Acute pharmacological profile of 2C-B-Fly-NBOMe in male Wistar rats-pharmacokinetics, effects on behaviour and thermoregulation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36969854
PubMed Central
PMC10033663
DOI
10.3389/fphar.2023.1120419
PII: 1120419
Knihovny.cz E-zdroje
- Klíčová slova
- 2C-B-Fly-NBOMe, NBOMe series, new psychoactive substance, pharmacokinetics, prepulse inhibition, thermoregulation,
- Publikační typ
- časopisecké články MeSH
Introduction: N-2-methoxy-benzylated ("NBOMe") analogues of phenethylamine are a group of new psychoactive substances (NPS) with reported strong psychedelic effects in sub-milligram doses linked to a number of severe intoxications, including fatal ones. In our present work, we provide a detailed investigation of pharmacokinetics and acute behavioural effects of 2C-B-Fly-NBOMe (2-(8-bromo-2,3,6,7-tetrahydrobenzo [1,2-b:4,5-b']difuran-4-yl)-N-[(2-methoxybenzyl]ethan-1-amine), an analogue of popular psychedelic entactogen 2C-B (4-Bromo-2,5-dimethoxyphenethylamine). Methods: All experiments were conducted on adult male Wistar rats. Pharmacokinetic parameters of 2C-B-Fly-NBOMe (1 mg/kg subcutaneously; s. c.) in blood serum and brain tissue were analysed over 24 h using liquid chromatography-mass spectrometry (LC/MS). For examination of behavioural parameters in open field test (OFT) and prepulse inhibition (PPI) of acoustic startle reaction (ASR), 2C-B-Fly-NBOMe (0.2, 1 and 5 mg/kg s. c.) was administered in two temporal onsets: 15 and 60 min after administration. Thermoregulatory changes were evaluated in individually and group-housed animals over 8 h following the highest dose used in behavioural experiments (5 mg/kg s. c.). Results: Peak drug concentrations were detected 30 and 60 min after the drug application in serum (28 ng/ml) and brain tissue (171 ng/g), respectively. The parental compound was still present in the brain 8 h after administration. Locomotor activity was dose-dependently reduced by the drug in both temporal testing onsets. ASR was also strongly disrupted in both temporal onsets, drug's effect on PPI was weaker. 2C-B-Fly-NBOMe did not cause any significant thermoregulatory changes. Discussion: Our results suggest that 2C-B-Fly-NBOMe penetrates animal brain tissue in a relatively slow manner, induces significant inhibitory effects on motor performance, and attenuates sensorimotor gating. Its overall profile is similar to closely related analogue 2C-B and other NBOMe substances.
3rd Faculty of Medicine Charles University Prague Czechia
Psychedelics Research Centre National Institute of Mental Health Prague Czechia
Zobrazit více v PubMed
Adams L. M., Geyer M. A. (1982). LSD-induced alterations of locomotor patterns and exploration in rats. Psychopharmacol. Berl. 77, 179–185. 10.1007/BF00431945 PubMed DOI
Al-Imam A. (2018). 25b-NBOMe: A case report of sudden death and insightful view of Google trends data. Iran. J. Psychiatry Behav. Sci. 12, 1–5. 10.5812/ijpbs.9870 DOI
Andreasen M. F., Telving R., Rosendal I., Eg M. B., Hasselstrøm J. B., Andersen L. V. (2015). A fatal poisoning involving 25C-NBOMe. Forensic Sci. Int. 251, e1–e8. 10.1016/j.forsciint.2015.03.012 PubMed DOI
Bagdy G., Graf M., Anheuer Z. E., Modos E. A., Kantor S. (2001). Anxiety-like effects induced by acute fluoxetine, sertraline or m-CPP treatment are reversed by pretreatment with the 5-HT2C receptor antagonist SB-242084 but not the 5-HT1A receptor antagonist WAY-100635. Int. J. Neuropsychopharmacol. 4, 399–408. 10.1017/s1461145701002632 PubMed DOI
Baralla E., Nieddu M., Burrai L., Varoni M. V., Demontis M. P., Boatto G. (2019). LC-MS/MS analysis of two new designer drugs (FLY serie) in rat plasma and its application to a pharmacokinetic study. Leg. Med. 38, 58–63. 10.1016/j.legalmed.2019.04.004 PubMed DOI
Buckeridge E. M., Bull A. M. J., McGregor A. H. (2015). Biomechanical determinants of elite rowing technique and performance. Scand. J. Med. Sci. Sports 25, e176–e183. 10.1111/sms.12264 PubMed DOI
Davis M., Walters J. (1977). Psilocybin: Biphasic dose-response effects on the acoustic startle reflex in the rat. Pharmacol. Biochem. Behav. 6, 427–431. 10.1016/0091-3057(77)90180-0 PubMed DOI
Duffau B., Camargo C., Kogan M., Fuentes E., Cassels B. K. (2016). Analysis of 25 C NBOMe in seized blotters by HPTLC and GC-MS. J. Chromatogr. Sci. 54, 1153–1158. 10.1093/chromsci/bmw095 PubMed DOI PMC
Elmore J. S., Decker A. M., Sulima A., Rice K. C., Partilla J. S., Blough B. E., et al. (2018). Comparative neuropharmacology of N-(2-methoxybenzyl)-2,5-dimethoxyphenethylamine (NBOMe) hallucinogens and their 2C counterparts in male rats. Neuropharmacology 142, 240–250. 10.1016/j.neuropharm.2018.02.033 PubMed DOI PMC
Elz S., Kläss T., Heim R., Warnke U., Pertz H. (2002). Development of highly potent partial agonists and chiral antagonists as tools for the study of 5-HT2A-receptor meidated functions. Naunyn. Schmiedeb. Arch. Pharmacol. 365, R29. 10.1007/s00210-002-0604-4 DOI
EMCDDA (2022). European monitoring centre for drugs and drug addiction. Available at: https://www.emcdda.europa.eu/publications/edr/trends-developments/2022_en/ (last accessed 5th February 2023).
Eshleman A. J., Wolfrum K. M., Reed J. F., Sunyoung K. O., Johnson R. A., Janowsky A. (2018). Neurochemical pharmacology of psychoactive substituted N-benzylphenethylamines: High potency agonists at 5-ht2a receptors. Biochem. Pharmacol. 158, 27–34. 10.1016/j.bcp.2018.09.024 PubMed DOI PMC
Ettrup A., Hansen M., Santini M. A., Paine J., Gillings N., Palner M., et al. (2011). Radiosynthesis and in vivo evaluation of a series of substituted 11C-phenethylamines as 5-HT2A agonist PET tracers. Eur. J. Nucl. Med. Mol. Imaging 38, 681–693. 10.1007/s00259-010-1686-8 PubMed DOI
Fantegrossi W. E., Godlewski T., Karabenick R. L., Stephens J. M., Ullrich T., Rice K. C., et al. (2003). Pharmacological characterization of the effects of 3,4-methylenedioxymethamphetamine (“ecstasy”) and its enantiomers on lethality, core temperature, and locomotor activity in singly housed and crowded mice. Psychopharmacol. Berl. 166, 202–211. 10.1007/s00213-002-1261-5 PubMed DOI
Gatch M. B., Dolan S. B., Forster M. J. (2017). Locomotor and discriminative stimulus effects of four novel hallucinogens in rodents. Behav. Pharmacol. 28, 375–385. 10.1097/FBP.0000000000000309 PubMed DOI PMC
Gee P., Schep L. J., Jensen B. P., Moore G., Barrington S. (2016). Case series: Toxicity from 25B-NBOMe - a cluster of N-bomb cases. Clin. Toxicol. 54, 141–146. 10.3109/15563650.2015.1115056 PubMed DOI
Gudelsky G. A., Koenig J. I., Meltzer H. Y. (1986). Thermoregulatory responses to serotonin (5-HT) receptor stimulation in the rat. Evidence for opposing roles of 5-HT2 and 5-HT1A receptors. Neuropharmacology 25, 1307–1313. 10.1016/0028-3908(86)90101-2 PubMed DOI
Halberstadt A. L. (2015). Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behav. Brain Res. 277, 99–120. 10.1016/j.bbr.2014.07.016 PubMed DOI PMC
Halberstadt A. L., Geyer M. A. (2017). Effect of hallucinogens on unconditioned behavior. Springer Berlin Heidelberg. 10.1007/7854 PubMed DOI PMC
Halberstadt A. L., Geyer M. A. (2014). Effects of the hallucinogen 2,5-dimethoxy-4-iodophenethylamine (2C-I) and superpotent N-benzyl derivatives on the head twitch response. Neuropharmacology 77, 200–207. 10.1016/j.neuropharm.2013.08.025 PubMed DOI PMC
Halberstadt A. L. (2017). Pharmacology and toxicology of N-benzylphenethylamine (“NBOMe”) hallucinogens. Curr. Top. Behav. Neurosci. 32, 283–311. 10.1007/7854_2016_64 PubMed DOI
Halberstadt A. L., Powell S. B., Geyer M. A. (2013). Role of the 5-HT₂A receptor in the locomotor hyperactivity produced by phenylalkylamine hallucinogens in mice. Neuropharmacology 70, 218–227. 10.1016/j.neuropharm.2013.01.014 PubMed DOI PMC
Harvey-Lewis C., Li Z., Higgins G. A., Fletcher P. J. (2016). The 5-HT2C receptor agonist lorcaserin reduces cocaine self-administration, reinstatement of cocaine-seeking and cocaine induced locomotor activity. Neuropharmacology 101, 237–245. 10.1016/j.neuropharm.2015.09.028 PubMed DOI
Heim R. (2003). Synthesis and pharmacology of potent 5-HT2A receptor agonists which have a partial N-2-methoxybenzyl structure. Available at: https://refubium.fu-berlin.de/handle/fub188/11995 (Accessed August 4, 2019).
Hill S. L., Doris T. O. M., Gurung S., Katebe S., Lomas A., Dunn M., et al. (2013). Severe clinical toxicity associated with analytically confirmed recreational use of 25I – NBOMe: Case series. Clin. Toxicol. 51, 3650. 10.3109/15563650.2013.802795 PubMed DOI
Humston C., Miketic R., Moon K., Ma P., Tobias J. (2017). Toxic leukoencephalopathy in a teenager caused by the recreational ingestion of 25I-NBOMe: A case report and review of literature. J. Med. Cases 8, 174–179. 10.14740/jmc2811w DOI
Kittrell E. M. W., Satinoff E. (1986). Development of the circadian rhythm of body temperature in rats. Physiol. Behav. 38, 99–104. 10.1016/0031-9384(86)90138-1 PubMed DOI
Krebs-Thomson K., Ruiz E. M., Masten V., Buell M., Geyer M. A. (2006). The roles of 5-HT1A and 5-HT2 receptors in the effects of 5-MeO-DMT on locomotor activity and prepulse inhibition in rats. Psychopharmacol. Berl. 189, 319–329. 10.1007/s00213-006-0566-1 PubMed DOI
Kueppers V. B., Cooke C. T. (2015). 25I-NBOMe related death in Australia: A case report. Forensic Sci. Int. 249, e15–e18. 10.1016/j.forsciint.2015.02.010 PubMed DOI
Lawn W., Barratt M., Williams M., Horne A., Winstock A. (2014). The NBOMe hallucinogenic drug series: Patterns of use, characteristics of users and self-reported effects in a large international sample. J. Psychopharmacol. 28 (8), 780–788. 10.1177/0269881114523866 PubMed DOI
Matuszewich L., Yamamoto B. K. (2003). Long-lasting effects of chronic stress on DOI-induced hyperthermia in male rats. Psychopharmacol. Berl. 169, 169–175. 10.1007/s00213-003-1498-7 PubMed DOI
Menon M. K., Dandiya P. C. (1969). Behavioural and brain neurohormonal changes produced by acute heat stress in rats: Influence of psychopharmacological agents. Eur. J. Pharmacol. 8, 284–291. 10.1016/0014-2999(69)90036-3 PubMed DOI
Miliano C., Marti M., Pintori N., Castelli M. P., Tirri M., Arfè R., et al. (2019). Neurochemical and behavioral profiling in male and female rats of the psychedelic agent 25I-NBOMe. Front. Pharmacol. 10, 1406. 10.3389/fphar.2019.01406 PubMed DOI PMC
Murakami N., Sakata Y. (1980). A possible role of the serotonergic system in thermoregulation in the rabbit. Neuropharmacology 19, 891–895. 10.1016/0028-3908(80)90089-1 PubMed DOI
Nakamura M., Shintani-Ishida K., Ikegaya H. (2018). 5-HT2A receptor agonist-induced hyperthermia is induced via vasoconstriction by peripheral 5-HT2A receptors and Brown adipose tissue thermogenesis by peripheral serotonin loss at a high ambient temperature. J. Pharmacol. Exp. Ther. 367, 356–362. 10.1124/jpet.118.250217 PubMed DOI
Nikolaou P., Papoutsis I., Stefanidou M., Spiliopoulou C., Athanaselis S. (2015). 2C-I-NBOMe, an “N-bomb” that kills with “Smiles”. Toxicological and legislative aspects. Drug Chem. Toxicol. 38, 113–119. 10.3109/01480545.2014.911882 PubMed DOI
Ninan I., Kulkarni S. K. (1998). 5-HT(2A) receptor antagonists block MK-801-induced stereotypy and hyperlocomotion. Eur. J. Pharmacol. 358, 111–116. 10.1016/S0014-2999(98)00591-3 PubMed DOI
Nykodemová J., Šuláková A., Palivec P., Češková H., Rimpelová S., Šíchová K., et al. (2021). 2C-B-fly-NBOMe metabolites in rat urine, human liver microsomes and c. Elegans: Confirmation with synthesized analytical standards. Metabolites 11, 1–18. 10.3390/metabo11110775 PubMed DOI PMC
Páleníček T., Balíková M., Bubeníková-Valešová V., Horáček J. (2008). Mescaline effects on rat behavior and its time profile in serum and brain tissue after a single subcutaneous dose. Psychopharmacol. Berl. 196, 51–62. 10.1007/s00213-007-0926-5 PubMed DOI
Páleníček T., Hliňák Z., Bubeníková-Valešová V., Novák T., Horáček J. (2010). Sex differences in the effects of N,N-diethyllysergamide (LSD) on behavioural activity and prepulse inhibition. Prog. Neuro-Psychopharmacology Biol. Psychiatry 34, 588–596. 10.1016/j.pnpbp.2010.02.008 PubMed DOI
Páleníček T., Balíková M., Rohanová M., Novák T., Horáček J., Fujáková M., et al. (2011). Behavioral, hyperthermic and pharmacokinetic profile of para-methoxymethamphetamine (PMMA) in rats. Pharmacol. Biochem. Behav. 98, 130–139. 10.1016/j.pbb.2010.12.011 PubMed DOI
Páleníček T., Fujáková M., Brunovský M., Horáček J., Gorman I., Balíková M., et al. (2013). Behavioral, neurochemical and pharmaco-EEG profiles of the psychedelic drug 4-bromo-2,5-dimethoxyphenethylamine (2C-B) in rats. Psychopharmacol. Berl. 225, 75–93. 10.1007/s00213-012-2797-7 PubMed DOI
Papeschi R., Sourkes T. L., Youdim M. B. H. (1971). The effect of yohimbine on brain serotonin metabolism, motor behavior and body temperature of the rat. Eur. J. Pharmacol. 15, 318–326. 10.1016/0014-2999(71)90098-7 PubMed DOI
Poklis J. L., Devers K. G., Arbefeville E. F., Pearson J. M., Houston E., Poklis A. (2014). Postmortem detection of 25I-NBOMe [2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine] in fluids and tissues determined by high performance liquid chromatography with tandem mass spectrometry from a traumatic death. Forensic Sci. Int. 234, e14–e20. 10.1016/j.forsciint.2013.10.015 PubMed DOI PMC
Poklis J. L., Raso S. A., Alford K. N., Poklis A., Peace M. R. (2015). Analysis of 25I-NBOMe, 25B-NBOMe, 25C-NBOMe and other dimethoxyphenyl-N-[(2-Methoxyphenyl) Methyl]Ethanamine derivatives on blotter paper. J. Anal. Toxicol. 8, 617–623. 10.1093/jat/bkv073 PubMed DOI PMC
Richeval C., Boucher A., Humbert L., Phanithavong M., Wiart J. F., Moulsma M., et al. (2017). Retrospective identification of 25I-NBOMe metabolites in an intoxication case. Toxicol. Anal. Clin. 29, 71–81. 10.1016/j.toxac.2017.01.001 DOI
Richter L. H. J., Menges J., Wagmann L., Brandt S. D., Stratford A., Westphal F., et al. (2020). In vitro toxicokinetics and analytical toxicology of three novel NBOMe derivatives: phase I and II metabolism, plasma protein binding, and detectability in standard urine screening approaches studied by means of hyphenated mass spectrometry. Forensic Toxicol. 38, 141–159. 10.1007/s11419-019-00498-7 DOI
Rickli A., Luethi D., Reinisch J., Buchy D., Hoener M. C., Liechti M. E. (2015). Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs). Neuropharmacology 99, 546–553. 10.1016/j.neuropharm.2015.08.034 PubMed DOI
Rohanová M., Páleníček T., Balíková M. (2008). Disposition of 4-bromo-2,5-dimethoxyphenethylamine (2C-B) and its metabolite 4-bromo-2-hydroxy-5-methoxyphenethylamine in rats after subcutaneous administration. Toxicol. Lett. 178, 29–36. 10.1016/j.toxlet.2008.01.017 PubMed DOI
Saadat K. S., O’Shea E., Colado M. I., Elliott J. M., Green A. R. (2005). The role of 5-HT in the impairment of thermoregulation observed in rats administered MDMA ('ecstasy’) when housed at high ambient temperature. Psychopharmacol. Berl. 179, 884–890. 10.1007/s00213-004-2106-1 PubMed DOI
Schmitz G. P., Chiu Y.-T, König G. M., Kostenis E., Roth B. L., Herman M. A. (2022). Psychedelic compounds directly excite 5-HT2A Layer 5 Pyramidal Neurons in the Prefrontal Cortex through a 5-HT2A Gq -mediated activation mechanism. bioRxiv. 10.1101/2022.11.15.516655 DOI
Shanks K. G., Sozio T., Behonick G. S. (2015). Fatal intoxications with 25B-NBOMe and 25I-NBOMe in Indiana during 2014. J. Anal. Toxicol. 39, 602–606. 10.1093/jat/bkv058 PubMed DOI
Šíchová K., Pinterová N., Židková M., Horsley R. R., Lhotková E., Štefková K., et al. (2018). Mephedrone (4-Methylmethcathinone): Acute behavioral effects, hyperthermic, and pharmacokinetic profile in rats. Front. Psychiatry 8, 306–311. 10.3389/fpsyt.2017.00306 PubMed DOI PMC
Šíchová K., Syrová K., Kofroňová E., Pinterova‐Leca N., Vejmola Č., Nykodemová J., et al. (2022). Pharmacokinetics, systemic toxicity, thermoregulation and acute behavioural effects of 25CN‐NBOMe. Addict. Biol. 27, 1–10. 10.1111/adb.13216 PubMed DOI
Sipes T. E., Geyer M. A. (1997). DOI disrupts prepulse inhibition of startle in rats via 5-HT 2A receptors in the ventral pallidum. Brain Res. 761, 97–104. 10.1016/S0006-8993(97)00316-8 PubMed DOI
Štefková K., Židková M., Horsley R. R., Pinterová N., Šíchová K., Uttl L., et al. (2017). Pharmacokinetic, ambulatory, and hyperthermic effects of 3,4-methylenedioxy-n-methylcathinone (Methylone) in rats. Front. Psychiatry 8, 1–11. 10.3389/fpsyt.2017.00232 PubMed DOI PMC
Stellpflug S. J., Kealey S. E., Hegarty C. B., Janis G. C. (2014). 2-(4-Iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25I-NBOMe): Clinical case with unique confirmatory testing. J. Med. Toxicol. 10, 45–50. 10.1007/s13181-013-0314-y PubMed DOI PMC
Suzuki J., Poklis J. L., Poklis A. (2014). My friend said it was good LSD”: A suicide attempt following analytically confirmed 25I-NBOMe ingestion. J. Psychoact. Drugs 46, 379–382. 10.1080/02791072.2014.960111 PubMed DOI PMC
Tang M. H. Y., Ching C. K., Tsui M. S. H., Chu F. K. C., Mak T. W. L. (2014). Two cases of severe intoxication associated with analytically confirmed use of the novel psychoactive substances 25B-NBOMe and 25C-NBOMe. Clin. Toxicol. 52, 561–565. 10.3109/15563650.2014.909932 PubMed DOI
Tylš F., Páleníček T., Kadeřábek L., Lipski M., Kubešová A., Horáček J. (2016). Sex differences and serotonergic mechanisms in the behavioural effects of psilocin. Behav. Pharmacol. 27, 309–320. 10.1097/FBP.0000000000000198 PubMed DOI
Wijnand H. P. (1988). Pharmacokinetic model equations for the one- and two-compartment models with first-order processes in which the absorption and exponential elimination or distribution rate constants are equal. J. Pharmacokinet. Biopharm. 16, 109–128. 10.1007/BF01061864 PubMed DOI
Wojtas A., Herian M., Skawski M., Sobocińska M., González-Marín A., Noworyta-Sokołowska K., et al. (2021). Neurochemical and behavioral effects of a new hallucinogenic compound 25B-NBOMe in rats. Neurotox. Res. 39, 305–326. 10.1007/s12640-020-00297-8 PubMed DOI PMC
Wojtas A., Bysiek A., Wawrzczak-Bargiela A., Szych Z., Majcher-Maślanka I., Herian M., et al. (2022). Effect of psilocybin and ketamine on brain neurotransmitters, glutamate receptors, DNA and rat behavior. Int. J. Mol. Sci. 23, 6713. 10.3390/ijms23126713 PubMed DOI PMC