Enantioseparation and Determination of Mephedrone and Its Metabolites by Capillary Electrophoresis Using Cyclodextrins as Chiral Selectors
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
VI20172020056
Ministry of Interior of the Czech Republic
PubMed
32585814
PubMed Central
PMC7355680
DOI
10.3390/molecules25122879
PII: molecules25122879
Knihovny.cz E-zdroje
- Klíčová slova
- capillary electrophoresis, chiral separation, cyclodextrin, mephedrone, metabolites,
- MeSH
- biotransformace MeSH
- cyklodextriny chemie MeSH
- elektroforéza kapilární metody MeSH
- kalibrace MeSH
- limita detekce MeSH
- methamfetamin analogy a deriváty analýza chemie metabolismus MeSH
- stereoizomerie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cyklodextriny MeSH
- mephedrone MeSH Prohlížeč
- methamfetamin MeSH
Mephedrone, a psychoactive compound derived from cathinone, is widely used as a designer drug. The determination of mephedrone and its metabolites is important for understanding its possible use in medicine. In this work, a method of capillary electrophoresis for the chiral separation of mephedrone and its metabolites was developed. Carboxymethylated β-cyclodextrin was selected as the most effective chiral selector from seven tested cyclodextrin derivates. Based on the simplex method, the optimal composition of the background electrolyte was determined: at pH 2.75 and 7.5 mmol·L-1 carboxymethylated β-cyclodextrin the highest total resolution of a mixture of analytes was achieved. For mephedrone and its metabolites, calibration curves were constructed in a calibration range from 0.2 to 5 mmol·L-1; limits of detection, limits of quantification, precision, and repeatability were calculated, and according to Mandel's fitting test, the linear calibration ranges were determined.
Zobrazit více v PubMed
Sanchez: S. Sur un homologue de l’ephedrine. Bull. Soc. Chim. Fr. 1929;45:284–286.
European Monitoring Centre for Drugs and Drug Addiction. [(accessed on 5 May 2020)]; Available online: http://www.emcdda.europa.eu/publications/edr/trends-developments/2019_en.
Busardo F.P., Di Trana A., Montanari E., Mauloni S., Tagliabracci A., Giorgetti R. Is etizolam a safe medication? Effects on psychomotor perfomance at therapeutic dosages of a newly abused psychoactive substance. Forensic Sci. Int. 2019;301:137–141. doi: 10.1016/j.forsciint.2019.05.018. PubMed DOI
Prosser J.M., Nelson L.S. The toxicology of bath salts: A review of synthetic cathinones. J. Med. Toxicol. 2012;8:33–42. doi: 10.1007/s13181-011-0193-z. PubMed DOI PMC
Kerrigan S., Savage M., Cavazos C., Bella P. Thermal degradation of synthetic cathinones: Implications for forensic toxicology. J. Anal. Toxicol. 2016;40:1–11. doi: 10.1093/jat/bkv099. PubMed DOI
Goldberg J., Gardos G., Cole J.O. A controlled evaluation of pyrovalerone in chronically fatigued volunteers. Int. Pharmacopsychiatry. 1973;8:60–69. doi: 10.1159/000467975. PubMed DOI
Batisse A., Eiden C., Peyriere H., Djezzar S. Use of new psychoactive substances to mimic prescription drugs: The trend in France. NeuroToxicology. 2020;79:20–24. doi: 10.1016/j.neuro.2020.03.015. PubMed DOI
Alremeithi R., Meetani M.A., Alaidaros A.A., Lanjawi A., Alsumaiti K. Simultaneous Quantitative Determination of Synthetic Cathinone Enantiomers in Urine and Plasma Using GC-NCI-MS. J. Anal. Methods Chem. 2018;2018:1–11. doi: 10.1155/2018/4396043. PubMed DOI PMC
Majchrzak M., Celinski R., Kus P., Kowalska T., Sajewicz M. The newest cathinone derivatives as designer drugs: An analytical and toxicological review. Forensic Toxicol. 2018:1–18. doi: 10.1007/s11419-017-0385-6. PubMed DOI PMC
Usui K., Hayashizaki Y., Hashiyada M., Funayama M. Rapid drug extraction from human whole blood using a modified QuEChERS extraction method. Leg. Med. 2012;14:286–296. doi: 10.1016/j.legalmed.2012.04.008. PubMed DOI
Toole K.E., Fu S., Shimmon R.G., Kraymen N., Taflaga S., Forensic A.F. Color tests for the preliminary identification of methcathinone and analogues of methcathinone. Microgram J. 2012;9:27–32.
Ellefsen K.N., Anizan S., Castaneto M.S., Desrosiers N.A., Martin T.M., Klette K.L., Huestis M.A. Validation of the only commercially available immunoassay for synthetic cathinones in urine: Randox Drugs of Abuse V Biochip Array Technology. Drug Test. Anal. 2014;6:728–738. doi: 10.1002/dta.1633. PubMed DOI PMC
Paillet-Loilier M., Cesbron A., Bourgine J., Le B.R., Debruyne D. Emerging drugs of abuse: Current perspectives on substituted cathinones. Subst. Abuse Rehabil. 2014;5:37–52. PubMed PMC
Daeid N.N., Savage K.A., Ramsay D., Holland C., Sutcliffe O.B. Development of gas chromatography–mass spectrometry (GC–MS) and other rapid screening methods for the analysis of 16 ‘legal high’cathinone derivatives. Sci. Justice. 2014;54:22–31. doi: 10.1016/j.scijus.2013.08.004. PubMed DOI
Camilleri A., Johnston M.R., Brennan M., Davis S., Caldicott D.G. Chemical analysis of four capsules containing the controlled substance analogues 4-methylmethcathinone, 2-fluoromethamphetamine, alpha-phthalimidopropiophenone and N-ethylcathinone. Forensic Sci. Int. 2010;197:59–66. doi: 10.1016/j.forsciint.2009.12.048. PubMed DOI
Fujii H., Hara K., Kageura M., Kashiwagi M., Matsusue A., Kubo S. High throughput chiral analysis of urinary amphetamines by GC-MS using a short narrow-bore capillary column. Forensic Toxicol. 2009;27:75–80. doi: 10.1007/s11419-009-0073-2. DOI
Meyer M.R., Wilhelm J., Peters F.T., Maurer H.H. Beta-keto amphetamines: Studies on the metabolism of the designer drug mephedrone and toxicological detection of mephedrone, butylone, and methylone in urine using gas chromatography-mass spectrometry. Anal. Bioanal. Chem. 2010;397:1225–1233. doi: 10.1007/s00216-010-3636-5. PubMed DOI
Olesti E., Pujadas M., Papaseit E., Perez-Mana C., Pozo O.J., Farre M., de la Torre R. GC–MS quantification method for mephedrone in plasma and urine: Application to human pharmacokinetics. J. Anal. Toxicol. 2017;41:100–106. doi: 10.1093/jat/bkw120. PubMed DOI
Rasmussen L.B., Olsen K.H., Johansen S.S. Chiral separation and quantification of R/S-amphetamine, R/S-methamphetamine, R/S-MDA, R/S-MDMA, and R/S-MDEA in whole blood by GC-EI-MS. J. Chromatogr. B. 2006;842:136–141. doi: 10.1016/j.jchromb.2006.05.011. PubMed DOI
Ribeiro C., Santos C., Gonçalves V., Ramos A., Afonso C., Tiritan M.E. Chiral Drug Analysis in Forensic Chemistry: An Overview. Molecules. 2018;23:262. doi: 10.3390/molecules23020262. PubMed DOI PMC
Mohr S., Weiß J.A., Spreitz J., Schmid M.G. Chiral separation of new cathinone-and amphetamine-related designer drugs by gas chromatography–mass spectrometry using trifluoroacetyl-l-prolyl chloride as chiral derivatization reagent. J. Chromatogr. A. 2012;1269:352–359. doi: 10.1016/j.chroma.2012.09.079. PubMed DOI
Pedersen A.J., Dalsgaard P.W., Rode A.J., Rasmussen B.S., Müller I.B., Johansen S.S., Linnet K. Screening for illicit and medicinal drugs in whole blood using fully automated SPE and ultra-high-performance liquid chromatography with TOF-MS with data-independent acquisition. J. Sep. Sci. 2013;36:2081–2089. doi: 10.1002/jssc.201200921. PubMed DOI
Paul M., Ippisch J., Herrmann C., Guber S., Schultis W. Analysis of new designer drugs and common drugs of abuse in urine by a combined targeted and untargeted LC-HR-QTOFMS approach. Anal. Bioanal. Chem. 2014;406:4425–4441. doi: 10.1007/s00216-014-7825-5. PubMed DOI
Concheiro M., Castaneto M., Kronstrand R., Huestis M.A. Simultaneous determination of 40 novel psychoactive stimulants in urine by liquid chromatography–high resolution mass spectrometry and library matching. J. Chromatogr. A. 2015;1397:32–42. doi: 10.1016/j.chroma.2015.04.002. PubMed DOI PMC
Mohr S., Taschwer M., Schmid M.G. Chiral separation of cathinone derivatives used as recreational drugs by HPLC-UV using a CHIRALPAK® AS-H column as stationary phase. Chirality. 2012;24:486–492. doi: 10.1002/chir.22048. PubMed DOI
Taschwer M., Seidl Y., Mohr S., Schmid M.G. Chiral Separation of Cathinone and Amphetamine Derivatives by HPLC/UV Using Sulfated ß-Cyclodextrin as Chiral Mobile Phase Additive. Chirality. 2014;26:411–418. doi: 10.1002/chir.22341. PubMed DOI
Pauk V., Zihlová V., Borovcova L., Havlicek V., Schug K., Lemr K. Fast separation of selected cathinones and phenylethylamines by supercritical fluid chromatography. J. Chromatogr. A. 2015;1423:169–176. doi: 10.1016/j.chroma.2015.10.061. PubMed DOI
Geryk R., Kaliková K., Schmid M.G., Tesarová E. Enantioselective separation of biologically active basic compounds in ultra-performance supercritical fluid chromatography. Anal. Chim. Acta. 2016;932:98–105. doi: 10.1016/j.aca.2016.04.044. PubMed DOI
Carnes S., O’Brien S., Szewczak A., Tremeau-Cayel L., Rowe W.F., McCord B., Lurie I.S. Comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones. J. Sep. Sci. 2017;40:3545–3556. doi: 10.1002/jssc.201700349. PubMed DOI
Mohr S., Pilaj S., Schmid M.G. Chiral separation of cathinone derivatives used as recreational drugs by cyclodextrin-modified capillary electrophoresis. Electrophoresis. 2012;33:1624–1630. doi: 10.1002/elps.201100570. PubMed DOI
Merola G., Fu H., Tagliaro F., Macchia T., McCord B.R. Chiral separation of 12 cathinone analogs by cyclodextrin-assisted capillary electrophoresis with UV and mass spectrometry detection. Electrophoresis. 2014;35:3231–3241. doi: 10.1002/elps.201400077. PubMed DOI
Taschwer M., Weiß J.A., Kunert O., Schmid M.G. Analysis and characterization of the novel psychoactive drug 4-chloromethcathinone (clephedrone) Forensic Sci. Int. 2014;244:56–59. doi: 10.1016/j.forsciint.2014.09.007. PubMed DOI
Nowak P.M., Olesek K., Wozniakiewicz M., Koscielniak P. Simultaneous enantioseparation of methcathinone and two isomeric methylmethcathinones using capillary electrophoresis assisted by 2-hydroxyethyl-β-cyclodextrin. Electrophoresis. 2018;39:2406–2409. doi: 10.1002/elps.201800142. PubMed DOI
Baciu T., Borrull F., Calull M., Aguilar C. Enantioselective determination of cathinone derivatives in human hair by capillary electrophoresis combined in-line with solid-phase extraction. Electrophoresis. 2016;37:2352–2362. doi: 10.1002/elps.201600149. PubMed DOI
Simmler L.D., Buser T.A., Donzelli M., Schramm Y., Dieu L.H., Huwyler J., Chaboz S., Hoener M.C., Liechti M.E. Pharmacological characterization of designer cathinones in vitro. Br. J. Pharmacol. 2013;168:458–470. doi: 10.1111/j.1476-5381.2012.02145.x. PubMed DOI PMC
Martinez-Clemente J., Escubedo E., Pubill D., Camarasa J. Interaction of mephedrone with dopamine and serotonin targets in rats. Eur. Neuropsychopharmacol. 2012;22:231–236. doi: 10.1016/j.euroneuro.2011.07.009. PubMed DOI
Lopez-Arnau R., Martinez-Clemente J., Pubill D., Escubedo E., Camarasa J. Comparative neuropharmacology of three psychostimulant cathinone derivatives: Butylone, mephedrone and methylone. Br. J. Pharmacol. 2012;167:407–420. doi: 10.1111/j.1476-5381.2012.01998.x. PubMed DOI PMC
Chavant F., Boucher A., Le B.R., Debruyne D., Deheul S. New synthetic drugs in addictovigilance. Therapie. 2015;70:167–189. doi: 10.2515/therapie/2014235. PubMed DOI
Philogene-Khalid H.L., Hicks C., Reitz A.B., Liu-Chen L.Y., Rawls S.M. Synthetic cathinones and stereochemistry: S enantiomer of mephedrone reduces anxiety- and depressant-like effects in cocaine- or MDPV-abstinent rats. Drug Alcohol Depend. 2017;178:119–125. doi: 10.1016/j.drugalcdep.2017.04.024. PubMed DOI PMC
Schifano F., Albanese A., Fergus S., Stair J.L., Deluca P., Corazza O., Davey Z., Corkery J., Siemann H., Scherbaum N., et al. Mephedrone (4-methylmethcathinone; meow meow’): Chemical, pharmacological and clinical issues. Psychopharmacology (Heidelb. Ger.) 2011;214:593–602. doi: 10.1007/s00213-010-2070-x. PubMed DOI
Ciechomska M., Wozniakiewicz M., Wietecha-Posluszny R. Activity and biotransformation of three synthetic legal highs: Mephedrone, methylone and 3,4-methylenodioxypyrovalerone. Z Zagadnien Nauk Sadowych. 2012;89:71–85.
Karila L., Megarbane B., Cottencin O., Lejoyeux M. Synthetic Cathinones: A New Public Health Problem. Curr. Neuropharmacol. 2015;13:12–20. doi: 10.2174/1570159X13666141210224137. PubMed DOI PMC
Papaseit E., Perez-Mana C., Mateus J.A., Pujadas M., Fonseca F., Torrens M., Olesti E., de la Torre R., Farre M. Human pharmacology of mephedrone in comparison with MDMA. Neuropsychopharmacology. 2016;41:2704. doi: 10.1038/npp.2016.75. PubMed DOI PMC
Sichova K., Pinterova N., Horsley R.R., Lhotkova E., Stefkova K., Vejmola C., Uttl L., Kuchar M., Palenicek T., Pinterova N., et al. Mephedrone (4-Methylmethcathinone): Acute Behavioral Effects, Hyperthermic, and Pharmacokinetic Profile in Rats. Front. Psychiatry. 2017;8:306. doi: 10.3389/fpsyt.2017.00306. PubMed DOI PMC
Gregg R.A., Baumann M.H., Partilla J.S., Bonano J.S., Vouga A., Tallarida C.S., Velvadapu V., Smith G.R., Peet M.M., Reitz A.B. Stereochemistry of mephedrone neuropharmacology: Enantiomer-specific behavioural and neurochemical effects in rats. Br. J. Pharmacol. 2015;172:883–894. doi: 10.1111/bph.12951. PubMed DOI PMC
Linhart I., Himl M., Zidkova M., Balikova M., Lhotkova E., Palenicek T. Metabolic profile of mephedrone: Identification of nor-mephedrone conjugates with dicarboxylic acids as a new type of xenobiotic phase II metabolites. Toxicol. Lett. 2016;240:114–121. doi: 10.1016/j.toxlet.2015.10.025. PubMed DOI
Pozo O.J., Ibanez M., Sancho J.V., Lahoz-Beneytez J., Farre M., Papaseit E., de la Torre R., Hernandez F. Mass spectrometric evaluation of mephedrone in vivo human metabolism: Identification of phase I and phase II metabolites, including a novel succinyl conjugate. Drug Metab. Dispos. 2015;43:248–257. doi: 10.1124/dmd.114.061416. PubMed DOI
Bernardo-Bermejo S., Sánchez-López E., Castro-Puyana M., Marina M.L. Chiral capillary electrophoresis. TrAC Trends Anal. Chem. 2020;124:115807. doi: 10.1016/j.trac.2020.115807. DOI
Rezanka P., Navratilova K., Rezanka M., Kral V., Sykora D. Application of cyclodextrins in chiral capillary electrophoresis. Electrophoresis. 2014;35:2701–2721. doi: 10.1002/elps.201400145. PubMed DOI
Catai J.R., Carrilho E. Simplex optimization of electrokinetic injection of DNA in capillary electrophoresis using dilute polymer solution. Electrophoresis. 2003;24:648–654. doi: 10.1002/elps.200390076. PubMed DOI
Rezanka P., Navratilova K., Rysava H., Masek J., Rokosova L., Blahova M., Rezanka M., Jindrich J., Sykora D., Kral V. Influence of substituent position and cavity size of all regioisomers of monocarboxymethyl-α-, β-, and γ-cyclodextrins on their apparent stability constants of their complexes with both enantiomers of Tröger’s base. J. Sep. Sci. 2016;39:980–985. doi: 10.1002/jssc.201500845. PubMed DOI
Řezanková K., Kohoutová R., Kuchař M., Král V., Řezanka P. Enantioseparation of novel psychoactive chiral amines and their mixture by capillary electrophoresis using cyclodextrins as chiral selectors. Chem. Pap. 2018;72:2737–2743. doi: 10.1007/s11696-018-0535-2. DOI
Jurasek B., Himl M., Jurok R., Hajkova K., Vobinuskova A., Rezanka P., Kuchar M. Synthesis of methoxetamine, its metabolites and deuterium labelled analog as analytical standards and their HPLC and chiral capillary electrophoresis separation. RSC Adv. 2017;7:56691–56696. doi: 10.1039/C7RA10893A. DOI
Szeman J., Ganzler K., Salgo A., Szejtli J. Effect of the degree of substitution of cyclodextrin derivatives on chiral separations by high-performance liquid chromatography and capillary electrophoresis. J. Chromatogr. A. 1996;728:423–431. doi: 10.1016/0021-9673(95)01312-1. PubMed DOI
Sabbah S., Scriba G.K.E. Separation of dipeptide and tripeptide enantiomers in capillary electrophoresis using carboxymethyl-β-cyclodextrin and succinyl-β-cyclodextrin: Influence of the amino acid sequence, nature of the cyclodextrin and pH. Electrophoresis. 2001;22:1385–1393. doi: 10.1002/1522-2683(200105)22:7<1385::AID-ELPS1385>3.0.CO;2-A. PubMed DOI
Nowak P.M., Olesek K., Wozniakiewicz M., Mitoraj M., Sagan F., Koscielniak P. Cyclodextrin-induced acidity modification of substituted cathinones studied by capillary electrophoresis supported by density functional theory calculations. J. Chromatogr. A. 2018;1580:142–151. doi: 10.1016/j.chroma.2018.10.036. PubMed DOI
Gibbons S., Zloh M. An analysis of the ‘legal high’mephedrone. Bioorg. Med. Chem. Lett. 2010;20:4135–4139. doi: 10.1016/j.bmcl.2010.05.065. PubMed DOI
Wan H., Holmen A., Nagard M., Lindberg W. Rapid screening of pKa values of pharmaceuticals by pressure-assisted capillary electrophoresis combined with short-end injection. J. Chromatogr. A. 2002;979:369–377. doi: 10.1016/S0021-9673(02)01262-1. PubMed DOI
Glicksberg L., Winecker R., Miller C., Kerrigan S. Postmortem distribution and redistribution of synthetic cathinones. Forensic Toxicol. 2018;36:291–303. doi: 10.1007/s11419-018-0403-3. DOI
Spendley W., Hext G.R., Himsworth F.R. Sequential application of simplex designs in optimisation and evolutionary operation. Technometrics. 1962;4:441–461. doi: 10.1080/00401706.1962.10490033. DOI
Rezanka P., Rysava H., Havlik M., Jakubek M., Sykora D., Kral V. Enantioseparation of Troeger’s Base Derivatives by Capillary Electrophoresis Using Cyclodextrins as Chiral Selectors. Chirality. 2013;25:379–383. doi: 10.1002/chir.22148. PubMed DOI