. & Downes, B. J. Aquatic Entomology (Oxford Univ. Press, 2013).
Stevens VM, et al. Dispersal syndromes and the use of life-histories to predict dispersal. Evol. Appl. 2013;6:630–642. doi: 10.1111/eva.12049. PubMed DOI PMC
Outomuro D, Johansson F. Wing morphology and migration status, but not body size, habitat or Rapoport’s rule predict range size in North-American dragonflies (Odonata: Libellulidae) Ecography. 2019;42:309–320. doi: 10.1111/ecog.03757. DOI
Tonkin JD, et al. The role of dispersal in river network metacommunities: patterns, processes, and pathways. Freshw. Biol. 2018;63:141–163. doi: 10.1111/fwb.13037. DOI
Brown BL, Swan CM. Dendritic network structure constrains metacommunity properties in riverine ecosystems. J. Anim. Ecol. 2010;79:571–580. doi: 10.1111/j.1365-2656.2010.01668.x. PubMed DOI
Wikelski M, et al. Simple rules guide dragonfly migration. Biol. Lett. 2006;2:325–329. doi: 10.1098/rsbl.2006.0487. PubMed DOI PMC
Schmidt-Kloiber A, Hering D. An online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecol. Indic. 2015;53:271–282. doi: 10.1016/j.ecolind.2015.02.007. DOI
Serra SRQ, Cobo F, Graça MAS, Dolédec S, Feio MJ. Synthesising the trait information of European Chironomidae (Insecta: Diptera): towards a new database. Ecol. Indic. 2016;61:282–292. doi: 10.1016/j.ecolind.2015.09.028. DOI
Tachet, H., Richoux, P., Bournaud, M. & Usseglio-Polatera, P. Invertébrés d’Eau Douce: Systématique, Biologie, Écologie (CNRS Éditions, 2010).
Vieira, N. K. M. et al. A Database of Lotic Invertebrate Traits for North America (U.S. Geological Survey Data Series 187, 2006).
Chevenet F, Dolédec S, Chessel D. A fuzzy coding approach for the analysis of long-term ecological data. Freshw. Biol. 1994;31:295–309. doi: 10.1111/j.1365-2427.1994.tb01742.x. DOI
Schmera D, Podani J, Heino J, Erös T, Poff NLR. A proposed unified terminology of species traits in stream ecology. Freshw. Sci. 2015;34:823–830. doi: 10.1086/681623. DOI
Lancaster J, Downes BJ, Arnold A. Lasting effects of maternal behaviour on the distribution of a dispersive stream insect. J. Anim. Ecol. 2011;80:1061–1069. doi: 10.1111/j.1365-2656.2011.01847.x. PubMed DOI
Jenkins DG, et al. Does size matter for dispersal distance? Glob. Ecol. Biogeogr. 2007;16:415–425. doi: 10.1111/j.1466-8238.2007.00312.x. DOI
Harrison RG. Dispersal polymorphisms in insects. Annu. Rev. Ecol. Syst. 1980;11:95–118. doi: 10.1146/annurev.es.11.110180.000523. DOI
Graham ES, Storey R, Smith B. Dispersal distances of aquatic insects: upstream crawling by benthic EPT larvae and flight of adult Trichoptera along valley floors. New Zeal. J. Mar. Freshw. Res. 2017;51:146–164. doi: 10.1080/00288330.2016.1268175. DOI
Hoffsten PO. Site-occupancy in relation to flight-morphology in caddisflies. Freshw. Biol. 2004;49:810–817. doi: 10.1111/j.1365-2427.2004.01229.x. DOI
Bonada N, Dolédec S. Does the Tachet trait database report voltinism variability of aquatic insects between Mediterranean and Scandinavian regions? Aquat. Sci. 2018;80:1–11. doi: 10.1007/s00027-017-0554-z. PubMed DOI
Sarremejane R, 2020. DISPERSE, a trait database to assess the dispersal potential of aquatic macroinvertebrates. figshare. PubMed DOI PMC
Lévêque C, Balian EV, Martens K. An assessment of animal species diversity in continental waters. Hydrobiologia. 2005;542:39–67. doi: 10.1007/s10750-004-5522-7. DOI
Green AJ, Figuerola J. Recent advances in the study of long-distance dispersal of aquatic invertebrates via birds. Divers. Distrib. 2005;11:149–156. doi: 10.1111/j.1366-9516.2005.00147.x. DOI
Maasri A. A global and unified trait database for aquatic macroinvertebrates: the missing piece in a global approach. Front. Environ. Sci. 2019;7:1–3. doi: 10.3389/fenvs.2019.00065. DOI
Cañedo-Argüelles M, et al. Dispersal strength determines meta-community structure in a dendritic riverine network. J. Biogeogr. 2015;42:778–790. doi: 10.1111/jbi.12457. DOI
Datry T, et al. Metacommunity patterns across three Neotropical catchments with varying environmental harshness. Freshw. Biol. 2016;61:277–292. doi: 10.1111/fwb.12702. DOI
Swan CM, Brown BL. Metacommunity theory meets restoration: isolation may mediate how ecological communities respond to stream restoration. Ecol. Appl. 2017;27:2209–2219. doi: 10.1002/eap.1602. PubMed DOI
Sarremejane R, Mykrä H, Bonada N, Aroviita J, Muotka T. Habitat connectivity and dispersal ability drive the assembly mechanisms of macroinvertebrate communities in river networks. Freshw. Biol. 2017;62:1073–1082. doi: 10.1111/fwb.12926. DOI
Jacobson B, Peres-Neto PR. Quantifying and disentangling dispersal in metacommunities: How close have we come? How far is there to go? Landsc. Ecol. 2010;25:495–507. doi: 10.1007/s10980-009-9442-9. DOI
Sarremejane R, et al. Do metacommunities vary through time? Intermittent rivers as model systems. J. Biogeogr. 2017;44:2752–2763. doi: 10.1111/jbi.13077. DOI
Datry T, Moya N, Zubieta J, Oberdorff T. Determinants of local and regional communities in intermittent and perennial headwaters of the Bolivian Amazon. Freshw. Biol. 2016;61:1335–1349. doi: 10.1111/fwb.12706. DOI
Cid N, et al. A metacommunity approach to improve biological assessments in highly dynamic freshwater ecosystems. Bioscience. 2020;70:427–438. doi: 10.1093/biosci/biaa033. PubMed DOI PMC
Datry T, Bonada N, Heino J. Towards understanding the organisation of metacommunities in highly dynamic ecological systems. Oikos. 2016;125:149–159. doi: 10.1111/oik.02922. DOI
Hermoso V, Cattarino L, Kennard MJ, Watts M, Linke S. Catchment zoning for freshwater conservation: refining plans to enhance action on the ground. J. Appl. Ecol. 2015;52:940–949. doi: 10.1111/1365-2664.12454. DOI
Thuiller W, et al. A road map for integrating eco-evolutionary processes into biodiversity models. Ecol. Lett. 2013;16:94–105. doi: 10.1111/ele.12104. PubMed DOI PMC
Mendes P, Velazco SJE, de Andrade AFA, De Marco P. Dealing with overprediction in species distribution models: How adding distance constraints can improve model accuracy. Ecol. Model. 2020;431:109180. doi: 10.1016/j.ecolmodel.2020.109180. DOI
Willis SG, et al. Integrating climate change vulnerability assessments from species distribution models and trait-based approaches. Biol. Conserv. 2015;190:167–178. doi: 10.1016/j.biocon.2015.05.001. DOI
Cooper JC, Soberón J. Creating individual accessible area hypotheses improves stacked species distribution model performance. Glob. Ecol. Biogeogr. 2018;27:156–165. doi: 10.1111/geb.12678. DOI
Markovic D, et al. Europe’s freshwater biodiversity under climate change: distribution shifts and conservation needs. Divers. Distrib. 2014;20:1097–1107. doi: 10.1111/ddi.12232. DOI
Bush A, Hoskins AJ. Does dispersal capacity matter for freshwater biodiversity under climate change? Freshw. Biol. 2017;62:382–396. doi: 10.1111/fwb.12874. DOI
Bohonak AJ. Dispersal, gene flow, and population structure. Q. Rev. Biol. 1999;74:21–45. doi: 10.1086/392950. PubMed DOI
Dijkstra K-DB, Monaghan MT, Pauls SU. Freshwater biodiversity and aquatic insect diversification. Annu. Rev. Entomol. 2014;59:143–163. doi: 10.1146/annurev-ento-011613-161958. PubMed DOI PMC
Múrria C, et al. Local environment rather than past climate determines community composition of mountain stream macroinvertebrates across Europe. Mol. Ecol. 2017;26:6085–6099. doi: 10.1111/mec.14346. PubMed DOI
Statzner B, Bêche LA. Can biological invertebrate traits resolve effects of multiple stressors on running water ecosystems? Freshw. Biol. 2010;55:80–119. doi: 10.1111/j.1365-2427.2009.02369.x. DOI
Strayer DL, Dudgeon D. Freshwater biodiversity conservation: recent progress and future challenges. J. North Am. Benthol. Soc. 2010;29:344–358. doi: 10.1899/08-171.1. DOI
Reid AJ, et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019;94:849–873. doi: 10.1111/brv.12480. PubMed DOI
R Core Team. R: A language and environment for statistical computing. https://www.r-project.org/ (2020).
Dray S, Dufour A-B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 2007;1:1–20.
The recovery of European freshwater biodiversity has come to a halt
Multidecadal changes in functional diversity lag behind the recovery of taxonomic diversity
DISPERSE, a trait database to assess the dispersal potential of European aquatic macroinvertebrates