Behavioral and Pharmacokinetic Profile of Indole-Derived Synthetic Cannabinoids JWH-073 and JWH-210 as Compared to the Phytocannabinoid Δ9-THC in Rats

. 2018 ; 12 () : 703. [epub] 20181023

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30405327

Synthetic cannabinoid compounds are marketed as "legal" marijuana substitutes, even though little is known about their behavioral effects in relation to their pharmacokinetic profiles. Therefore, in the present study we assessed the behavioral effects of systemic treatment with the two synthetic cannabinoids JWH-073 and JWH-210 and the phytocannabinoid Δ9-THC on locomotor activity, anxiety-like phenotype (in the open field) and sensorimotor gating (measured as prepulse inhibition of the acoustic startle response, PPI), in relation to cannabinoid serum levels. Wistar rats were injected subcutaneously (sc.) with JWH-073 (0.1, 0.5, or 5 mg/kg), JWH-210 (0.1, 0.5, or 5 mg/kg), Δ9-THC (1 or 3 mg/kg) or vehicle (oleum helanti) in a volume of 0.5 ml/kg and tested in the open field and PPI. Although JWH-073, JWH-210, Δ9-THC (and its metabolites) were confirmed in serum, effects on sensorimotor gating were absent, and locomotor activity was only partially affected. Δ9-THC (3 mg/kg) elicited an anxiolytic-like effect as suggested by the increased time spent in the center of the open field (p < 0.05). Our results further support the potential anxiolytic-like effect of pharmacological modulation of the endocannabinoid system.

Zobrazit více v PubMed

Aung M. M., Griffin G., Huffman J. W., Wu M., Keel C., Yang B., et al. . (2000). Influence of the N-1 alkyl chain length of cannabimimetic indoles upon CB(1) and CB(2) receptor binding. Drug Alcohol Depend. 60, 133–140. 10.1016/S0376-8716(99)00152-0 PubMed DOI

Balikova M., Hlozek T., Palenicek T., Tyls F., Viktorinova M., Melicher T., et al. (2014). Casový profil hladin THC vkrevním séru urekreačních achronických kuráku marihuany po akutním uŽití drogy – implikace pro rízení motorových vozidel. Soud. Lek. 59, 2–6. PubMed

Behonick G., Shanks K. G., Firchau D. J., Mathur G., Lynch C. F., Nashelsky M., et al. . (2014). Four postmortem case reports with quantitative detection of the synthetic cannabinoid, 5F-PB-22. J. Anal. Toxicol. 38, 559–562. 10.1093/jat/bku048 PubMed DOI PMC

Berrendero F., Maldonado R. (2002). Involvement of the opioid system in the anxiolytic-like effects induced by Delta(9)-tetrahydrocannabinol. Psychopharmacology (Berl). 163, 111–117. 10.1007/s00213-002-1144-9 PubMed DOI

Boucher A. A., Arnold J. C., Duffy L., Schofield P. R., Micheau J., Karl T. (2007). Heterozygous neuregulin 1 mice are more sensitive to the behavioural effects of Delta9-tetrahydrocannabinol. Psychopharmacology (Berl). 192, 325–336. 10.1007/s00213-007-0721-3 PubMed DOI

Brents L. K., Gallus-Zawada A., Radominska-Pandya A., Vasiljevik T., Prisinzano T. E., Fantegrossi W. E., et al. . (2012). Monohydroxylated metabolites of the K2 synthetic cannabinoid JWH-073 retain intermediate to high cannabinoid 1 receptor (CB1R) affinity and exhibit neutral antagonist to partial agonist activity. Biochem. Pharmacol. 83, 952–961. 10.1016/j.bcp.2012.01.004 PubMed DOI PMC

Buser G. L., Gerona R. R., Horowitz B. Z., Vian K. P., Troxell M. L., Hendrickson R. G., et al. . (2014). Acute kidney injury associated with smoking synthetic cannabinoid. Clin. Toxicol. (Phila) 52, 664–673. 10.3109/15563650.2014.932365 PubMed DOI

Carroll F. I., Lewin A. H., Mascarella S. W., Seltzman H. H., Reddy P. A. (2012). Designer drugs: a medicinal chemistry perspective. Ann. N. Y. Acad. Sci. 1248, 18–38. 10.1111/j.1749-6632.2011.06199.x PubMed DOI

Castaneto M. S., Gorelick D. A., Desrosiers N. A., Hartman R. L., Pirard S., Huestis M. A. (2014). Synthetic cannabinoids: epidemiology, pharmacodynamics, and clinical implications. Drug Alcohol Depend. 144, 12–41. 10.1016/j.drugalcdep.2014.08.005 PubMed DOI PMC

Castaneto M. S., Wohlfarth A., Desrosiers N. A., Hartman R. L., Gorelick D. A., Huestis M. A. (2015). Synthetic cannabinoids pharmacokinetics and detection methods in biological matrices. Drug Metab. Rev. 47, 124–174. 10.3109/03602532.2015.1029635 PubMed DOI

Cha H. J., Seong Y. H., Song M. J., Jeong H. S., Shin J., Yun J., et al. . (2015). Neurotoxicity of Synthetic Cannabinoids JWH-081 and JWH-210. Biomol. Ther. (Seoul) 23, 597–603. 10.4062/biomolther.2015.057 PubMed DOI PMC

Deiana S., Watanabe A., Yamasaki Y., Amada N., Arthur M., Fleming S., et al. . (2012). Plasma and brain pharmacokinetic profile of cannabidiol (CBD), cannabidivarine (CBDV), Δ?-tetrahydrocannabivarin (THCV) and cannabigerol (CBG) in rats and mice following oral and intraperitoneal administration and CBD action on obsessive-compulsive behaviour. Psychopharmacology (Berl). 219, 859–873. 10.1007/s00213-011-2415-0 PubMed DOI

Direnberger S., Mues M., Micale V., Wotjak C. T., Dietzel S., Schubert M., et al. . (2012). Biocompatibility of a genetically encoded calcium indicator in a transgenic mouse model. Nat. Commun. 3:1031. 10.1038/ncomms2035 PubMed DOI

Dogan B., Dogru H., Gungor L., Balci K. (2016). Stroke due to Bonzai use: two patients. World J. Emerg. Med. 7, 310–312. 10.5847/wjem.j.1920-8642.2016.04.014 PubMed DOI PMC

Fattore L. (2016). Synthetic cannabinoids-further evidence supporting the relationship between cannabinoids and psychosis. Biol. Psychiatry 79, 539–548. 10.1016/j.biopsych.2016.02.001 PubMed DOI

Fattore L., Fratta W. (2011). Beyond THC: the new generation of cannabinoid designer drugs. Front. Behav. Neurosci. 5:60. 10.3389/fnbeh.2011.00060 PubMed DOI PMC

Freeman M. J., Rose D. Z., Myers M. A., Gooch C. L., Bozeman A. C., Burgin W. S. (2013). Ischemic stroke after use of the synthetic marijuana “spice”. Neurology 81, 2090–2093. 10.1212/01.wnl.0000437297.05570.a2 PubMed DOI PMC

Gatch M. B., Forster M. J. (2016). Delta(9)-Tetrahydrocannabinol-like effects of novel synthetic cannabinoids in mice and rats. Psychopharmacology (Berl). 233, 1901–1910. 10.1007/s00213-016-4237-6 PubMed DOI PMC

Hasegawa K., Wurita A., Minakata K., Gonmori K., Nozawa H., Yamagishi I., et al. . (2015). Postmortem distribution of MAB-CHMINACA in body fluids and solid tissues of a human cadaver. Forensic Toxicol. 33, 380–387. 10.1007/s11419-015-0272-y PubMed DOI PMC

Hermanns-Clausen M., Kithinji J., Spehl M., Angerer V., Franz F., Eyer F., et al. . (2016). Adverse effects after the use of JWH-210 - a case series from the EU Spice II plus project. Drug Test. Anal. 8, 1030–1038. 10.1002/dta.1936 PubMed DOI

Hlozek T., Uttl L., Kaderabek L., Balikova M., Lhotkova E., Horsley R. R., et al. . (2017). Pharmacokinetic and behavioural profile of THC, CBD, and THC+CBD combination after pulmonary, oral, and subcutaneous administration in rats and confirmation of conversion in vivo of CBD to THC. Eur. Neuropsychopharmacol. 27, 1223–1237. 10.1016/j.euroneuro.2017.10.037 PubMed DOI

Horsley R. R., Lhotkova E., Hajkova K., Feriancikova B., Himl M., Kuchar M., et al. . (2018). Behavioural, pharmacokinetic, metabolic, and hyperthermic profile of 3,4-Methylenedioxypyrovalerone (MDPV) in the Wistar Rat. Front. Psychiatry 9:144. 10.3389/fpsyt.2018.00144 PubMed DOI PMC

Horsley R. R., Lhotkova E., Hajkova K., Jurasek B., Kuchar M., Palenicek T. (2016). Detailed pharmacological evaluation of methoxetamine (MXE), a novel psychoactive ketamine analogue-Behavioural, pharmacokinetic and metabolic studies in the Wistar rat. Brain Res Bull. 126(Pt 1), 102–110. 10.1016/j.brainresbull.2016.05.002 PubMed DOI

Huffman J. W., Zengin G., Wu M. J., Lu J., Hynd G., Bushell K., et al. (2005). Structure-activity relationships for 1-alkyl-3-(1-naphthoyl)indoles at the cannabinoid CB(1) and CB(2) receptors: steric and electronic effects of naphthoyl substituents. New highly selective CB(2) receptor agonists. Bioorg. Med. Chem. 13, 89–112. 10.1016/j.bmc.2004.09.050 PubMed DOI

Kevin R. C., Lefever T. W., Snyder R. W., Patel P. R., Fennell T. R., Wiley J. L., et al. . (2017). In vitro and in vivo pharmacokinetics and metabolism of synthetic cannabinoids CUMYL-PICA and 5F-CUMYL-PICA. Forensic Toxicol. 35, 333–347. 10.1007/s11419-017-0361-1 PubMed DOI PMC

Kucerova J., Tabiova K., Drago F., Micale V. (2014). Therapeutic potential of cannabinoids in schizophrenia. Recent Pat. C.N.S. Drug Discov. 9, 13–25. 10.2174/1574889809666140307115532 PubMed DOI

Leighty E. G. (1973). Metabolism and distribution of cannabinoids in rats after different methods of administration. Biochem. Pharmacol. 22, 1613–1621. PubMed

Levin R., Peres F. F., Almeida V., Calzavara M. B., Zuardi A. W., Hallak J. E., et al. . (2014). Effects of cannabinoid drugs on the deficit of prepulse inhibition of startle in an animal model of schizophrenia: the SHR strain. Front. Pharmacol. 5:10. 10.3389/fphar.2014.00010 PubMed DOI PMC

Long L. E., Chesworth R., Arnold J. C., Karl T. (2010). A follow-up study: acute behavioural effects of Delta(9)-THC in female heterozygous neuregulin 1 transmembrane domain mutant mice. Psychopharmacology (Berl). 211, 277–289. 10.1007/s00213-010-1896-6 PubMed DOI

Malone D. T., Taylor D. A. (2006). The effect of Delta9-tetrahydrocannabinol on sensorimotor gating in socially isolated rats. Behav. Brain Res. 166, 101–109. 10.1016/j.bbr.2005.07.009 PubMed DOI

Malyshevskaya O., Aritake K., Kaushik M. K., Uchiyama N., Cherasse Y., Kikura-Hanajiri R., et al. (2017). Natural (Δ9-THC) and synthetic (JWH-018) cannabinoids induce seizures by acting through the cannabinoid CB1 receptor. Sci. Rep. 7:10516 10.1038/s41598-017-10447-2 PubMed DOI PMC

Marshell R., Kearney-Ramos T., Brents L. K., Hyatt W. S., Tai S., Prather P. L., et al. . (2014). In vivo effects of synthetic cannabinoids JWH-018 and JWH-073 and phytocannabinoid Delta9-THC in mice: inhalation versus intraperitoneal injection. Pharmacol. Biochem. Behav. 124, 40–47. 10.1016/j.pbb.2014.05.010 PubMed DOI PMC

Micale V., Di Marzo V., Sulcova A., Wotjak C. T., Drago F. (2013a). Endocannabinoid system and mood disorders: priming a target for new therapies. Pharmacol. Ther. 138, 18–37. 10.1016/j.pharmthera.2012.12.002 PubMed DOI

Micale V., Kucerova J., Sulcova A. (2013b). Leading compounds for the validation of animal models of psychopathology. Cell Tissue Res. 354, 309–330. 10.1007/s00441-013-1692-9 PubMed DOI

Micale V., Stepan J., Jurik A., Pamplona F. A., Marsch R., Drago F., et al. . (2017). Extinction of avoidance behavior by safety learning depends on endocannabinoid signaling in the hippocampus. J. Psychiatr. Res. 90, 46–59. 10.1016/j.jpsychires.2017.02.002 PubMed DOI

Moreira F. A., Wotjak C. T. (2010). Cannabinoids and anxiety. Curr. Top. Behav. Neurosci. 2, 429–450. 10.1007/7854_2009_16 PubMed DOI

Ossato A., Canazza I., Trapella C., Vincenzi F., De Luca M. A., Rimondo C., et al. . (2016). Effect of JWH-250, JWH-073 and their interaction on “tetrad”, sensorimotor, neurological and neurochemical responses in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 67, 31–50. 10.1016/j.pnpbp.2016.01.007 PubMed DOI

Palenicek T., Lhotkova E., Zidkova M., Balikova M., Kuchar M., Himl M., et al. . (2016). Emerging toxicity of 5,6-methylenedioxy-2-aminoindane (MDAI): pharmacokinetics, behaviour, thermoregulation and LD50 in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 69, 49–59. 10.1016/j.pnpbp.2016.04.004 PubMed DOI

Papanti D., Schifano F., Botteon G., Bertossi F., Mannix J., Vidoni D., et al. . (2013). “Spiceophrenia”: a systematic overview of “spice”-related psychopathological issues and a case report. Hum. Psychopharmacol. 28, 379–389. 10.1002/hup.2312 PubMed DOI

Patel S., Hillard C. J. (2006). Pharmacological evaluation of cannabinoid receptor ligands in a mouse model of anxiety: further evidence for an anxiolytic role for endogenous cannabinoid signaling. J. Pharmacol. Exp. Ther. 318, 304–311. 10.1124/jpet.106.101287 PubMed DOI

Rey A. A., Purrio M., Viveros M. P., Lutz B. (2012). Biphasic effects of cannabinoids in anxiety responses: CB1 and GABA(B) receptors in the balance of GABAergic and glutamatergic neurotransmission. Neuropsychopharmacology 37, 2624–2634. 10.1038/npp.2012.123 PubMed DOI PMC

Rubino T., Realini N., Castiglioni C., Guidali C., Vigano D., Marras E., et al. . (2008). Role in anxiety behavior of the endocannabinoid system in the prefrontal cortex. Cereb. Cortex 18, 1292–1301. 10.1093/cercor/bhm161 PubMed DOI

Schaefer N., Peters B., Bregel D., Maurer H. H., Schmidt P. H., Ewald A. H. (2014). Can JWH-210 and JWH-122 be detected in adipose tissue four weeks after single oral drug administration to rats? Biomed. Chromatogr. 28, 1043–1047. 10.1002/bmc.3137 PubMed DOI

Schneir A. B., Baumbacher T. (2012). Convulsions associated with the use of a synthetic cannabinoid product. J. Med. Toxicol. 8, 62–64. 10.1007/s13181-011-0182-2 PubMed DOI PMC

Schwartz M. D., Trecki J., Edison L. A., Steck A. R., Arnold J. K., Gerona R. R. (2015). A common source outbreak of severe delirium associated with exposure to the novel synthetic cannabinoid ADB-PINACA. J. Emerg. Med. 48, 573–580. 10.1016/j.jemermed.2014.12.038 PubMed DOI PMC

Sichova K., Pinterova N., Zidkova M., Horsley R. R., Lhotkova E., Stefkova K., et al. . (2017). Mephedrone (4-Methylmethcathinone): acute behavioral effects, hyperthermic, and pharmacokinetic profile in rats. Front. Psychiatry 8:306. 10.3389/fpsyt.2017.00306 PubMed DOI PMC

Stefkova K., Zidkova M., Horsley R. R., Pinterova N., Sichova K., Uttl L., et al. . (2017). Pharmacokinetic, ambulatory, and hyperthermic effects of 3,4-Methylenedioxy-N-Methylcathinone (Methylone) in Rats. Front. Psychiatry 8:232. 10.3389/fpsyt.2017.00232 PubMed DOI PMC

Tai S., Fantegrossi W. E. (2014). Synthetic Cannabinoids: pharmacology, behavioral effects, and abuse potential. Curr. Addict. Rep. 1, 129–136. 10.1007/s40429-014-0014-y PubMed DOI PMC

Tait R. J., Caldicott D., Mountain D., Hill S. L., Lenton S. (2016). A systematic review of adverse events arising from the use of synthetic cannabinoids and their associated treatment. Clin. Toxicol. (Phila) 54, 1–13. 10.3109/15563650.2015.1110590 PubMed DOI

Takematsu M., Hoffman R. S., Nelson L. S., Schechter J. M., Moran J. H., Wiener S. W. (2014). A case of acute cerebral ischemia following inhalation of a synthetic cannabinoid. Clin. Toxicol. (Phila) 52, 973–975. 10.3109/15563650.2014.958614 PubMed DOI

Terzian A. L., Drago F., Wotjak C. T., Micale V. (2011). The dopamine and cannabinoid interaction in the modulation of emotions and cognition: assessing the role of cannabinoid CB1 receptor in neurons expressing dopamine D1 receptors. Front. Behav. Neurosci. 5:49. 10.3389/fnbeh.2011.00049 PubMed DOI PMC

Terzian A. L., Micale V., Wotjak C. T. (2014). Cannabinoid receptor type 1 receptors on GABAergic vs. glutamatergic neurons differentially gate sex-dependent social interest in mice. Eur. J. Neurosci. 40, 2293–2298. 10.1111/ejn.12561 PubMed DOI

Tyls F., Palenicek T., Kaderabek L., Lipski M., Kubesova A., Horacek J. (2016). Sex differences and serotonergic mechanisms in the behavioural effects of psilocin. Behav. Pharmacol. 27, 309–320. 10.1097/fbp.0000000000000198 PubMed DOI

Uchiyama N., Kikura-Hanajiri R., Goda Y. (2011). Identification of a novel cannabimimetic phenylacetylindole, cannabipiperidiethanone, as a designer drug in a herbal product and its affinity for cannabinoid CB(1) and CB(2) receptors. Chem. Pharm. Bull. (Tokyo) 59, 1203–1205. 10.1248/cpb.59.1203 PubMed DOI

Wiley J. L., Compton D. R., Dai D., Lainton J. A., Phillips M., Huffman J. W., et al. . (1998). Structure-activity relationships of indole- and pyrrole-derived cannabinoids. J. Pharmacol. Exp. Ther. 285, 995–1004. PubMed

Wiley J. L., Marusich J. A., Martin B. R., Huffman J. W. (2012). 1-Pentyl-3-Phenylacetylindoles and JWH-018 Share in vivo cannabinoid profiles in mice. Drug Alcohol Depend. 123, 148–153. 10.1016/j.drugalcdep.2011.11.001 PubMed DOI PMC

Zawilska J. B., Wojcieszak J. (2014). Spice/K2 drugs–more than innocent substitutes for marijuana. Int. J. Neuropsychopharmacol. 17, 509–525. 10.1017/s1461145713001247 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...