Multidecadal changes in functional diversity lag behind the recovery of taxonomic diversity
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34938522
PubMed Central
PMC8668763
DOI
10.1002/ece3.8381
PII: ECE38381
Knihovny.cz E-zdroje
- Klíčová slova
- freshwater, functional diversity, functional redundancy, long term, long‐term ecosystem research, macroinvertebrate, protected area,
- Publikační typ
- časopisecké články MeSH
While there has been increasing interest in how taxonomic diversity is changing over time, less is known about how long-term taxonomic changes may affect ecosystem functioning and resilience. Exploring long-term patterns of functional diversity can provide key insights into the capacity of a community to carry out ecological processes and the redundancy of species' roles. We focus on a protected freshwater system located in a national park in southeast Germany. We use a high-resolution benthic macroinvertebrate dataset spanning 32 years (1983-2014) and test whether changes in functional diversity are reflected in taxonomic diversity using a multidimensional trait-based approach and regression analyses. Specifically, we asked: (i) How has functional diversity changed over time? (ii) How functionally distinct are the community's taxa? (iii) Are changes in functional diversity concurrent with taxonomic diversity? And (iv) what is the extent of community functional redundancy? Resultant from acidification mitigation, macroinvertebrate taxonomic diversity increased over the study period. Recovery of functional diversity was less pronounced, lagging behind responses of taxonomic diversity. Over multidecadal timescales, the macroinvertebrate community has become more homogenous with a high degree of functional redundancy, despite being isolated from direct anthropogenic activity. While taxonomic diversity increased over time, functional diversity has yet to catch up. These results demonstrate that anthropogenic pressures can remain a threat to biotic communities even in protected areas. The differences in taxonomic and functional recovery processes highlight the need to incorporate functional traits in assessments of biodiversity responses to global change.
Department of Conservation and Research Bavarian Forest National Park Grafenau Germany
Faculty of Biology University of Duisburg Essen Essen Germany
Zobrazit více v PubMed
Alewell, C. , Armbruster, M. , Bittersohl, J. , Evans, C. D. , Meesenburg, H. , Moritz, K. , & Prechtel, A. (2001). Are there signs of acidification reversal in freshwaters of the low mountain ranges in Germany? Hydrology and Earth System Sciences, 5, 367–378. 10.5194/hess-5-367-2001 DOI
AQEM Consortium (2004). AQEMdip: AQEM data input program (STAR Database). http://www.eu‐star.at
AQEM Consortium (2013). ASTERICS ‐ einschließlich Perlodes ‐ deutsches Bewertungssystem auf Grundlage des Makrozoobenthos. https://www.gewaesser‐bewertung‐berechnung.de/index.php/home.html
Baker, N. J. , Pilotto, F. , Jourdan, J. , Beudert, B. , & Haase, P. (2021). Recovery from air pollution and subsequent acidification masks the effects of climate change on a freshwater macroinvertebrate community. Science of the Total Environment, 758, 143685. 10.1016/j.scitotenv.2020.143685 PubMed DOI
Baldigo, B. P. , Lawrence, G. B. , Bode, R. W. , Simonin, H. A. , Roy, K. M. , & Smith, A. J. (2009). Impacts of acidification on macroinvertebrate communities in streams of the western Adirondack Mountains, New York, USA. Ecological Indicators, 9(2), 226–239. 10.1016/j.ecolind.2008.04.004 DOI
Baranov, V. , Jourdan, J. , Pilotto, F. , Wagner, R. , & Haase, P. (2020). Complex and nonlinear climate‐driven changes in freshwater insect communities over 42 years. Conservation Biology, 34, 1241–1251. 10.1111/cobi.13477 PubMed DOI
Beudert, B. , & Gietl, G. (2015). Long‐term monitoring in the Große Ohe catchment, Bavarian Forest National Park. Silva Gabreta, 21, 5–27.
Botta‐Dukát Z. (2005). Rao's quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science, 16, 533–540. 10.1111/j.1654-1103.2005.tb02393.x DOI
Braukmann, U. (2000). Hydrochemische und biologische Merkmale regionaler Bachtypen in Baden‐Wfirttemberg. Oberirdische Gewässer, Gewässerökologie, 56, 1–501.
Bruno, D. , Belmar, O. , Maire, A. , Morel, A. , Dumont, B. , & Datry, T. (2019). Structural and functional responses of invertebrate communities to climate change and flow regulation in alpine catchments. Global Change Biology, 25, 1612–1628. 10.1111/gcb.14581 PubMed DOI PMC
Chevenet, F. , Dolédec, S. , & Chessel, D. (1994). A fuzzy coding approach for the analysis of long‐term ecological data. Freshwater Biology, 31, 295–309. 10.1111/j.1365-2427.1994.tb01742.x DOI
Clarke, A. , Mac Nally, R. , Bond, N. , & Lake, P. S. (2008). Macroinvertebrate diversity in headwater streams: a review. Freshwater Biology, 53, 1707–1721. 10.1111/j.1365-2427.2008.02041.x DOI
Devictor, V. , Mouillot, D. , Meynard, C. , Jiguet, F. , Thuiller, W. , & Mouquet, N. (2010). Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecology Letters, 13, 1030–1040. 10.1111/j.1461-0248.2010.01493.x PubMed DOI
Dornelas, M. , Gotelli, N. J. , McGill, B. , Shimadzu, H. , Moyes, F. , Sievers, C. , & Magurran, A. E. (2014). Assemblage time series reveal biodiversity change but not systematic loss. Science, 344, 296–299. 10.1126/science.1248484 PubMed DOI
Floury, M. , Souchon, Y. , & Looy, K. V. (2018). Climatic and trophic processes drive long‐term changes in functional diversity of freshwater invertebrate communities. Ecography, 41, 209–218. 10.1111/ecog.02701 DOI
Garmo, Ø. A. , Skjelkvåle, B. L. , de Wit, H. A. , Colombo, L. , Curtis, C. , Fölster, J. , Hoffmann, A. , Hruška, J. , Høgåsen, T. , Jeffries, D. S. , Keller, W. B. , Krám, P. , Majer, V. , Monteith, D. T. , Paterson, A. M. , Rogora, M. , Rzychon, D. , Steingruber, S. , Stoddard, J. L. , … Worsztynowicz, A. (2014). Trends in surface water chemistry in acidified areas in Europe and North America from 1990 to 2008. Water, Air, & Soil Pollution, 225, 1880. 10.1007/s11270-014-1880-6 DOI
Gilbert, O. M. (2020). Natural reward drives the advancement of life. Rethinking Ecology, 5, 1–35. 10.3897/rethinkingecology.5.58518 DOI
Gotelli, N. J. , & Graves, G. R. (1996). Null models in ecology. Smithsonian Institution Press.
Grenié, M. , Denelle, P. , Tucker, C. M. , Munoz, F. , & Violle, C. (2017). funrar: an R package to characterize functional rarity. Diversity and Distributions, 23, 1365–1371. 10.1111/ddi.12629 DOI
Haase, P. , Frenzel, M. , Klotz, S. , Musche, M. , & Stoll, S. (2016). The long‐term ecological research (LTER) network: relevance, current status, future perspective and examples from marine, freshwater and terrestrial long‐term observation. Ecological Indicators, 65, 1–3. 10.1016/j.ecolind.2016.01.040 DOI
Haase, P. , Lohse, S. , Pauls, S. , Schindehütte, K. , Sundermann, A. , Rolauffs, P. , & Hering, D. (2004). Assessing streams in Germany with benthic invertebrates: development of a practical standardised protocol for macroinvertebrate sampling and sorting. Limnologica, 34, 349–365. 10.1016/S0075-9511(04)80005-7 DOI
Haase, P. , Pilotto, F. , Li, F. , Sundermann, A. , Lorenz, A. W. , Tonkin, J. D. , & Stoll, S. (2019). Moderate warming over the past 25 years has already reorganized stream invertebrate communities. Science of the Total Environment, 658, 1531–1538. 10.1016/j.scitotenv.2018.12.234 PubMed DOI
Haase, P. , Schindehütte, K. , & Sundermann, A. (2006). Operationelle Taxaliste als Mindestanforderung an die Bestimmung von Makrozoobenthosproben aus Fließgewässern zur Umsetzung der EU‐Wasserrahmenrichtlinie in Deutschland. www.fliessgewaesserbewertung.de
Haase, P. , Tonkin, J. D. , Stoll, S. , Burkhard, B. , Frenzel, M. , Geijzendorffer, I. R. , Häuser, C. , Klotz, S. , Kühn, I. , McDowell, W. H. , Mirtl, M. , Müller, F. , Musche, M. , Penner, J. , Zacharias, S. , & Schmeller, D. S. (2018). The next generation of site‐based long‐term ecological monitoring: Linking essential biodiversity variables and ecosystem integrity. Science of the Total Environment, 613–614, 1376–1384. 10.1016/j.scitotenv.2017.08.111 PubMed DOI
Habel, J. C. , Segerer, A. , Ulrich, W. , Torchyk, O. , Weisser, W. W. , & Schmitt, T. (2016). Butterfly community shifts over two centuries. Conservation Biology, 30, 754–762. 10.1111/cobi.12656 PubMed DOI
Hallett, L. M. , Jones, S. K. , MacDonald, A. A. M. , Jones, M. B. , Flynn, D. F. B. , Ripplinger, J. , & Collins, S. L. (2016). codyn: an r package of community dynamics metrics. Methods in Ecology and Evolution, 7, 1146–1151. 10.1111/2041-210X.12569 DOI
Hallmann, C. A. , Sorg, M. , Jongejans, E. , Siepel, H. , Hofland, N. , Schwan, H. , Stenmans, W. , Müller, A. , Sumser, H. , Hörren, T. , Goulson, D. , & de Kroon, H. (2017). More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One, 12, e0185809. 10.1371/journal.pone.0185809 PubMed DOI PMC
Haubrock, P. J. , Pilotto, F. , Innocenti, G. , Cianfanelli, S. , & Haase, P. (2021). Two centuries for an almost complete community turnover from native to non‐native species in a riverine ecosystem. Global Change Biology, 27, 606–623. 10.1111/gcb.15442 PubMed DOI
Heino, J. (2005). Functional biodiversity of macroinvertebrate assemblages along major ecological gradients of boreal headwater streams. Freshwater Biology, 50, 1578–1587. 10.1111/j.1365-2427.2005.01418.x DOI
IPCC (2013). Climate Change 2013: The Physical Science Basis. In: Stocker T. F., Qin D., Plattner G.‐K., Tignor M., Allen S. K., Boschung J., Nauels A., Xia Y., Bex V., & Midgley P. M. (Eds.), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (1535 pp). Cambridge University Press.
Jarzyna, M. A. , & Jetz, W. (2018). Taxonomic and functional diversity change is scale dependent. Nature Communications, 9, 2565. 10.1038/s41467-018-04889-z PubMed DOI PMC
Kvaeven, B. , Ulstein, M. J. , Skjelkvåle, B. L. , Raddum, G. G. , & Hovind, H. (2001). ICP Waters — an international programme for surface water monitoring. Water, Air, and Soil Pollution, 130, 775–780. 10.1023/A:1013802122401 DOI
Laliberté, E. , & Legendre, P. (2010). A distance‐based framework for measuring functional diversity from multiple traits. Ecology, 91, 299–305. 10.1890/08-2244.1 PubMed DOI
Laliberté, E. , Legendre, P. , & Shipley, B. (2014). Package “FD”: measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. R Package Version 1.0‐12. https://cran.r‐project.org/web/packages/FD/index.html PubMed
Larsen, S. , Chase, J. M. , Durance, I. , & Ormerod, S. J. (2018). Lifting the veil: richness measurements fail to detect systematic biodiversity change over three decades. Ecology, 99, 1316–1326. 10.1002/ecy.2213 PubMed DOI
Legras, G. , Loiseau, N. , Gaertner, J.‐C. , Poggiale, J.‐C. , & Gaertner‐Mazouni, N. (2020). Assessing functional diversity: the influence of the number of the functional traits. Theoretical Ecology, 13, 117–126. 10.1007/s12080-019-00433-x DOI
Magliozzi, C. , Meyer, A. , Usseglio‐Polatera, P. , Robertson, A. , & Grabowski, R. C. (2020). Investigating invertebrate biodiversity around large wood: taxonomic vs functional metrics. Aquatic Sciences, 82, 69. 10.1007/s00027-020-00745-9 DOI
Mammola, S. , & Cardoso, P. (2020). Functional diversity metrics using kernel density n ‐dimensional hypervolumes. Methods in Ecology and Evolution, 11, 986–995. 10.1111/2041-210X.13424 DOI
Mason, N. W. H. , Mouillot, D. , Lee, W. G. , & Wilson, J. B. (2005). Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos, 111, 112–118. 10.1111/j.0030-1299.2005.13886.x DOI
Micheli, F. , & Halpern, B. S. (2005). Low functional redundancy in coastal marine assemblages. Ecology Letters, 8, 391–400. 10.1111/j.1461-0248.2005.00731.x DOI
Mirtl, M. , T. Borer, E. , Djukic, I. , Forsius, M. , Haubold, H. , Hugo, W. , Jourdan, J. , Lindenmayer, D. , McDowell, W. H. , Muraoka, H. , Orenstein, D. E. , Pauw, J. C. , Peterseil, J. , Shibata, H. , Wohner, C. , Yu, X. , & Haase, P. (2018). Genesis, goals and achievements of Long‐Term Ecological Research at the global scale: a critical review of ILTER and future directions. Science of the Total Environment, 626, 1439–1462. 10.1016/j.scitotenv.2017.12.001 PubMed DOI
Mouchet, M. A. , Villéger, S. , Mason, N. W. H. , & Mouillot, D. (2010). Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24, 867–876. 10.1111/j.1365-2435.2010.01695.x DOI
Mouillot, D. , Villeger, S. , Parravicini, V. , Kulbicki, M. , Arias‐Gonzalez, J. E. , Bender, M. , Chabanet, P. , Floeter, S. R. , Friedlander, A. , Vigliola, L. , & Bellwood, D. R. (2014). Functional over‐redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proceedings of the National Academy of Sciences, 111, 13757–13762. 10.1073/pnas.1317625111 PubMed DOI PMC
Mouton, T. L. , Tonkin, J. D. , Stephenson, F. , Verburg, P. , & Floury, M. (2020). Increasing climate‐driven taxonomic homogenization but functional differentiation among river macroinvertebrate assemblages. Global Change Biology, 26, 6904–6915. 10.1111/gcb.15389 PubMed DOI
Múrria, C. , Iturrarte, G. , & Gutiérrez‐Cánovas, C. (2020). A trait space at an overarching scale yields more conclusive macroecological patterns of functional diversity. Global Ecology and Biogeography, 29, 1729–1742. 10.1111/geb.13146 DOI
Oksanen, A. J. , Blanchet, F. G. , Friendly, M. , Kindt, R. , Legendre, P. , Mcglinn, D. , & Wagner, H. (2017). Package “vegan”: community ecology package. R Package Version 2.4‐2. https://cran.r‐project.org/web/packages/vegan/index.html
Olden, J. D. (2006). Biotic homogenization: a new research agenda for conservation biogeography. Journal of Biogeography, 33, 2027–2039. 10.1111/j.1365-2699.2006.01572.x DOI
Olden, J. D. , Comte, L. , & Giam, X. (2018). The Homogocene: a research prospectus for the study of biotic homogenisation. NeoBiota, 37, 23–36. 10.3897/neobiota.37.22552 DOI
Pakeman, R. J. (2014). Functional trait metrics are sensitive to the completeness of the species’ trait data? Methods in Ecology and Evolution, 5, 9–15. 10.1111/2041-210X.12136 DOI
Patakamuri, S. K. , & O’Brien, N. (2020). Package “modifiedmk”: modified versions of Mann Kendall and Spearman’s rho trend tests. R Package Version 1.5.0. https://cran.r‐project.org/web/packages/modifiedmk/index.html
Pavoine, S. , & Bonsall, M. B. (2011). Measuring biodiversity to explain community assembly: a unified approach. Biological Reviews, 86, 792–812. 10.1111/j.1469-185X.2010.00171.x PubMed DOI
Pilière, A. F. H. , Verberk, W. C. E. P. , Gräwe, M. , Breure, A. M. , Dyer, S. D. , Posthuma, L. , de Zwart, D. , Huijbregts, M. A. J. , & Schipper, A. M. (2016). On the importance of trait interrelationships for understanding environmental responses of stream macroinvertebrates. Freshwater Biology, 61(2), 181–194. 10.1111/fwb.12690 DOI
Pilotto, F. , Kühn, I. , Adrian, R. , Alber, R. , Alignier, A. , Andrews, C. , Bäck, J. , Barbaro, L. , Beaumont, D. , Beenaerts, N. , Benham, S. , Boukal, D. S. , Bretagnolle, V. , Camatti, E. , Canullo, R. , Cardoso, P. G. , Ens, B. J. , Everaert, G. , Evtimova, V. , … Haase, P. (2020). Meta‐analysis of multidecadal biodiversity trends in Europe. Nature Communications, 11, 3486. 10.1038/s41467-020-17171-y PubMed DOI PMC
R Core Team (2020). R: a language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r‐project.org/
Ricotta, C. (2005). A note on functional diversity measures. Basic and Applied Ecology, 6, 479–486. 10.1016/j.baae.2005.02.008 DOI
Rosenfeld, J. S. (2002). Functional redundancy in ecology and conservation. Oikos, 98(1), 156–162. 10.1034/j.1600-0706.2002.980116.x DOI
Sarremejane, R. , Cid, N. , Stubbington, R. , Datry, T. , Alp, M. , Cañedo‐Argüelles, M. , Cordero‐Rivera, A. , Csabai, Z. , Gutiérrez‐Cánovas, C. , Heino, J. , Forcellini, M. , Millán, A. , Paillex, A. , Pařil, P. , Polášek, M. , Tierno de Figueroa, J. M. , Usseglio‐Polatera, P. , Zamora‐Muñoz, C. , & Bonada, N. (2020). DISPERSE, a trait database to assess the dispersal potential of European aquatic macroinvertebrates. Scientific Data, 7, 386. 10.1038/s41597-020-00732-7 PubMed DOI PMC
Sauer, J. , Domisch, S. , Nowak, C. , & Haase, P. (2011). Low mountain ranges: summit traps for montane freshwater species under climate change. Biodiversity and Conservation, 20, 3133–3146. 10.1007/s10531-011-0140-y DOI
Schmera, D. , Heino, J. , Podani, J. , Erős, T. , & Dolédec, S. (2017). Functional diversity: a review of methodology and current knowledge in freshwater macroinvertebrate research. Hydrobiologia, 787, 27–44. 10.1007/s10750-016-2974-5 DOI
Schmera, D. , Podani, J. , Heino, J. , Erős, T. , & Poff, N. L. (2015). A proposed unified terminology of species traits in stream ecology. Freshwater Science, 34, 823–830. 10.1086/681623 DOI
Schmidt‐Kloiber, A. , & Hering, D. (2015). An online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecological Indicators, 53, 271–282. 10.1016/j.ecolind.2015.02.007 DOI
Stoddard, J. L. , Jeffries, D. S. , Lükewille, A. , Clair, T. A. , Dillon, P. J. , Driscoll, C. T. , Forsius, M. , Johannessen, M. , Kahl, J. S. , Kellogg, J. H. , Kemp, A. , Mannio, J. , Monteith, D. T. , Murdoch, P. S. , Patrick, S. , Rebsdorf, A. , Skjelkvåle, B. L. , Stainton, M. P. , Traaen, T. , … Wilander, A. (1999). Regional trends in aquatic recovery from acidification in North America and Europe. Nature, 401, 575–578. 10.1038/44114 DOI
Swenson, N. G. (2014). Functional and phylogenetic ecology in R. Springer. 10.1007/978-1-4614-9542-0 DOI
Tachet, H. , Richoux, P. , Bournaud, M. , & Usseglio‐Polatera, P. (2010). Invertébrés d’eau Douce: Systematique, Biologie, Ecologie (p. 608). CNRS EDITIONS.
Thomas, J. A. (2016). Butterfly communities under threat. Science, 353, 216–218. 10.1126/science.aaf8838 PubMed DOI
Tilman, D. (2001). Functional diversity. In Levin S. A. (Ed.), Encyclopaedia of Biodiversity (pp. 109–120). Academic press.
Traister, E. M. , McDowell, W. H. , Krám, P. , Fottová, D. , & Kolaříková, K. (2013). Persistent effects of acidification on stream ecosystem structure and function. Freshwater Science, 32(2), 586–596. 10.1899/12-130.1 DOI
Van Looy, K. , Floury, M. , Ferréol, M. , Prieto‐Montes, M. , & Souchon, Y. (2016). Long‐term changes in temperate stream invertebrate communities reveal a synchronous trophic amplification at the turn of the millennium. Science of the Total Environment, 565, 481–488. 10.1016/j.scitotenv.2016.04.193 PubMed DOI
Van Looy, K. , Tonkin, J. D. , Floury, M. , Leigh, C. , Soininen, J. , Larsen, S. , Heino, J. , LeRoy Poff, N. , Delong, M. , Jähnig, S. C. , Datry, T. , Bonada, N. , Rosebery, J. , Jamoneau, A. , Ormerod, S. J. , Collier, K. J. , & Wolter, C. (2019). The three Rs of river ecosystem resilience: Resources, recruitment, and refugia. River Research and Applications, 35(2), 107–120. 10.1002/rra.3396 DOI
Vannote, R. L. , Minshall, G. W. , Cummins, K. W. , Sedell, J. R. , & Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130–137. 10.1139/f80-017 DOI
Velle, G. , Mahlum, S. , Monteith, D. T. , de Wit, H. , Arle, J. , Eriksson, L. , & Wright, R. F. (2016). Biodiversity of macro‐invertebrates in acid‐sensitive waters: trends and relations to water chemistry and climate. ICP Waters report 127/2016.
Verberk, W. C. E. P. , van Noordwijk, C. G. E. , & Hildrew, A. G. (2013). Delivering on a promise: integrating species traits to transform descriptive community ecology into a predictive science. Freshwater Science, 32(2), 531–547. 10.1899/12-092.1 DOI
Villéger, S. , Grenouillet, G. , & Brosse, S. (2013). Decomposing functional β‐diversity reveals that low functional β‐diversity is driven by low functional turnover in European fish assemblages. Global Ecology and Biogeography, 22, 671–681. 10.1111/geb.12021 DOI
Villéger, S. , Mason, N. W. H. , & Mouillot, D. (2008). New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89, 2290–2301. 10.1890/07-1206.1 PubMed DOI
Violle, C. , Thuiller, W. , Mouquet, N. , Munoz, F. , Kraft, N. J. B. , Cadotte, M. W. , Livingstone, S. W. , & Mouillot, D. (2017). Functional rarity: the ecology of outliers. Trends in Ecology & Evolution, 32, 356–367. 10.1016/j.tree.2017.02.002 PubMed DOI PMC
Wagner, D. L. , Grames, E. M. , Forister, M. L. , Berenbaum, M. R. , & Stopak, D. (2021). Insect decline in the Anthropocene: Death by a thousand cuts. Proceedings of the National Academy of Sciences, 118, e2023989118. 10.1073/pnas.2023989118 PubMed DOI PMC
Weigelt, A. , Schumacher, J. , Roscher, C. , & Schmid, B. (2008). Does biodiversity increase spatial stability in plant community biomass? Ecology Letters, 11, 338–347. 10.1111/j.1461-0248.2007.01145.x PubMed DOI
Wellnitz, T. , & Poff, N. L. (2001). Functional redundancy in heterogeneous environments: implications for conservation. Ecology Letters, 4, 177–179. 10.1046/j.1461-0248.2001.00221.x DOI
Wood, S. N. (2021). Package “mgcv”: mixed GAM computation vehicle with automatic smoothness estimation. R Package Version 1.8‐34. https://cran.r‐project.org/web/packages/mgcv/index.html
Woodward, G. , Perkins, D. M. , & Brown, L. E. (2010). Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2093–2106. 10.1098/rstb.2010.0055 PubMed DOI PMC
Yachi, S. , & Loreau, M. (1999). Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceedings of the National Academy of Sciences, 96(4), 1463–1468. 10.1073/pnas.96.4.1463 PubMed DOI PMC
Zuur, A. F. , Ieno, E. N. , Walker, J. N. , Saveliev, A. A. , & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R (pp. 574). Springer. 10.1017/CBO9781107415324.004 DOI
Dryad
10.5061/dryad.9s4mw6mht