DISPERSE, a trait database to assess the dispersal potential of European aquatic macroinvertebrates

. 2020 Nov 11 ; 7 (1) : 386. [epub] 20201111

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu dataset, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33177529
Odkazy

PubMed 33177529
PubMed Central PMC7658241
DOI 10.1038/s41597-020-00732-7
PII: 10.1038/s41597-020-00732-7
Knihovny.cz E-zdroje

Dispersal is an essential process in population and community dynamics, but is difficult to measure in the field. In freshwater ecosystems, information on biological traits related to organisms' morphology, life history and behaviour provides useful dispersal proxies, but information remains scattered or unpublished for many taxa. We compiled information on multiple dispersal-related biological traits of European aquatic macroinvertebrates in a unique resource, the DISPERSE database. DISPERSE includes nine dispersal-related traits subdivided into 39 trait categories for 480 taxa, including Annelida, Mollusca, Platyhelminthes, and Arthropoda such as Crustacea and Insecta, generally at the genus level. Information within DISPERSE can be used to address fundamental research questions in metapopulation ecology, metacommunity ecology, macroecology and evolutionary ecology. Information on dispersal proxies can be applied to improve predictions of ecological responses to global change, and to inform improvements to biomonitoring, conservation and management strategies. The diverse sources used in DISPERSE complement existing trait databases by providing new information on dispersal traits, most of which would not otherwise be accessible to the scientific community.

Centre of Molecular and Environmental Biology Department of Biology University of Minho Braga Portugal

Departamento de Zoología Facultad de Ciencias Universidad de Granada Avenida Fuente Nueva s n 18071 Granada Spain

Department of Aquatic Ecology Eawag Swiss Federal Institute of Aquatic Sciences Überlandstrasse 133 CH 8600 Dübendorf Switzerland

Department of Botany and Zoology Faculty of Science Masaryk University Kotlářská 2 61137 Brno Czech Republic

Department of Ecology and Hydrology Biology Faculty Murcia University Campus de Espinardo 30100 Murcia Spain

Department of Environmental Science Policy and Management University of California Berkeley Berkeley CA 94720 USA

Department of Hydrobiology University of Pécs Ifjúság útja 6 H7624 Pécs Hungary

ECOEVO Lab E E Forestal Univesidade de Vigo Campus A Xunqueira 36005 Pontevedra Spain

ECOTEC Environment SA 1203 Geneva Switzerland

Finnish Environment Institute Freshwater Centre Paavo Havaksen Tie 3 FI 90570 Oulu Finland

Grup de Recerca Freshwater Ecology Hydrology and Management Diagonal 643 08028 Barcelona Catalonia Spain

INRAE UR RiverLy centre de Lyon Villeurbanne 5 rue de la Doua CS70077 69626 Villeurbanne Cedex France

Institute of Science and Innovation for Bio Sustainability University of Minho Braga Portugal

School of Science and Technology Nottingham Trent University Nottingham NG11 8NS UK

Université de Lorraine CNRS UMR 7360 LIEC Laboratoire Interdisciplinaire des Environnements Continentaux F 57070 Metz France

Zobrazit více v PubMed

Bohonak AJ, Jenkins DG. Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecol. Lett. 2003;6:783–796. doi: 10.1046/j.1461-0248.2003.00486.x. DOI

Clobert, J., Baguette, M., Benton, T. G. & Bullock, J. M. Dispersal Ecology and Evolution (Oxford Univ. Press, 2012).

Heino J, et al. Metacommunity organisation, spatial extent and dispersal in aquatic systems: Patterns, processes and prospects. Freshw. Biol. 2015;60:845–869. doi: 10.1111/fwb.12533. DOI

Barton PS, et al. Guidelines for using movement science to inform biodiversity policy. Environ. Manage. 2015;56:791–801. doi: 10.1007/s00267-015-0570-5. PubMed DOI

Heino J, et al. Integrating dispersal proxies in ecological and environmental research in the freshwater realm. Environ. Rev. 2017;25:334–349. doi: 10.1139/er-2016-0110. DOI

Rundle, S. D., Bilton, D. T. & Foggo, A. in Body Size: The Structure and Function of Aquatic Ecosystems (eds. Hildrew, A. G., Raffaelli, D. G. & Edmonds-Brown, R.) 186–209 (Cambridge Univ. Press, 2007).

Macneale KH, Peckarsky BL, Likens GE. Stable isotopes identify dispersal patterns of stonefly populations living along stream corridors. Freshw. Biol. 2005;50:1117–1130. doi: 10.1111/j.1365-2427.2005.01387.x. DOI

Troast D, Suhling F, Jinguji H, Sahlén G, Ware J. A global population genetic study of Pantala flavescens. PLoS One. 2016;11:e0148949. doi: 10.1371/journal.pone.0148949. PubMed DOI PMC

French SK, McCauley SJ. The movement responses of three libellulid dragonfly species to open and closed landscape cover. Insect Conserv. Divers. 2019;12:437–447. doi: 10.1111/icad.12355. DOI

Arribas P, et al. Dispersal ability rather than ecological tolerance drives differences in range size between lentic and lotic water beetles (Coleoptera: Hydrophilidae) J. Biogeogr. 2012;39:984–994. doi: 10.1111/j.1365-2699.2011.02641.x. DOI

Lancaster J, Downes BJ. Dispersal traits may reflect dispersal distances, but dispersers may not connect populations demographically. Oecologia. 2017;184:171–182. doi: 10.1007/s00442-017-3856-x. PubMed DOI

Lancaster, J. & Downes, B. J. Aquatic Entomology (Oxford Univ. Press, 2013).

Stevens VM, et al. Dispersal syndromes and the use of life-histories to predict dispersal. Evol. Appl. 2013;6:630–642. doi: 10.1111/eva.12049. PubMed DOI PMC

Outomuro D, Johansson F. Wing morphology and migration status, but not body size, habitat or Rapoport’s rule predict range size in North-American dragonflies (Odonata: Libellulidae) Ecography. 2019;42:309–320. doi: 10.1111/ecog.03757. DOI

Tonkin JD, et al. The role of dispersal in river network metacommunities: patterns, processes, and pathways. Freshw. Biol. 2018;63:141–163. doi: 10.1111/fwb.13037. DOI

Brown BL, Swan CM. Dendritic network structure constrains metacommunity properties in riverine ecosystems. J. Anim. Ecol. 2010;79:571–580. doi: 10.1111/j.1365-2656.2010.01668.x. PubMed DOI

Wikelski M, et al. Simple rules guide dragonfly migration. Biol. Lett. 2006;2:325–329. doi: 10.1098/rsbl.2006.0487. PubMed DOI PMC

Schmidt-Kloiber A, Hering D. An online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecol. Indic. 2015;53:271–282. doi: 10.1016/j.ecolind.2015.02.007. DOI

Serra SRQ, Cobo F, Graça MAS, Dolédec S, Feio MJ. Synthesising the trait information of European Chironomidae (Insecta: Diptera): towards a new database. Ecol. Indic. 2016;61:282–292. doi: 10.1016/j.ecolind.2015.09.028. DOI

Tachet, H., Richoux, P., Bournaud, M. & Usseglio-Polatera, P. Invertébrés d’Eau Douce: Systématique, Biologie, Écologie (CNRS Éditions, 2010).

Vieira, N. K. M. et al. A Database of Lotic Invertebrate Traits for North America (U.S. Geological Survey Data Series 187, 2006).

Chevenet F, Dolédec S, Chessel D. A fuzzy coding approach for the analysis of long-term ecological data. Freshw. Biol. 1994;31:295–309. doi: 10.1111/j.1365-2427.1994.tb01742.x. DOI

Schmera D, Podani J, Heino J, Erös T, Poff NLR. A proposed unified terminology of species traits in stream ecology. Freshw. Sci. 2015;34:823–830. doi: 10.1086/681623. DOI

Lancaster J, Downes BJ, Arnold A. Lasting effects of maternal behaviour on the distribution of a dispersive stream insect. J. Anim. Ecol. 2011;80:1061–1069. doi: 10.1111/j.1365-2656.2011.01847.x. PubMed DOI

Jenkins DG, et al. Does size matter for dispersal distance? Glob. Ecol. Biogeogr. 2007;16:415–425. doi: 10.1111/j.1466-8238.2007.00312.x. DOI

Harrison RG. Dispersal polymorphisms in insects. Annu. Rev. Ecol. Syst. 1980;11:95–118. doi: 10.1146/annurev.es.11.110180.000523. DOI

Graham ES, Storey R, Smith B. Dispersal distances of aquatic insects: upstream crawling by benthic EPT larvae and flight of adult Trichoptera along valley floors. New Zeal. J. Mar. Freshw. Res. 2017;51:146–164. doi: 10.1080/00288330.2016.1268175. DOI

Hoffsten PO. Site-occupancy in relation to flight-morphology in caddisflies. Freshw. Biol. 2004;49:810–817. doi: 10.1111/j.1365-2427.2004.01229.x. DOI

Bonada N, Dolédec S. Does the Tachet trait database report voltinism variability of aquatic insects between Mediterranean and Scandinavian regions? Aquat. Sci. 2018;80:1–11. doi: 10.1007/s00027-017-0554-z. PubMed DOI

Sarremejane R, 2020. DISPERSE, a trait database to assess the dispersal potential of aquatic macroinvertebrates. figshare. PubMed DOI PMC

Lévêque C, Balian EV, Martens K. An assessment of animal species diversity in continental waters. Hydrobiologia. 2005;542:39–67. doi: 10.1007/s10750-004-5522-7. DOI

Green AJ, Figuerola J. Recent advances in the study of long-distance dispersal of aquatic invertebrates via birds. Divers. Distrib. 2005;11:149–156. doi: 10.1111/j.1366-9516.2005.00147.x. DOI

Maasri A. A global and unified trait database for aquatic macroinvertebrates: the missing piece in a global approach. Front. Environ. Sci. 2019;7:1–3. doi: 10.3389/fenvs.2019.00065. DOI

Cañedo-Argüelles M, et al. Dispersal strength determines meta-community structure in a dendritic riverine network. J. Biogeogr. 2015;42:778–790. doi: 10.1111/jbi.12457. DOI

Datry T, et al. Metacommunity patterns across three Neotropical catchments with varying environmental harshness. Freshw. Biol. 2016;61:277–292. doi: 10.1111/fwb.12702. DOI

Swan CM, Brown BL. Metacommunity theory meets restoration: isolation may mediate how ecological communities respond to stream restoration. Ecol. Appl. 2017;27:2209–2219. doi: 10.1002/eap.1602. PubMed DOI

Sarremejane R, Mykrä H, Bonada N, Aroviita J, Muotka T. Habitat connectivity and dispersal ability drive the assembly mechanisms of macroinvertebrate communities in river networks. Freshw. Biol. 2017;62:1073–1082. doi: 10.1111/fwb.12926. DOI

Jacobson B, Peres-Neto PR. Quantifying and disentangling dispersal in metacommunities: How close have we come? How far is there to go? Landsc. Ecol. 2010;25:495–507. doi: 10.1007/s10980-009-9442-9. DOI

Sarremejane R, et al. Do metacommunities vary through time? Intermittent rivers as model systems. J. Biogeogr. 2017;44:2752–2763. doi: 10.1111/jbi.13077. DOI

Datry T, Moya N, Zubieta J, Oberdorff T. Determinants of local and regional communities in intermittent and perennial headwaters of the Bolivian Amazon. Freshw. Biol. 2016;61:1335–1349. doi: 10.1111/fwb.12706. DOI

Cid N, et al. A metacommunity approach to improve biological assessments in highly dynamic freshwater ecosystems. Bioscience. 2020;70:427–438. doi: 10.1093/biosci/biaa033. PubMed DOI PMC

Datry T, Bonada N, Heino J. Towards understanding the organisation of metacommunities in highly dynamic ecological systems. Oikos. 2016;125:149–159. doi: 10.1111/oik.02922. DOI

Hermoso V, Cattarino L, Kennard MJ, Watts M, Linke S. Catchment zoning for freshwater conservation: refining plans to enhance action on the ground. J. Appl. Ecol. 2015;52:940–949. doi: 10.1111/1365-2664.12454. DOI

Thuiller W, et al. A road map for integrating eco-evolutionary processes into biodiversity models. Ecol. Lett. 2013;16:94–105. doi: 10.1111/ele.12104. PubMed DOI PMC

Mendes P, Velazco SJE, de Andrade AFA, De Marco P. Dealing with overprediction in species distribution models: How adding distance constraints can improve model accuracy. Ecol. Model. 2020;431:109180. doi: 10.1016/j.ecolmodel.2020.109180. DOI

Willis SG, et al. Integrating climate change vulnerability assessments from species distribution models and trait-based approaches. Biol. Conserv. 2015;190:167–178. doi: 10.1016/j.biocon.2015.05.001. DOI

Cooper JC, Soberón J. Creating individual accessible area hypotheses improves stacked species distribution model performance. Glob. Ecol. Biogeogr. 2018;27:156–165. doi: 10.1111/geb.12678. DOI

Markovic D, et al. Europe’s freshwater biodiversity under climate change: distribution shifts and conservation needs. Divers. Distrib. 2014;20:1097–1107. doi: 10.1111/ddi.12232. DOI

Bush A, Hoskins AJ. Does dispersal capacity matter for freshwater biodiversity under climate change? Freshw. Biol. 2017;62:382–396. doi: 10.1111/fwb.12874. DOI

Bohonak AJ. Dispersal, gene flow, and population structure. Q. Rev. Biol. 1999;74:21–45. doi: 10.1086/392950. PubMed DOI

Dijkstra K-DB, Monaghan MT, Pauls SU. Freshwater biodiversity and aquatic insect diversification. Annu. Rev. Entomol. 2014;59:143–163. doi: 10.1146/annurev-ento-011613-161958. PubMed DOI PMC

Múrria C, et al. Local environment rather than past climate determines community composition of mountain stream macroinvertebrates across Europe. Mol. Ecol. 2017;26:6085–6099. doi: 10.1111/mec.14346. PubMed DOI

Statzner B, Bêche LA. Can biological invertebrate traits resolve effects of multiple stressors on running water ecosystems? Freshw. Biol. 2010;55:80–119. doi: 10.1111/j.1365-2427.2009.02369.x. DOI

Strayer DL, Dudgeon D. Freshwater biodiversity conservation: recent progress and future challenges. J. North Am. Benthol. Soc. 2010;29:344–358. doi: 10.1899/08-171.1. DOI

Reid AJ, et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019;94:849–873. doi: 10.1111/brv.12480. PubMed DOI

R Core Team. R: A language and environment for statistical computing. https://www.r-project.org/ (2020).

Dray S, Dufour A-B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 2007;1:1–20.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...