Behavioral and Pharmacokinetic Profile of Indole-Derived Synthetic Cannabinoids JWH-073 and JWH-210 as Compared to the Phytocannabinoid Δ9-THC in Rats
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30405327
PubMed Central
PMC6206206
DOI
10.3389/fnins.2018.00703
Knihovny.cz E-zdroje
- Klíčová slova
- JWH-073, JWH-210, behavior, pharmacokinetics, synthetic cannabinoids, Δ9-THC,
- Publikační typ
- časopisecké články MeSH
Synthetic cannabinoid compounds are marketed as "legal" marijuana substitutes, even though little is known about their behavioral effects in relation to their pharmacokinetic profiles. Therefore, in the present study we assessed the behavioral effects of systemic treatment with the two synthetic cannabinoids JWH-073 and JWH-210 and the phytocannabinoid Δ9-THC on locomotor activity, anxiety-like phenotype (in the open field) and sensorimotor gating (measured as prepulse inhibition of the acoustic startle response, PPI), in relation to cannabinoid serum levels. Wistar rats were injected subcutaneously (sc.) with JWH-073 (0.1, 0.5, or 5 mg/kg), JWH-210 (0.1, 0.5, or 5 mg/kg), Δ9-THC (1 or 3 mg/kg) or vehicle (oleum helanti) in a volume of 0.5 ml/kg and tested in the open field and PPI. Although JWH-073, JWH-210, Δ9-THC (and its metabolites) were confirmed in serum, effects on sensorimotor gating were absent, and locomotor activity was only partially affected. Δ9-THC (3 mg/kg) elicited an anxiolytic-like effect as suggested by the increased time spent in the center of the open field (p < 0.05). Our results further support the potential anxiolytic-like effect of pharmacological modulation of the endocannabinoid system.
3rd Faculty of Medicine Psychiatric Clinic Charles University Prague Czechia
Department of Experimental Neurobiology National Institute of Mental Health Klecany Czechia
Department of Physiology Faculty of Science Charles University Prague Czechia
Zobrazit více v PubMed
Aung M. M., Griffin G., Huffman J. W., Wu M., Keel C., Yang B., et al. . (2000). Influence of the N-1 alkyl chain length of cannabimimetic indoles upon CB(1) and CB(2) receptor binding. Drug Alcohol Depend. 60, 133–140. 10.1016/S0376-8716(99)00152-0 PubMed DOI
Balikova M., Hlozek T., Palenicek T., Tyls F., Viktorinova M., Melicher T., et al. (2014). Casový profil hladin THC vkrevním séru urekreačních achronických kuráku marihuany po akutním uŽití drogy – implikace pro rízení motorových vozidel. Soud. Lek. 59, 2–6. PubMed
Behonick G., Shanks K. G., Firchau D. J., Mathur G., Lynch C. F., Nashelsky M., et al. . (2014). Four postmortem case reports with quantitative detection of the synthetic cannabinoid, 5F-PB-22. J. Anal. Toxicol. 38, 559–562. 10.1093/jat/bku048 PubMed DOI PMC
Berrendero F., Maldonado R. (2002). Involvement of the opioid system in the anxiolytic-like effects induced by Delta(9)-tetrahydrocannabinol. Psychopharmacology (Berl). 163, 111–117. 10.1007/s00213-002-1144-9 PubMed DOI
Boucher A. A., Arnold J. C., Duffy L., Schofield P. R., Micheau J., Karl T. (2007). Heterozygous neuregulin 1 mice are more sensitive to the behavioural effects of Delta9-tetrahydrocannabinol. Psychopharmacology (Berl). 192, 325–336. 10.1007/s00213-007-0721-3 PubMed DOI
Brents L. K., Gallus-Zawada A., Radominska-Pandya A., Vasiljevik T., Prisinzano T. E., Fantegrossi W. E., et al. . (2012). Monohydroxylated metabolites of the K2 synthetic cannabinoid JWH-073 retain intermediate to high cannabinoid 1 receptor (CB1R) affinity and exhibit neutral antagonist to partial agonist activity. Biochem. Pharmacol. 83, 952–961. 10.1016/j.bcp.2012.01.004 PubMed DOI PMC
Buser G. L., Gerona R. R., Horowitz B. Z., Vian K. P., Troxell M. L., Hendrickson R. G., et al. . (2014). Acute kidney injury associated with smoking synthetic cannabinoid. Clin. Toxicol. (Phila) 52, 664–673. 10.3109/15563650.2014.932365 PubMed DOI
Carroll F. I., Lewin A. H., Mascarella S. W., Seltzman H. H., Reddy P. A. (2012). Designer drugs: a medicinal chemistry perspective. Ann. N. Y. Acad. Sci. 1248, 18–38. 10.1111/j.1749-6632.2011.06199.x PubMed DOI
Castaneto M. S., Gorelick D. A., Desrosiers N. A., Hartman R. L., Pirard S., Huestis M. A. (2014). Synthetic cannabinoids: epidemiology, pharmacodynamics, and clinical implications. Drug Alcohol Depend. 144, 12–41. 10.1016/j.drugalcdep.2014.08.005 PubMed DOI PMC
Castaneto M. S., Wohlfarth A., Desrosiers N. A., Hartman R. L., Gorelick D. A., Huestis M. A. (2015). Synthetic cannabinoids pharmacokinetics and detection methods in biological matrices. Drug Metab. Rev. 47, 124–174. 10.3109/03602532.2015.1029635 PubMed DOI
Cha H. J., Seong Y. H., Song M. J., Jeong H. S., Shin J., Yun J., et al. . (2015). Neurotoxicity of Synthetic Cannabinoids JWH-081 and JWH-210. Biomol. Ther. (Seoul) 23, 597–603. 10.4062/biomolther.2015.057 PubMed DOI PMC
Deiana S., Watanabe A., Yamasaki Y., Amada N., Arthur M., Fleming S., et al. . (2012). Plasma and brain pharmacokinetic profile of cannabidiol (CBD), cannabidivarine (CBDV), Δ?-tetrahydrocannabivarin (THCV) and cannabigerol (CBG) in rats and mice following oral and intraperitoneal administration and CBD action on obsessive-compulsive behaviour. Psychopharmacology (Berl). 219, 859–873. 10.1007/s00213-011-2415-0 PubMed DOI
Direnberger S., Mues M., Micale V., Wotjak C. T., Dietzel S., Schubert M., et al. . (2012). Biocompatibility of a genetically encoded calcium indicator in a transgenic mouse model. Nat. Commun. 3:1031. 10.1038/ncomms2035 PubMed DOI
Dogan B., Dogru H., Gungor L., Balci K. (2016). Stroke due to Bonzai use: two patients. World J. Emerg. Med. 7, 310–312. 10.5847/wjem.j.1920-8642.2016.04.014 PubMed DOI PMC
Fattore L. (2016). Synthetic cannabinoids-further evidence supporting the relationship between cannabinoids and psychosis. Biol. Psychiatry 79, 539–548. 10.1016/j.biopsych.2016.02.001 PubMed DOI
Fattore L., Fratta W. (2011). Beyond THC: the new generation of cannabinoid designer drugs. Front. Behav. Neurosci. 5:60. 10.3389/fnbeh.2011.00060 PubMed DOI PMC
Freeman M. J., Rose D. Z., Myers M. A., Gooch C. L., Bozeman A. C., Burgin W. S. (2013). Ischemic stroke after use of the synthetic marijuana “spice”. Neurology 81, 2090–2093. 10.1212/01.wnl.0000437297.05570.a2 PubMed DOI PMC
Gatch M. B., Forster M. J. (2016). Delta(9)-Tetrahydrocannabinol-like effects of novel synthetic cannabinoids in mice and rats. Psychopharmacology (Berl). 233, 1901–1910. 10.1007/s00213-016-4237-6 PubMed DOI PMC
Hasegawa K., Wurita A., Minakata K., Gonmori K., Nozawa H., Yamagishi I., et al. . (2015). Postmortem distribution of MAB-CHMINACA in body fluids and solid tissues of a human cadaver. Forensic Toxicol. 33, 380–387. 10.1007/s11419-015-0272-y PubMed DOI PMC
Hermanns-Clausen M., Kithinji J., Spehl M., Angerer V., Franz F., Eyer F., et al. . (2016). Adverse effects after the use of JWH-210 - a case series from the EU Spice II plus project. Drug Test. Anal. 8, 1030–1038. 10.1002/dta.1936 PubMed DOI
Hlozek T., Uttl L., Kaderabek L., Balikova M., Lhotkova E., Horsley R. R., et al. . (2017). Pharmacokinetic and behavioural profile of THC, CBD, and THC+CBD combination after pulmonary, oral, and subcutaneous administration in rats and confirmation of conversion in vivo of CBD to THC. Eur. Neuropsychopharmacol. 27, 1223–1237. 10.1016/j.euroneuro.2017.10.037 PubMed DOI
Horsley R. R., Lhotkova E., Hajkova K., Feriancikova B., Himl M., Kuchar M., et al. . (2018). Behavioural, pharmacokinetic, metabolic, and hyperthermic profile of 3,4-Methylenedioxypyrovalerone (MDPV) in the Wistar Rat. Front. Psychiatry 9:144. 10.3389/fpsyt.2018.00144 PubMed DOI PMC
Horsley R. R., Lhotkova E., Hajkova K., Jurasek B., Kuchar M., Palenicek T. (2016). Detailed pharmacological evaluation of methoxetamine (MXE), a novel psychoactive ketamine analogue-Behavioural, pharmacokinetic and metabolic studies in the Wistar rat. Brain Res Bull. 126(Pt 1), 102–110. 10.1016/j.brainresbull.2016.05.002 PubMed DOI
Huffman J. W., Zengin G., Wu M. J., Lu J., Hynd G., Bushell K., et al. (2005). Structure-activity relationships for 1-alkyl-3-(1-naphthoyl)indoles at the cannabinoid CB(1) and CB(2) receptors: steric and electronic effects of naphthoyl substituents. New highly selective CB(2) receptor agonists. Bioorg. Med. Chem. 13, 89–112. 10.1016/j.bmc.2004.09.050 PubMed DOI
Kevin R. C., Lefever T. W., Snyder R. W., Patel P. R., Fennell T. R., Wiley J. L., et al. . (2017). In vitro and in vivo pharmacokinetics and metabolism of synthetic cannabinoids CUMYL-PICA and 5F-CUMYL-PICA. Forensic Toxicol. 35, 333–347. 10.1007/s11419-017-0361-1 PubMed DOI PMC
Kucerova J., Tabiova K., Drago F., Micale V. (2014). Therapeutic potential of cannabinoids in schizophrenia. Recent Pat. C.N.S. Drug Discov. 9, 13–25. 10.2174/1574889809666140307115532 PubMed DOI
Leighty E. G. (1973). Metabolism and distribution of cannabinoids in rats after different methods of administration. Biochem. Pharmacol. 22, 1613–1621. PubMed
Levin R., Peres F. F., Almeida V., Calzavara M. B., Zuardi A. W., Hallak J. E., et al. . (2014). Effects of cannabinoid drugs on the deficit of prepulse inhibition of startle in an animal model of schizophrenia: the SHR strain. Front. Pharmacol. 5:10. 10.3389/fphar.2014.00010 PubMed DOI PMC
Long L. E., Chesworth R., Arnold J. C., Karl T. (2010). A follow-up study: acute behavioural effects of Delta(9)-THC in female heterozygous neuregulin 1 transmembrane domain mutant mice. Psychopharmacology (Berl). 211, 277–289. 10.1007/s00213-010-1896-6 PubMed DOI
Malone D. T., Taylor D. A. (2006). The effect of Delta9-tetrahydrocannabinol on sensorimotor gating in socially isolated rats. Behav. Brain Res. 166, 101–109. 10.1016/j.bbr.2005.07.009 PubMed DOI
Malyshevskaya O., Aritake K., Kaushik M. K., Uchiyama N., Cherasse Y., Kikura-Hanajiri R., et al. (2017). Natural (Δ9-THC) and synthetic (JWH-018) cannabinoids induce seizures by acting through the cannabinoid CB1 receptor. Sci. Rep. 7:10516 10.1038/s41598-017-10447-2 PubMed DOI PMC
Marshell R., Kearney-Ramos T., Brents L. K., Hyatt W. S., Tai S., Prather P. L., et al. . (2014). In vivo effects of synthetic cannabinoids JWH-018 and JWH-073 and phytocannabinoid Delta9-THC in mice: inhalation versus intraperitoneal injection. Pharmacol. Biochem. Behav. 124, 40–47. 10.1016/j.pbb.2014.05.010 PubMed DOI PMC
Micale V., Di Marzo V., Sulcova A., Wotjak C. T., Drago F. (2013a). Endocannabinoid system and mood disorders: priming a target for new therapies. Pharmacol. Ther. 138, 18–37. 10.1016/j.pharmthera.2012.12.002 PubMed DOI
Micale V., Kucerova J., Sulcova A. (2013b). Leading compounds for the validation of animal models of psychopathology. Cell Tissue Res. 354, 309–330. 10.1007/s00441-013-1692-9 PubMed DOI
Micale V., Stepan J., Jurik A., Pamplona F. A., Marsch R., Drago F., et al. . (2017). Extinction of avoidance behavior by safety learning depends on endocannabinoid signaling in the hippocampus. J. Psychiatr. Res. 90, 46–59. 10.1016/j.jpsychires.2017.02.002 PubMed DOI
Moreira F. A., Wotjak C. T. (2010). Cannabinoids and anxiety. Curr. Top. Behav. Neurosci. 2, 429–450. 10.1007/7854_2009_16 PubMed DOI
Ossato A., Canazza I., Trapella C., Vincenzi F., De Luca M. A., Rimondo C., et al. . (2016). Effect of JWH-250, JWH-073 and their interaction on “tetrad”, sensorimotor, neurological and neurochemical responses in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 67, 31–50. 10.1016/j.pnpbp.2016.01.007 PubMed DOI
Palenicek T., Lhotkova E., Zidkova M., Balikova M., Kuchar M., Himl M., et al. . (2016). Emerging toxicity of 5,6-methylenedioxy-2-aminoindane (MDAI): pharmacokinetics, behaviour, thermoregulation and LD50 in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 69, 49–59. 10.1016/j.pnpbp.2016.04.004 PubMed DOI
Papanti D., Schifano F., Botteon G., Bertossi F., Mannix J., Vidoni D., et al. . (2013). “Spiceophrenia”: a systematic overview of “spice”-related psychopathological issues and a case report. Hum. Psychopharmacol. 28, 379–389. 10.1002/hup.2312 PubMed DOI
Patel S., Hillard C. J. (2006). Pharmacological evaluation of cannabinoid receptor ligands in a mouse model of anxiety: further evidence for an anxiolytic role for endogenous cannabinoid signaling. J. Pharmacol. Exp. Ther. 318, 304–311. 10.1124/jpet.106.101287 PubMed DOI
Rey A. A., Purrio M., Viveros M. P., Lutz B. (2012). Biphasic effects of cannabinoids in anxiety responses: CB1 and GABA(B) receptors in the balance of GABAergic and glutamatergic neurotransmission. Neuropsychopharmacology 37, 2624–2634. 10.1038/npp.2012.123 PubMed DOI PMC
Rubino T., Realini N., Castiglioni C., Guidali C., Vigano D., Marras E., et al. . (2008). Role in anxiety behavior of the endocannabinoid system in the prefrontal cortex. Cereb. Cortex 18, 1292–1301. 10.1093/cercor/bhm161 PubMed DOI
Schaefer N., Peters B., Bregel D., Maurer H. H., Schmidt P. H., Ewald A. H. (2014). Can JWH-210 and JWH-122 be detected in adipose tissue four weeks after single oral drug administration to rats? Biomed. Chromatogr. 28, 1043–1047. 10.1002/bmc.3137 PubMed DOI
Schneir A. B., Baumbacher T. (2012). Convulsions associated with the use of a synthetic cannabinoid product. J. Med. Toxicol. 8, 62–64. 10.1007/s13181-011-0182-2 PubMed DOI PMC
Schwartz M. D., Trecki J., Edison L. A., Steck A. R., Arnold J. K., Gerona R. R. (2015). A common source outbreak of severe delirium associated with exposure to the novel synthetic cannabinoid ADB-PINACA. J. Emerg. Med. 48, 573–580. 10.1016/j.jemermed.2014.12.038 PubMed DOI PMC
Sichova K., Pinterova N., Zidkova M., Horsley R. R., Lhotkova E., Stefkova K., et al. . (2017). Mephedrone (4-Methylmethcathinone): acute behavioral effects, hyperthermic, and pharmacokinetic profile in rats. Front. Psychiatry 8:306. 10.3389/fpsyt.2017.00306 PubMed DOI PMC
Stefkova K., Zidkova M., Horsley R. R., Pinterova N., Sichova K., Uttl L., et al. . (2017). Pharmacokinetic, ambulatory, and hyperthermic effects of 3,4-Methylenedioxy-N-Methylcathinone (Methylone) in Rats. Front. Psychiatry 8:232. 10.3389/fpsyt.2017.00232 PubMed DOI PMC
Tai S., Fantegrossi W. E. (2014). Synthetic Cannabinoids: pharmacology, behavioral effects, and abuse potential. Curr. Addict. Rep. 1, 129–136. 10.1007/s40429-014-0014-y PubMed DOI PMC
Tait R. J., Caldicott D., Mountain D., Hill S. L., Lenton S. (2016). A systematic review of adverse events arising from the use of synthetic cannabinoids and their associated treatment. Clin. Toxicol. (Phila) 54, 1–13. 10.3109/15563650.2015.1110590 PubMed DOI
Takematsu M., Hoffman R. S., Nelson L. S., Schechter J. M., Moran J. H., Wiener S. W. (2014). A case of acute cerebral ischemia following inhalation of a synthetic cannabinoid. Clin. Toxicol. (Phila) 52, 973–975. 10.3109/15563650.2014.958614 PubMed DOI
Terzian A. L., Drago F., Wotjak C. T., Micale V. (2011). The dopamine and cannabinoid interaction in the modulation of emotions and cognition: assessing the role of cannabinoid CB1 receptor in neurons expressing dopamine D1 receptors. Front. Behav. Neurosci. 5:49. 10.3389/fnbeh.2011.00049 PubMed DOI PMC
Terzian A. L., Micale V., Wotjak C. T. (2014). Cannabinoid receptor type 1 receptors on GABAergic vs. glutamatergic neurons differentially gate sex-dependent social interest in mice. Eur. J. Neurosci. 40, 2293–2298. 10.1111/ejn.12561 PubMed DOI
Tyls F., Palenicek T., Kaderabek L., Lipski M., Kubesova A., Horacek J. (2016). Sex differences and serotonergic mechanisms in the behavioural effects of psilocin. Behav. Pharmacol. 27, 309–320. 10.1097/fbp.0000000000000198 PubMed DOI
Uchiyama N., Kikura-Hanajiri R., Goda Y. (2011). Identification of a novel cannabimimetic phenylacetylindole, cannabipiperidiethanone, as a designer drug in a herbal product and its affinity for cannabinoid CB(1) and CB(2) receptors. Chem. Pharm. Bull. (Tokyo) 59, 1203–1205. 10.1248/cpb.59.1203 PubMed DOI
Wiley J. L., Compton D. R., Dai D., Lainton J. A., Phillips M., Huffman J. W., et al. . (1998). Structure-activity relationships of indole- and pyrrole-derived cannabinoids. J. Pharmacol. Exp. Ther. 285, 995–1004. PubMed
Wiley J. L., Marusich J. A., Martin B. R., Huffman J. W. (2012). 1-Pentyl-3-Phenylacetylindoles and JWH-018 Share in vivo cannabinoid profiles in mice. Drug Alcohol Depend. 123, 148–153. 10.1016/j.drugalcdep.2011.11.001 PubMed DOI PMC
Zawilska J. B., Wojcieszak J. (2014). Spice/K2 drugs–more than innocent substitutes for marijuana. Int. J. Neuropsychopharmacol. 17, 509–525. 10.1017/s1461145713001247 PubMed DOI
Prenatal MAM exposure raises kynurenic acid levels in the prefrontal cortex of adult rats
The Effects of Peripubertal THC Exposure in Neurodevelopmental Rat Models of Psychopathology