Mephedrone (4-Methylmethcathinone): Acute Behavioral Effects, Hyperthermic, and Pharmacokinetic Profile in Rats

. 2017 ; 8 () : 306. [epub] 20180110

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29375408

Mephedrone (MEPH) is a synthetic cathinone derivative with effects that mimic MDMA and/or cocaine. Our study in male Wistar rats provides detailed investigations of MEPH's and its primary metabolite nor-mephedrone's (nor-MEPH) pharmacokinetics and bio-distribution to four different substrates (serum, brain, lungs, and liver), as well as comparative analysis of their effects on locomotion [open field test (OFT)] and sensorimotor gating [prepulse inhibition of acoustic startle reaction (PPI ASR)]. Furthermore, in order to mimic the crowded condition where MEPH is typically taken (e.g., clubs), the acute effect of MEPH on thermoregulation in singly- and group-housed rats was evaluated. Pharmacokinetics of MEPH and nor-MEPH after MEPH (5 mg/kg, sc.) were analyzed over 8 h using liquid chromatography with mass spectrometry. MEPH (2.5, 5, or 20 mg/kg, sc.) and nor-MEPH (5 mg/kg, sc.) were administered 5 or 40 min before the behavioral testing in the OFT and PPI ASR; locomotion and its spatial distribution, ASR, habituation and PPI itself were quantified. The effect of MEPH on rectal temperature was measured after 5 and 20 mg/kg, sc. Both MEPH and nor-MEPH were detected in all substrates, with the highest levels detected in lungs. Mean brain: serum ratios were 1:1.19 (MEPH) and 1:1.91 (nor-MEPH), maximum concentrations were observed at 30 min; at 2 and 4 h after administration, nor-MEPH concentrations were higher compared to the parent drug. While neither of the drugs disrupted PPI, both increased locomotion and affected its spatial distribution. The effects of MEPH were dose dependent, rapid, and short-lasting, and the intensity of locomotor stimulant effects was comparable between MEPH and nor-MEPH. Despite the disappearance of behavioral effects within 40 min after administration, MEPH induced rectal temperature elevations that persisted for 3 h even in singly housed rats. To conclude, we observed a robust, short-lasting, and most likely synergistic stimulatory effect of both drugs which corresponded to brain pharmacokinetics. The dissociation between the duration of behavioral and hyperthermic effects is indicative of the possible contribution of nor-MEPH or other biologically active metabolites. This temporal dissociation may be related to the risk of prolonged somatic toxicity when stimulatory effects are no longer present.

Zobrazit více v PubMed

Kelly BC. Legally tripping: a qualitative profile of salvia divinorum use among young adults. J Psychoactive Drugs (2011) 43:46–54.10.1080/02791072.2011.566500 PubMed DOI

Hill SL, Thomas SHL. Clinical toxicology of newer recreational drugs (vol 49, pg 705, 2011). Clin Toxicol (2011) 49:880–880.10.3109/15563650.2011.615318 PubMed DOI

Iversen L, Gibbons S, Treble R, Setola V, Huang X-P, Roth BL. Neurochemical profiles of some novel psychoactive substances. Eur J Pharmacol (2013) 700:147–51.10.1016/j.ejphar.2012.12.006 PubMed DOI PMC

Carhart-Harris RL, King LA, Nutt DJ. A web-based survey on mephedrone. Drug Alcohol Depend (2011) 118:19–22.10.1016/j.drugalcdep.2011.02.011 PubMed DOI

Brunt T, Koeter M, Niesink R, Van Den Brink W. Linking the pharmacological content of ecstasy tablets to the subjective experiences of drug users. Psychopharmacology (2012) 220:751–62.10.1007/s00213-011-2529-4 PubMed DOI

Varner KJ, Daigle K, Weed PF, Lewis PB, Mahne SE, Sankaranarayanan A, et al. Comparison of the behavioral and cardiovascular effects of mephedrone with other drugs of abuse in rats. Psychopharmacology (Berl) (2013) 225:675–85.10.1007/s00213-012-2855-1 PubMed DOI PMC

Green AR, King MV, Shortall SE, Fone KC. The preclinical pharmacology of mephedrone; not just MDMA by another name. Br J Pharmacol (2014) 171:2251–68.10.1111/bph.12628 PubMed DOI PMC

Karch SB. Cathinone neurotoxicity (“The “3Ms”). Curr Neuropharmacol (2015) 13:21–5.10.2174/1570159X13666141210225009 PubMed DOI PMC

Schifano F, Albanese A, Fergus S, Stair JL, Deluca P, Corazza O, et al. Mephedrone (4-methylmethcathinone; ‘meow meow’): chemical, pharmacological and clinical issues. Psychopharmacology (Berl) (2011) 214:593–602.10.1007/s00213-010-2070-x PubMed DOI

Jones L, Reed P, Parrott A. Mephedrone and 3,4-methylenedioxy-methamphetamine: comparative psychobiological effects as reported by recreational polydrug users. J Psychopharmacol (2016) 30:1313–20.10.1177/0269881116653106 PubMed DOI

Papaseit E, Moltó J, Muga R, Torrens M, De La Torre R, Farré M. Clinical pharmacology of the synthetic cathinone mephedrone. In: Baumann MH, Glennon RA, Wiley JL, editors. Neuropharmacology of New Psychoactive Substances (NPS): The Science Behind the Headlines. Cham: Springer International Publishing; (2017). p. 313–31. PubMed

EMCDDA, Europol. Europol–EMCDDA Joint Report on a New Psychoactive Substance: 4-Methylmethcathinone (Mephedrone). Lisbon: EMCDDA and Europol; (2010).

Hope VD, Cullen KJ, Smith J, Jessop L, Parry J, Ncube F. Is the recent emergence of mephedrone injecting in the United Kingdom associated with elevated risk behaviours and blood borne virus infection? Euro Surveill (2016) 21:25–33.10.2807/1560-7917.ES.2016.21.19.30225 PubMed DOI

Dickson AJ, Vorce SP, Levine B, Past MR. Multiple-drug toxicity caused by the coadministration of 4-methylmethcathinone (mephedrone) and heroin. J Anal Toxicol (2010) 34:162–8.10.1093/jat/34.3.162 PubMed DOI

Schifano F, Corkery J, Ghodse AH. Suspected and confirmed fatalities associated with mephedrone (4-methylmethcathinone, “meow meow”) in the United Kingdom. J Clin Psychopharmacol (2012) 32:710–4.10.1097/JCP.0b013e318266c70c PubMed DOI

Loi B, Corkery JM, Claridge H, Goodair C, Chiappini S, Gimeno Clemente C, et al. Deaths of individuals aged 16-24 years in the UK after using mephedrone. Hum Psychopharmacol (2015) 30:225–32.10.1002/hup.2423 PubMed DOI

Hockenhull J, Murphy KG, Paterson S. Mephedrone use is increasing in London. Lancet (2016) 387:1719–20.10.1016/S0140-6736(16)30258-6 PubMed DOI

Wood DM, Dargan PI. Mephedrone (4-methylmethcathinone): what is new in our understanding of its use and toxicity. Prog Neuropsychopharmacol Biol Psychiatry (2012) 39:227–33.10.1016/j.pnpbp.2012.04.020 PubMed DOI

Assi S, Gulyamova N, Kneller P, Osselton D. The effects and toxicity of cathinones from the users’ perspectives: a qualitative study. Hum Psychopharmacol (2017) 32:7.10.1002/hup.2610 PubMed DOI

Simmler LD, Buser TA, Donzelli M, Schramm Y, Dieu LH, Huwyler J, et al. Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol (2013) 168:458–70.10.1111/j.1476-5381.2012.02145.x PubMed DOI PMC

Liechti M. Novel psychoactive substances (designer drugs): overview and pharmacology of modulators of monoamine signaling. Swiss Med Wkly (2015) 145:w14043.10.4414/smw.2015.14043 PubMed DOI

Pifl C, Reither H, Hornykiewicz O. The profile of mephedrone on human monoamine transporters differs from 3,4-methylenedioxymethamphetamine primarily by lower potency at the vesicular monoamine transporter. Eur J Pharmacol (2015) 755:119–26.10.1016/j.ejphar.2015.03.004 PubMed DOI

Kehr J, Ichinose F, Yoshitake S, Goiny M, Sievertsson T, Nyberg F, et al. Mephedrone, compared with MDMA (ecstasy) and amphetamine, rapidly increases both dopamine and 5-HT levels in nucleus accumbens of awake rats. Br J Pharmacol (2011) 164:1949–58.10.1111/j.1476-5381.2011.01499.x PubMed DOI PMC

Baumann MH, Ayestas MA, Jr, Partilla JS, Sink JR, Shulgin AT, Daley PF, et al. The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacology (2012) 37:1192–203.10.1038/npp.2011.304 PubMed DOI PMC

Dargan PI, Albert S, Wood DM. Mephedrone use and associated adverse effects in school and college/university students before the UK legislation change. QJM (2010) 103:875–9.10.1093/qjmed/hcq134 PubMed DOI

Winstock A, Mitcheson L, Ramsey J, Davies S, Puchnarewicz M, Marsden J. Mephedrone: use, subjective effects and health risks. Addiction (2011) 106:1991–6.10.1111/j.1360-0443.2011.03502.x PubMed DOI

Hadlock GC, Webb KM, Mcfadden LM, Chu PW, Ellis JD, Allen SC, et al. 4-Methylmethcathinone (mephedrone): neuropharmacological effects of a designer stimulant of abuse. J Pharmacol Exp Ther (2011) 339:530–6.10.1124/jpet.111.184119 PubMed DOI PMC

Lisek R, Xu W, Yuvasheva E, Chiu YT, Reitz AB, Liu-Chen LY, et al. Mephedrone (’bath salt’) elicits conditioned place preference and dopamine-sensitive motor activation. Drug Alcohol Depend (2012) 126:257–62.10.1016/j.drugalcdep.2012.04.021 PubMed DOI PMC

Aarde SM, Angrish D, Barlow DJ, Wright MJ, Jr, Vandewater SA, Creehan KM, et al. Mephedrone (4-methylmethcathinone) supports intravenous self-administration in Sprague-Dawley and Wistar rats. Addict Biol (2013) 18:786–99.10.1111/adb.12038 PubMed DOI PMC

Mayer FP, Wimmer L, Dillon-Carter O, Partilla JS, Burchardt NV, Mihovilovic MD, et al. Phase I metabolites of mephedrone display biological activity as substrates at monoamine transporters. Br J Pharmacol (2016) 173:2657–68.10.1111/bph.13547 PubMed DOI PMC

Shortall SE, Macerola AE, Swaby RT, Jayson R, Korsah C, Pillidge KE, et al. Behavioural and neurochemical comparison of chronic intermittent cathinone, mephedrone and MDMA administration to the rat. Eur Neuropsychopharmacol (2013) 23:1085–95.10.1016/j.euroneuro.2012.09.005 PubMed DOI

Geyer MA, Swerdlow NR. Measurement of startle response, prepulse inhibition, and habituation. Current Protocols in Neuroscience. John Wiley & Sons, Inc. (2001).10.1002/0471142301.ns0807s03 PubMed DOI

Martinez ZA, Ellison GD, Geyer MA, Swerdlow NR. Effects of sustained cocaine exposure on sensorimotor gating of startle in rats. Psychopharmacology (Berl) (1999) 142:253–60.10.1007/s002130050887 PubMed DOI

Banjaw MY, Fendt M, Schmidt WJ. Clozapine attenuates the locomotor sensitisation and the prepulse inhibition deficit induced by a repeated oral administration of Catha edulis extract and cathinone in rats. Behav Brain Res (2005) 160:365–73.10.1016/j.bbr.2005.01.002 PubMed DOI

Bubenikova V, Votava M, Horacek J, Palenicek T. Relation of sex and estrous phase to deficits in prepulse inhibition of the startle response induced by ecstasy (MDMA). Behav Pharmacol (2005) 16:127–30.10.1097/00008877-200503000-00009 PubMed DOI

Horrillo R, Gonzalez-Periz A, Martinez-Clemente M, Lopez-Parra M, Ferre N, Titos E, et al. 5-Lipoxygenase activating protein signals adipose tissue inflammation and lipid dysfunction in experimental obesity. J Immunol (2010) 184:3978–87.10.4049/jimmunol.0901355 PubMed DOI

Palenicek T, Fujakova M, Brunovsky M, Horacek J, Gorman I, Balikova M, et al. Behavioral, neurochemical and pharmaco-EEG profiles of the psychedelic drug 4-bromo-2,5-dimethoxyphenethylamine (2C-B) in rats. Psychopharmacology (2013) 225:75–93.10.1007/s00213-012-2797-7 PubMed DOI

Palenicek T, Lhotkova E, Zidkova M, Balikova M, Kuchar M, Himl M, et al. Emerging toxicity of 5,6-methylenedioxy-2-aminoindane (MDAI): pharmacokinetics, behaviour, thermoregulation and LD50 in rats. Prog Neuropsychopharmacol Biol Psychiatry (2016) 69:49–59.10.1016/j.pnpbp.2016.04.004 PubMed DOI

Štefková K, Židková M, Horsley RR, Pinterová N, Šíchová K, Uttl L, et al. Pharmacokinetic, ambulatory, and hyperthermic effects of 3,4-methylenedioxy-N-methylcathinone (methylone) in rats. Front Psychiatry (2017) 8:232.10.3389/fpsyt.2017.00232 PubMed DOI PMC

Shortall SE, Spicer CH, Ebling FJ, Green AR, Fone KC, King MV. Contribution of serotonin and dopamine to changes in core body temperature and locomotor activity in rats following repeated administration of mephedrone. Addict Biol (2015) 21:1127–39.10.1111/adb.12283 PubMed DOI

Palenicek T, Balikova M, Rohanova M, Novak T, Horacek J, Fujakova M, et al. Behavioral, hyperthermic and pharmacokinetic profile of para-methoxymethamphetamine (PMMA) in rats. Pharmacol Biochem Behav (2011) 98:130–9.10.1016/j.pbb.2010.12.011 PubMed DOI

Parrott AC. MDMA and temperature: a review of the thermal effects of ‘ecstasy’ in humans. Drug Alcohol Depend (2012) 121:1–9.10.1016/j.drugalcdep.2011.08.012 PubMed DOI

Halpern P, Moskovich J, Avrahami B, Bentur Y, Soffer D, Peleg K. Morbidity associated with MDMA (ecstasy) abuse: a survey of emergency department admissions. Hum Exp Toxicol (2011) 30:259–66.10.1177/0960327110370984 PubMed DOI

Palenicek T, Votava M, Bubenikova V, Horacek J. Increased sensitivity to the acute effects of MDMA (“ecstasy”) in female rats. Physiol Behav (2005) 86:546–53.10.1016/j.physbeh.2005.08.043 PubMed DOI

Palenicek T, Hlinak Z, Bubenikova-Valesova V, Votava M, Horacek J. An analysis of spontaneous behavior following acute MDMA treatment in male and female rats. Neuro Endocrinol Lett (2007) 28:781–8. PubMed

Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J (2008) 22:659–61.10.1096/fj.07-9574LSF PubMed DOI

Horsley RR, Lhotkova E, Hajkova K, Jurasek B, Kuchar M, Palenicek T. Detailed pharmacological evaluation of methoxetamine (MXE), a novel psychoactive ketamine analogue – behavioural, pharmacokinetic and metabolic studies in the Wistar rat. Brain Res Bull (2016) 126:102–10.10.1016/j.brainresbull.2016.05.002 PubMed DOI

Martinez-Clemente J, Lopez-Arnau R, Carbo M, Pubill D, Camarasa J, Escubedo E. Mephedrone pharmacokinetics after intravenous and oral administration in rats: relation to pharmacodynamics. Psychopharmacology (Berl) (2013) 229:295–306.10.1007/s00213-013-3108-7 PubMed DOI

Rohanova M, Palenicek T, Balikova M. Disposition of 4-bromo-2,5-dimethoxyphenethylamine (2C-B) and its metabolite 4-bromo-2-hydroxy-5-methoxyphenethylamine in rats after subcutaneous administration. Toxicol Lett (2008) 178:29–36.10.1016/j.toxlet.2008.01.017 PubMed DOI

Hajkova K, Jurasek B, Sykora D, Palenicek T, Miksatkova P, Kuchar M. Salting-out-assisted liquid-liquid extraction as a suitable approach for determination of methoxetamine in large sets of tissue samples. Anal Bioanal Chem (2016) 408:1171–81.10.1007/s00216-015-9221-1 PubMed DOI

Beninger RJ. The role of dopamine in locomotor activity and learning. Brain Res (1983) 287:173–96.10.1016/0165-0173(83)90038-3 PubMed DOI

Archer J. Tests for emotionality in rats and mice: a review. Anim Behav (1973) 21:205–35.10.1016/S0003-3472(73)80065-X PubMed DOI

Walsh RN, Cummins RA. The open-field test: a critical review. Psychol Bull (1976) 83:482–504.10.1037/0033-2909.83.3.482 PubMed DOI

Budzynska B, Boguszewska-Czubara A, Kruk-Slomka M, Biala G. Mephedrone and nicotine: oxidative stress and behavioral interactions in animal models. Neurochem Res (2015) 40:1083–93.10.1007/s11064-015-1566-5 PubMed DOI PMC

Den Hollander B, Rozov S, Linden AM, Uusi-Oukari M, Ojanpera I, Korpi ER. Long-term cognitive and neurochemical effects of “bath salt” designer drugs methylone and mephedrone. Pharmacol Biochem Behav (2013) 103:501–9.10.1016/j.pbb.2012.10.006 PubMed DOI

Motbey CP, Clemens KJ, Apetz N, Winstock AR, Ramsey J, Li KM, et al. High levels of intravenous mephedrone (4-methylmethcathinone) self-administration in rats: neural consequences and comparison with methamphetamine. J Psychopharmacol (2013) 27:823–36.10.1177/0269881113490325 PubMed DOI

Cannizzaro C, Plescia F, Gagliano M, Cannizzaro G, Mantia G, Labarbera M, et al. Perinatal exposure to 5-metoxytryptamine, behavioural-stress reactivity and functional response of 5-HT1A receptors in the adolescent rat. Behav Brain Res (2008) 186:98–106.10.1016/j.bbr.2007.07.036 PubMed DOI

Lalonde R, Strazielle C. Relations between open-field, elevated plus-maze, and emergence tests in C57BL/6J and BALB/c mice injected with GABA- and 5HT-anxiolytic agents. Fundam Clin Pharmacol (2010) 24:365–76.10.1111/j.1472-8206.2009.00772.x PubMed DOI

Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR. Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology (2001) 156:117–54.10.1007/s002130100811 PubMed DOI

Palenicek T, Balikova M, Bubenikova-Valesova V, Horacek J. Mescaline effects on rat behavior and its time profile in serum and brain tissue after a single subcutaneous dose. Psychopharmacology (Berl) (2008) 196:51–62.10.1007/s00213-007-0926-5 PubMed DOI

Palenicek T, Hlinak Z, Bubenikova-Valesova V, Novak T, Horacek J. Sex differences in the effects of N,N-diethyllysergamide (LSD) on behavioural activity and prepulse inhibition. Prog Neuropsychopharmacol Biol Psychiatry (2010) 34:588–96.10.1016/j.pnpbp.2010.02.008 PubMed DOI

Nichols DE. Psychedelics. Pharmacol Rev (2016) 68:264–355.10.1124/pr.115.011478 PubMed DOI PMC

Tyls F, Palenicek T, Kaderabek L, Lipski M, Kubesova A, Horacek J. Sex differences and serotonergic mechanisms in the behavioural effects of psilocin. Behav Pharmacol (2016) 27:309–20.10.1097/FBP.0000000000000198 PubMed DOI

Kehne JH, Padich RA, Mccloskey TC, Taylor VL, Schmidt CJ. 5-HT modulation of auditory and visual sensorimotor gating: I. Effects of 5-HT releasers on sound and light prepulse inhibition in Wistar rats. Psychopharmacology (Berl) (1996) 124:95–106.10.1007/BF02245609 PubMed DOI

Padich RA, Mccloskey TC, Kehne JH. 5-HT modulation of auditory and visual sensorimotor gating: II. Effects of the 5-HT2A antagonist MDL 100,907 on disruption of sound and light prepulse inhibition produced by 5-HT agonists in Wistar rats. Psychopharmacology (Berl) (1996) 124:107–16.10.1007/BF02245610 PubMed DOI

Kalant H. The pharmacology and toxicology of “ecstasy” (MDMA) and related drugs. Can Med Assoc J (2001) 165:917–28. PubMed PMC

Green AR, O’shea E, Saadat KS, Elliott JM, Colado MI. Studies on the effect of MDMA (‘ecstasy’) on the body temperature of rats housed at different ambient room temperatures. Br J Pharmacol (2005) 146:306–12.10.1038/sj.bjp.0706318 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace