Enantioseparation and Determination of Mephedrone and Its Metabolites by Capillary Electrophoresis Using Cyclodextrins as Chiral Selectors

. 2020 Jun 23 ; 25 (12) : . [epub] 20200623

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32585814

Grantová podpora
VI20172020056 Ministry of Interior of the Czech Republic

Mephedrone, a psychoactive compound derived from cathinone, is widely used as a designer drug. The determination of mephedrone and its metabolites is important for understanding its possible use in medicine. In this work, a method of capillary electrophoresis for the chiral separation of mephedrone and its metabolites was developed. Carboxymethylated β-cyclodextrin was selected as the most effective chiral selector from seven tested cyclodextrin derivates. Based on the simplex method, the optimal composition of the background electrolyte was determined: at pH 2.75 and 7.5 mmol·L-1 carboxymethylated β-cyclodextrin the highest total resolution of a mixture of analytes was achieved. For mephedrone and its metabolites, calibration curves were constructed in a calibration range from 0.2 to 5 mmol·L-1; limits of detection, limits of quantification, precision, and repeatability were calculated, and according to Mandel's fitting test, the linear calibration ranges were determined.

Zobrazit více v PubMed

Sanchez: S. Sur un homologue de l’ephedrine. Bull. Soc. Chim. Fr. 1929;45:284–286.

European Monitoring Centre for Drugs and Drug Addiction. [(accessed on 5 May 2020)]; Available online: http://www.emcdda.europa.eu/publications/edr/trends-developments/2019_en.

Busardo F.P., Di Trana A., Montanari E., Mauloni S., Tagliabracci A., Giorgetti R. Is etizolam a safe medication? Effects on psychomotor perfomance at therapeutic dosages of a newly abused psychoactive substance. Forensic Sci. Int. 2019;301:137–141. doi: 10.1016/j.forsciint.2019.05.018. PubMed DOI

Prosser J.M., Nelson L.S. The toxicology of bath salts: A review of synthetic cathinones. J. Med. Toxicol. 2012;8:33–42. doi: 10.1007/s13181-011-0193-z. PubMed DOI PMC

Kerrigan S., Savage M., Cavazos C., Bella P. Thermal degradation of synthetic cathinones: Implications for forensic toxicology. J. Anal. Toxicol. 2016;40:1–11. doi: 10.1093/jat/bkv099. PubMed DOI

Goldberg J., Gardos G., Cole J.O. A controlled evaluation of pyrovalerone in chronically fatigued volunteers. Int. Pharmacopsychiatry. 1973;8:60–69. doi: 10.1159/000467975. PubMed DOI

Batisse A., Eiden C., Peyriere H., Djezzar S. Use of new psychoactive substances to mimic prescription drugs: The trend in France. NeuroToxicology. 2020;79:20–24. doi: 10.1016/j.neuro.2020.03.015. PubMed DOI

Alremeithi R., Meetani M.A., Alaidaros A.A., Lanjawi A., Alsumaiti K. Simultaneous Quantitative Determination of Synthetic Cathinone Enantiomers in Urine and Plasma Using GC-NCI-MS. J. Anal. Methods Chem. 2018;2018:1–11. doi: 10.1155/2018/4396043. PubMed DOI PMC

Majchrzak M., Celinski R., Kus P., Kowalska T., Sajewicz M. The newest cathinone derivatives as designer drugs: An analytical and toxicological review. Forensic Toxicol. 2018:1–18. doi: 10.1007/s11419-017-0385-6. PubMed DOI PMC

Usui K., Hayashizaki Y., Hashiyada M., Funayama M. Rapid drug extraction from human whole blood using a modified QuEChERS extraction method. Leg. Med. 2012;14:286–296. doi: 10.1016/j.legalmed.2012.04.008. PubMed DOI

Toole K.E., Fu S., Shimmon R.G., Kraymen N., Taflaga S., Forensic A.F. Color tests for the preliminary identification of methcathinone and analogues of methcathinone. Microgram J. 2012;9:27–32.

Ellefsen K.N., Anizan S., Castaneto M.S., Desrosiers N.A., Martin T.M., Klette K.L., Huestis M.A. Validation of the only commercially available immunoassay for synthetic cathinones in urine: Randox Drugs of Abuse V Biochip Array Technology. Drug Test. Anal. 2014;6:728–738. doi: 10.1002/dta.1633. PubMed DOI PMC

Paillet-Loilier M., Cesbron A., Bourgine J., Le B.R., Debruyne D. Emerging drugs of abuse: Current perspectives on substituted cathinones. Subst. Abuse Rehabil. 2014;5:37–52. PubMed PMC

Daeid N.N., Savage K.A., Ramsay D., Holland C., Sutcliffe O.B. Development of gas chromatography–mass spectrometry (GC–MS) and other rapid screening methods for the analysis of 16 ‘legal high’cathinone derivatives. Sci. Justice. 2014;54:22–31. doi: 10.1016/j.scijus.2013.08.004. PubMed DOI

Camilleri A., Johnston M.R., Brennan M., Davis S., Caldicott D.G. Chemical analysis of four capsules containing the controlled substance analogues 4-methylmethcathinone, 2-fluoromethamphetamine, alpha-phthalimidopropiophenone and N-ethylcathinone. Forensic Sci. Int. 2010;197:59–66. doi: 10.1016/j.forsciint.2009.12.048. PubMed DOI

Fujii H., Hara K., Kageura M., Kashiwagi M., Matsusue A., Kubo S. High throughput chiral analysis of urinary amphetamines by GC-MS using a short narrow-bore capillary column. Forensic Toxicol. 2009;27:75–80. doi: 10.1007/s11419-009-0073-2. DOI

Meyer M.R., Wilhelm J., Peters F.T., Maurer H.H. Beta-keto amphetamines: Studies on the metabolism of the designer drug mephedrone and toxicological detection of mephedrone, butylone, and methylone in urine using gas chromatography-mass spectrometry. Anal. Bioanal. Chem. 2010;397:1225–1233. doi: 10.1007/s00216-010-3636-5. PubMed DOI

Olesti E., Pujadas M., Papaseit E., Perez-Mana C., Pozo O.J., Farre M., de la Torre R. GC–MS quantification method for mephedrone in plasma and urine: Application to human pharmacokinetics. J. Anal. Toxicol. 2017;41:100–106. doi: 10.1093/jat/bkw120. PubMed DOI

Rasmussen L.B., Olsen K.H., Johansen S.S. Chiral separation and quantification of R/S-amphetamine, R/S-methamphetamine, R/S-MDA, R/S-MDMA, and R/S-MDEA in whole blood by GC-EI-MS. J. Chromatogr. B. 2006;842:136–141. doi: 10.1016/j.jchromb.2006.05.011. PubMed DOI

Ribeiro C., Santos C., Gonçalves V., Ramos A., Afonso C., Tiritan M.E. Chiral Drug Analysis in Forensic Chemistry: An Overview. Molecules. 2018;23:262. doi: 10.3390/molecules23020262. PubMed DOI PMC

Mohr S., Weiß J.A., Spreitz J., Schmid M.G. Chiral separation of new cathinone-and amphetamine-related designer drugs by gas chromatography–mass spectrometry using trifluoroacetyl-l-prolyl chloride as chiral derivatization reagent. J. Chromatogr. A. 2012;1269:352–359. doi: 10.1016/j.chroma.2012.09.079. PubMed DOI

Pedersen A.J., Dalsgaard P.W., Rode A.J., Rasmussen B.S., Müller I.B., Johansen S.S., Linnet K. Screening for illicit and medicinal drugs in whole blood using fully automated SPE and ultra-high-performance liquid chromatography with TOF-MS with data-independent acquisition. J. Sep. Sci. 2013;36:2081–2089. doi: 10.1002/jssc.201200921. PubMed DOI

Paul M., Ippisch J., Herrmann C., Guber S., Schultis W. Analysis of new designer drugs and common drugs of abuse in urine by a combined targeted and untargeted LC-HR-QTOFMS approach. Anal. Bioanal. Chem. 2014;406:4425–4441. doi: 10.1007/s00216-014-7825-5. PubMed DOI

Concheiro M., Castaneto M., Kronstrand R., Huestis M.A. Simultaneous determination of 40 novel psychoactive stimulants in urine by liquid chromatography–high resolution mass spectrometry and library matching. J. Chromatogr. A. 2015;1397:32–42. doi: 10.1016/j.chroma.2015.04.002. PubMed DOI PMC

Mohr S., Taschwer M., Schmid M.G. Chiral separation of cathinone derivatives used as recreational drugs by HPLC-UV using a CHIRALPAK® AS-H column as stationary phase. Chirality. 2012;24:486–492. doi: 10.1002/chir.22048. PubMed DOI

Taschwer M., Seidl Y., Mohr S., Schmid M.G. Chiral Separation of Cathinone and Amphetamine Derivatives by HPLC/UV Using Sulfated ß-Cyclodextrin as Chiral Mobile Phase Additive. Chirality. 2014;26:411–418. doi: 10.1002/chir.22341. PubMed DOI

Pauk V., Zihlová V., Borovcova L., Havlicek V., Schug K., Lemr K. Fast separation of selected cathinones and phenylethylamines by supercritical fluid chromatography. J. Chromatogr. A. 2015;1423:169–176. doi: 10.1016/j.chroma.2015.10.061. PubMed DOI

Geryk R., Kaliková K., Schmid M.G., Tesarová E. Enantioselective separation of biologically active basic compounds in ultra-performance supercritical fluid chromatography. Anal. Chim. Acta. 2016;932:98–105. doi: 10.1016/j.aca.2016.04.044. PubMed DOI

Carnes S., O’Brien S., Szewczak A., Tremeau-Cayel L., Rowe W.F., McCord B., Lurie I.S. Comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones. J. Sep. Sci. 2017;40:3545–3556. doi: 10.1002/jssc.201700349. PubMed DOI

Mohr S., Pilaj S., Schmid M.G. Chiral separation of cathinone derivatives used as recreational drugs by cyclodextrin-modified capillary electrophoresis. Electrophoresis. 2012;33:1624–1630. doi: 10.1002/elps.201100570. PubMed DOI

Merola G., Fu H., Tagliaro F., Macchia T., McCord B.R. Chiral separation of 12 cathinone analogs by cyclodextrin-assisted capillary electrophoresis with UV and mass spectrometry detection. Electrophoresis. 2014;35:3231–3241. doi: 10.1002/elps.201400077. PubMed DOI

Taschwer M., Weiß J.A., Kunert O., Schmid M.G. Analysis and characterization of the novel psychoactive drug 4-chloromethcathinone (clephedrone) Forensic Sci. Int. 2014;244:56–59. doi: 10.1016/j.forsciint.2014.09.007. PubMed DOI

Nowak P.M., Olesek K., Wozniakiewicz M., Koscielniak P. Simultaneous enantioseparation of methcathinone and two isomeric methylmethcathinones using capillary electrophoresis assisted by 2-hydroxyethyl-β-cyclodextrin. Electrophoresis. 2018;39:2406–2409. doi: 10.1002/elps.201800142. PubMed DOI

Baciu T., Borrull F., Calull M., Aguilar C. Enantioselective determination of cathinone derivatives in human hair by capillary electrophoresis combined in-line with solid-phase extraction. Electrophoresis. 2016;37:2352–2362. doi: 10.1002/elps.201600149. PubMed DOI

Simmler L.D., Buser T.A., Donzelli M., Schramm Y., Dieu L.H., Huwyler J., Chaboz S., Hoener M.C., Liechti M.E. Pharmacological characterization of designer cathinones in vitro. Br. J. Pharmacol. 2013;168:458–470. doi: 10.1111/j.1476-5381.2012.02145.x. PubMed DOI PMC

Martinez-Clemente J., Escubedo E., Pubill D., Camarasa J. Interaction of mephedrone with dopamine and serotonin targets in rats. Eur. Neuropsychopharmacol. 2012;22:231–236. doi: 10.1016/j.euroneuro.2011.07.009. PubMed DOI

Lopez-Arnau R., Martinez-Clemente J., Pubill D., Escubedo E., Camarasa J. Comparative neuropharmacology of three psychostimulant cathinone derivatives: Butylone, mephedrone and methylone. Br. J. Pharmacol. 2012;167:407–420. doi: 10.1111/j.1476-5381.2012.01998.x. PubMed DOI PMC

Chavant F., Boucher A., Le B.R., Debruyne D., Deheul S. New synthetic drugs in addictovigilance. Therapie. 2015;70:167–189. doi: 10.2515/therapie/2014235. PubMed DOI

Philogene-Khalid H.L., Hicks C., Reitz A.B., Liu-Chen L.Y., Rawls S.M. Synthetic cathinones and stereochemistry: S enantiomer of mephedrone reduces anxiety- and depressant-like effects in cocaine- or MDPV-abstinent rats. Drug Alcohol Depend. 2017;178:119–125. doi: 10.1016/j.drugalcdep.2017.04.024. PubMed DOI PMC

Schifano F., Albanese A., Fergus S., Stair J.L., Deluca P., Corazza O., Davey Z., Corkery J., Siemann H., Scherbaum N., et al. Mephedrone (4-methylmethcathinone; meow meow’): Chemical, pharmacological and clinical issues. Psychopharmacology (Heidelb. Ger.) 2011;214:593–602. doi: 10.1007/s00213-010-2070-x. PubMed DOI

Ciechomska M., Wozniakiewicz M., Wietecha-Posluszny R. Activity and biotransformation of three synthetic legal highs: Mephedrone, methylone and 3,4-methylenodioxypyrovalerone. Z Zagadnien Nauk Sadowych. 2012;89:71–85.

Karila L., Megarbane B., Cottencin O., Lejoyeux M. Synthetic Cathinones: A New Public Health Problem. Curr. Neuropharmacol. 2015;13:12–20. doi: 10.2174/1570159X13666141210224137. PubMed DOI PMC

Papaseit E., Perez-Mana C., Mateus J.A., Pujadas M., Fonseca F., Torrens M., Olesti E., de la Torre R., Farre M. Human pharmacology of mephedrone in comparison with MDMA. Neuropsychopharmacology. 2016;41:2704. doi: 10.1038/npp.2016.75. PubMed DOI PMC

Sichova K., Pinterova N., Horsley R.R., Lhotkova E., Stefkova K., Vejmola C., Uttl L., Kuchar M., Palenicek T., Pinterova N., et al. Mephedrone (4-Methylmethcathinone): Acute Behavioral Effects, Hyperthermic, and Pharmacokinetic Profile in Rats. Front. Psychiatry. 2017;8:306. doi: 10.3389/fpsyt.2017.00306. PubMed DOI PMC

Gregg R.A., Baumann M.H., Partilla J.S., Bonano J.S., Vouga A., Tallarida C.S., Velvadapu V., Smith G.R., Peet M.M., Reitz A.B. Stereochemistry of mephedrone neuropharmacology: Enantiomer-specific behavioural and neurochemical effects in rats. Br. J. Pharmacol. 2015;172:883–894. doi: 10.1111/bph.12951. PubMed DOI PMC

Linhart I., Himl M., Zidkova M., Balikova M., Lhotkova E., Palenicek T. Metabolic profile of mephedrone: Identification of nor-mephedrone conjugates with dicarboxylic acids as a new type of xenobiotic phase II metabolites. Toxicol. Lett. 2016;240:114–121. doi: 10.1016/j.toxlet.2015.10.025. PubMed DOI

Pozo O.J., Ibanez M., Sancho J.V., Lahoz-Beneytez J., Farre M., Papaseit E., de la Torre R., Hernandez F. Mass spectrometric evaluation of mephedrone in vivo human metabolism: Identification of phase I and phase II metabolites, including a novel succinyl conjugate. Drug Metab. Dispos. 2015;43:248–257. doi: 10.1124/dmd.114.061416. PubMed DOI

Bernardo-Bermejo S., Sánchez-López E., Castro-Puyana M., Marina M.L. Chiral capillary electrophoresis. TrAC Trends Anal. Chem. 2020;124:115807. doi: 10.1016/j.trac.2020.115807. DOI

Rezanka P., Navratilova K., Rezanka M., Kral V., Sykora D. Application of cyclodextrins in chiral capillary electrophoresis. Electrophoresis. 2014;35:2701–2721. doi: 10.1002/elps.201400145. PubMed DOI

Catai J.R., Carrilho E. Simplex optimization of electrokinetic injection of DNA in capillary electrophoresis using dilute polymer solution. Electrophoresis. 2003;24:648–654. doi: 10.1002/elps.200390076. PubMed DOI

Rezanka P., Navratilova K., Rysava H., Masek J., Rokosova L., Blahova M., Rezanka M., Jindrich J., Sykora D., Kral V. Influence of substituent position and cavity size of all regioisomers of monocarboxymethyl-α-, β-, and γ-cyclodextrins on their apparent stability constants of their complexes with both enantiomers of Tröger’s base. J. Sep. Sci. 2016;39:980–985. doi: 10.1002/jssc.201500845. PubMed DOI

Řezanková K., Kohoutová R., Kuchař M., Král V., Řezanka P. Enantioseparation of novel psychoactive chiral amines and their mixture by capillary electrophoresis using cyclodextrins as chiral selectors. Chem. Pap. 2018;72:2737–2743. doi: 10.1007/s11696-018-0535-2. DOI

Jurasek B., Himl M., Jurok R., Hajkova K., Vobinuskova A., Rezanka P., Kuchar M. Synthesis of methoxetamine, its metabolites and deuterium labelled analog as analytical standards and their HPLC and chiral capillary electrophoresis separation. RSC Adv. 2017;7:56691–56696. doi: 10.1039/C7RA10893A. DOI

Szeman J., Ganzler K., Salgo A., Szejtli J. Effect of the degree of substitution of cyclodextrin derivatives on chiral separations by high-performance liquid chromatography and capillary electrophoresis. J. Chromatogr. A. 1996;728:423–431. doi: 10.1016/0021-9673(95)01312-1. PubMed DOI

Sabbah S., Scriba G.K.E. Separation of dipeptide and tripeptide enantiomers in capillary electrophoresis using carboxymethyl-β-cyclodextrin and succinyl-β-cyclodextrin: Influence of the amino acid sequence, nature of the cyclodextrin and pH. Electrophoresis. 2001;22:1385–1393. doi: 10.1002/1522-2683(200105)22:7<1385::AID-ELPS1385>3.0.CO;2-A. PubMed DOI

Nowak P.M., Olesek K., Wozniakiewicz M., Mitoraj M., Sagan F., Koscielniak P. Cyclodextrin-induced acidity modification of substituted cathinones studied by capillary electrophoresis supported by density functional theory calculations. J. Chromatogr. A. 2018;1580:142–151. doi: 10.1016/j.chroma.2018.10.036. PubMed DOI

Gibbons S., Zloh M. An analysis of the ‘legal high’mephedrone. Bioorg. Med. Chem. Lett. 2010;20:4135–4139. doi: 10.1016/j.bmcl.2010.05.065. PubMed DOI

Wan H., Holmen A., Nagard M., Lindberg W. Rapid screening of pKa values of pharmaceuticals by pressure-assisted capillary electrophoresis combined with short-end injection. J. Chromatogr. A. 2002;979:369–377. doi: 10.1016/S0021-9673(02)01262-1. PubMed DOI

Glicksberg L., Winecker R., Miller C., Kerrigan S. Postmortem distribution and redistribution of synthetic cathinones. Forensic Toxicol. 2018;36:291–303. doi: 10.1007/s11419-018-0403-3. DOI

Spendley W., Hext G.R., Himsworth F.R. Sequential application of simplex designs in optimisation and evolutionary operation. Technometrics. 1962;4:441–461. doi: 10.1080/00401706.1962.10490033. DOI

Rezanka P., Rysava H., Havlik M., Jakubek M., Sykora D., Kral V. Enantioseparation of Troeger’s Base Derivatives by Capillary Electrophoresis Using Cyclodextrins as Chiral Selectors. Chirality. 2013;25:379–383. doi: 10.1002/chir.22148. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...