2C-B-Fly-NBOMe Metabolites in Rat Urine, Human Liver Microsomes and C. elegans: Confirmation with Synthesized Analytical Standards
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34822433
PubMed Central
PMC8624686
DOI
10.3390/metabo11110775
PII: metabo11110775
Knihovny.cz E-zdroje
- Klíčová slova
- 2C-B-Fly-NBOMe, Cunninghamella elegans, LC–MS, human liver microsomes, in vivo experiment (rats), metabolite synthesis, metabolomics,
- Publikační typ
- časopisecké články MeSH
Compounds from the N-benzylphenethylamine (NBPEA) class of novel psychoactive substances are being increasingly utilized in neurobiological and clinical research, as diagnostic tools, or for recreational purposes. To understand the pharmacology, safety, or potential toxicity of these substances, elucidating their metabolic fate is therefore of the utmost interest. Several studies on NBPEA metabolism have emerged, but scarce information about substances with a tetrahydrobenzodifuran ("Fly") moiety is available. Here, we investigated the metabolism of 2-(8-bromo-2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b']difuran-4-yl)-N-(2-methoxybenzyl)ethan-1-amine (2C-B-Fly-NBOMe) in three different systems: isolated human liver microsomes, Cunninghamella elegans mycelium, and in rats in vivo. Phase I and II metabolites of 2C-B-Fly-NBOMe were first detected in an untargeted screening and identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Several hypothesized metabolites were then synthesized as reference standards; knowledge of their fragmentation patterns was utilized for confirmation or tentative identification of isomers. Altogether, thirty-five phase I and nine phase II 2C-B-Fly-NBOMe metabolites were detected. Major detected metabolic pathways were mono- and poly-hydroxylation, O-demethylation, oxidative debromination, and to a lesser extent also N-demethoxybenzylation, followed by glucuronidation and/or N-acetylation. Differences were observed for the three used media. The highest number of metabolites and at highest concentration were found in human liver microsomes. In vivo metabolites detected from rat urine included two poly-hydroxylated metabolites found only in this media. Mycelium matrix contained several dehydrogenated, N-oxygenated, and dibrominated metabolites.
Zobrazit více v PubMed
United Nations Office on Drugs and Crime . World Drug Report 2021 (Sales No. E.21.XI.8) United Nations Office on Drugs and Crime; Vienna, Austria: 2021.
Poulie C.B.M., Jensen A.A., Halberstadt A.L., Kristensen J.L. Dark Classics in Chemical Neuroscience: NBOMes. ACS Chem. Neurosci. 2019;10:2160–2175. doi: 10.1021/acschemneuro.9b00528. PubMed DOI PMC
Halberstadt A.L. Neuropharmacology of New Psychoactive Substances. Springer; Berlin/Heidelberg, Germany: 2017. Pharmacology and toxicology of N-Benzylphenethylamine (“NBOMe”) hallucinogens; pp. 283–311. PubMed DOI
Elz S., Kläβ T., Heim R., Warnke U., Pertz H.H. Development of highly potent partial agonists and chiral antagonists as tools for the study of 5-HT2A-receptor mediated function; Proceedings of the 43rd Spring Meeting Deutsche Gesellschaft für Experimentelle und Klinische Pharmakologie und Toxikologie; Mainz, Germany. 12–14 March 2002.
Heim R., Elz S. Novel Extremely Potent Partial 5-HT2A-Receptor Agonists: Successful Application of a New Structure-Activity Concept. Arch. Pharm. Pharm. Med. Chem. 2000;333:39.
Pertz H.H., Heim R., Elz S. N-Benzylated phenylethanamines are highly potent partial agonists at 5-HT2A receptors (abstract) Arch. Pharm. Pharm. Med. Chem. 2000;333:30.
Heim R. Ph.D. Thesis. Freie Universität Berlin; Berlin, Germany: 2003. Synthese und Pharmakologie Potenter 5-HT2A-Rezeptoragonisten mit N-2-Methoxybenzyl-Partialstruktur.
Eshleman A.J., Wolfrum K.M., Reed J.F., Kim S.O., Johnson R.A., Janowsky A. Neurochemical pharmacology of psychoactive substituted N-benzylphenethylamines: High potency agonists at 5-HT2A receptors. Biochem. Pharmacol. 2018;158:27–34. doi: 10.1016/j.bcp.2018.09.024. PubMed DOI PMC
Ettrup A., Hansen M., Santini M.A., Paine J., Gillings N., Palner M., Lehel S., Herth M.M., Madsen J., Kristensen J., et al. Radiosynthesis and in vivo evaluation of a series of substituted 11C-phenethylamines as 5-HT2A agonist PET tracers. Eur. J. Nucl. Med. Mol. Imaging. 2011;38:681–693. doi: 10.1007/s00259-010-1686-8. PubMed DOI
Yoon K.S., Yun J., Kim Y.-H., Shin J., Kim S.J., Seo J.-W., Hyun S.-A., Suh S.K., Cha H.J. 2-(2,5-Dimethoxy-4-methylphenyl)-N-(2-methoxybenzyl)ethanamine (25D-NBOMe) and N-(2-methoxybenzyl)-2,5-dimethoxy-4-chlorophenethylamine (25C-NBOMe) induce adverse cardiac effects in vitro and in vivo. Toxicol. Lett. 2019;304:50–57. doi: 10.1016/j.toxlet.2019.01.004. PubMed DOI
Zwartsen A., Hondebrink L., Westerink R.H.S. Changes in neuronal activity in rat primary cortical cultures induced by illicit drugs and new psychoactive substances (NPS) following prolonged exposure and washout to mimic human exposure scenarios. Neurotoxicology. 2019;74:28–39. doi: 10.1016/j.neuro.2019.05.004. PubMed DOI
Xu P., Qiu Q., Li H., Yan S., Yang M., Naman C.B., Wang Y., Zhou W., Shen H., Cui W. 25C-NBOMe, a Novel Designer Psychedelic, Induces Neurotoxicity 50 Times More Potent Than Methamphetamine In Vitro. Neurotox. Res. 2019;35:993–998. doi: 10.1007/s12640-019-0012-x. PubMed DOI
Schetz D., Waldman W., Kocic I., Sein J. Case Report A Case of Laboratory Confirmed 25I-Nbome Intoxication Associated with Massive Rhabdomyolysis and Multi-Organ Failure. Adv. J. Toxicol. Curr. Res. 2017;1:43–48.
Shanks K., Sozio T., Behonick G. Fatal intoxications with 25B-NBOMe and 25I-NBOMe in Indiana during 2014. J. Anal. Toxicol. 2015;39:602–606. doi: 10.1093/jat/bkv058. PubMed DOI
Chia X.W.S., Ong M.C., Yeo Y.Y.C., Ho Y.J., Binte Ahmad Nasir E.I., Tan L.-L.J., Chua P.Y., Yap T.W.A., Lim J.L.W. Simultaneous analysis of 2Cs, 25-NBOHs, 25-NBOMes and LSD in seized exhibits using liquid chromatography–tandem mass spectrometry: A targeted approach. Forensic Sci. Int. 2019;301:394–401. doi: 10.1016/j.forsciint.2019.05.036. PubMed DOI
Bersani F.S., Corazza O., Albano G., Valeriani G., Santacroce R., Bolzan Mariotti Posocco F., Cinosi E., Simonato P., Martinotti G., Bersani G., et al. 25C-NBOMe: Preliminary Data on Pharmacology, Psychoactive Effects, and Toxicity of a New Potent and Dangerous Hallucinogenic Drug. Biomed Res. Int. 2014;2014:734749. doi: 10.1155/2014/734749. PubMed DOI PMC
Zawilska J.B., Kacela M., Adamowicz P. NBOMes–Highly Potent and Toxic Alternatives of LSD. Front. Neurosci. 2020;14:78. doi: 10.3389/fnins.2020.00078. PubMed DOI PMC
Leth-Petersen S., Gabel-Jensen C., Gillings N., Lehel S., Hansen H.D., Knudsen G.M., Kristensen J.L. Metabolic Fate of Hallucinogenic NBOMes. Chem. Res. Toxicol. 2016;29:96–100. doi: 10.1021/acs.chemrestox.5b00450. PubMed DOI
Richter L.H.J., Menges J., Wagmann L., Brandt S.D., Stratford A., Westphal F., Flockerzi V., Meyer M.R. In vitro toxicokinetics and analytical toxicology of three novel NBOMe derivatives: Phase I and II metabolism, plasma protein binding, and detectability in standard urine screening approaches studied by means of hyphenated mass spectrometry. Forensic. Toxicol. 2020;38:141–159. doi: 10.1007/s11419-019-00498-7. DOI
Chambers J.J., Kurrasch-Orbaugh D.M., Parker M.A., Nichols D.E. Enantiospecific Synthesis and Pharmacological Evaluation of a Series of Super-Potent, Conformationally Restricted 5-HT2A/2C Receptor Agonists. J. Med. Chem. 2001;44:1003–1010. doi: 10.1021/jm000491y. PubMed DOI
Monte A.P., Marona-Lewicka D., Parker M.A., Wainscott D.B., Nelson D.L., Nichols D.E. Dihydrobenzofuran analogues of hallucinogens. 3. Models of 4-substituted (2,5-dimethoxyphenyl)alkylamine derivatives with rigidified methoxy groups. J. Med. Chem. 1996;39:2953–2961. doi: 10.1021/jm960199j. PubMed DOI
Caspar A.T., Helfer A.G., Michely J.A., Auwärter V., Brandt S.D., Meyer M.R., Maurer H.H. Studies on the metabolism and toxicological detection of the new in psychoactive designer drug 2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25I-NBOMe) human and rat urine using GC-MS, LC-MS n, and LC-HR-MS/MS. Anal. Bioanal. Chem. 2015;407:6697–6719. doi: 10.1007/s00216-015-8828-6. PubMed DOI
Caspar A.T., Brandt S.D., Stoever A.E., Meyer M.R., Maurer H.H. Metabolic fate and detectability of the new psychoactive substances 2-(4-bromo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25B-NBOMe) and 2-(4-chloro-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25C-NBOMe) in human and rat urine by GC–MS, LC–MSn, and LC–HR–MS/MS approaches. J. Pharm. Biomed. Anal. 2017;134:158–169. doi: 10.1016/j.jpba.2016.11.040. PubMed DOI
Wagmann L., Hempel N., Richter L.H.J., Brandt S.D., Stratford A., Meyer M.R. Phenethylamine-derived new psychoactive substances 2C-E-FLY, 2C-EF-FLY, and 2C-T-7-FLY. Investigations on their metabolic fate including isoenzyme activities and their toxicological detectability in urine screenings. Drug Test. Anal. 2019;11:1507–1521. doi: 10.1002/dta.2675. PubMed DOI
Noble C., Holm N.B., Mardal M., Linnet K. Bromo-dragonfly, a psychoactive benzodifuran, is resistant to hepatic metabolism and potently inhibits monoamine oxidase A. Toxicol. Lett. 2018;295:397–407. doi: 10.1016/j.toxlet.2018.07.018. PubMed DOI
Nielsen L.M., Holm B., Leth-Petersen S., Kristensen J.L., Linnet K. Characterization of the hepatic cytochrome P450 enzymes involved in the metabolism of 25I-NBOMe and 25I-NBOH. Drug Test. Anal. 2017;9:671–679. doi: 10.1002/dta.2031. PubMed DOI
Grafinger K.E., Stahl K., Wilke A., König S., Weinmann W. In vitro phase I metabolism of three phenethylamines 25D-NBOMe, 25E-NBOMe and 25N-NBOMe using microsomal and microbial models. Drug Test. Anal. 2018;10:1607–1626. doi: 10.1002/dta.2446. PubMed DOI
Parker G.C., McKee M.E., Bishop C., Coscina D.V. Whole-body metabolism varies across the estrous cycle in Sprague-Dawley rats. Physiol. Behav. 2001;74:399–403. doi: 10.1016/S0031-9384(01)00599-6. PubMed DOI
Šuláková A., Nykodemová J., Palivec P., Jurok R., Rimpelová S., Leonhardt T., Šíchová K., Páleníček T., Kuchař M. 25CN-NBOMe metabolites in rat urine, human liver microsomes and C. Elegans—Structure determination and synthesis of the most abundant metabolites. Metabolites. 2021;11:212. doi: 10.3390/metabo11040212. PubMed DOI PMC
Linhart I., Himl M., Židková M., Balíková M., Lhotková E., Páleníček T. Metabolic profile of mephedrone: Identification of nor-mephedrone conjugates with dicarboxylic acids as a new type of xenobiotic phase II metabolites. Toxicol. Lett. 2016;240:114–121. doi: 10.1016/j.toxlet.2015.10.025. PubMed DOI
Zeng X., Yao H., Zheng Y., Chen T., Peng W., Wu H., Su W. Metabolite Profiling of Naringin in Rat Urine and Feces Using Stable Isotope-Labeling-Based Liquid Chromatography-Mass Spectrometry. J. Agric. Food Chem. 2020;68:409–417. doi: 10.1021/acs.jafc.9b06494. PubMed DOI