Behavioral, neurochemical and pharmaco-EEG profiles of the psychedelic drug 4-bromo-2,5-dimethoxyphenethylamine (2C-B) in rats
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
- MeSH
- amfetamin farmakologie MeSH
- chování zvířat účinky léků MeSH
- dimethoxyfenylethylamin aplikace a dávkování analogy a deriváty farmakologie MeSH
- dopamin metabolismus MeSH
- elektroencefalografie MeSH
- halucinogeny aplikace a dávkování farmakologie MeSH
- krysa rodu Rattus MeSH
- kyselina 3,4-dihydroxyfenyloctová metabolismus MeSH
- nucleus accumbens účinky léků metabolismus MeSH
- pohybová aktivita účinky léků MeSH
- potkani Wistar MeSH
- úleková reakce účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- 2-(4-bromo-2,5-dimethoxyphenyl)ethylamine MeSH Prohlížeč
- amfetamin MeSH
- dimethoxyfenylethylamin MeSH
- dopamin MeSH
- halucinogeny MeSH
- kyselina 3,4-dihydroxyfenyloctová MeSH
RATIONALE AND OBJECTIVES: Behavioral, neurochemical and pharmaco-EEG profiles of a new synthetic drug 4-bromo-2,5-dimethoxyphenethylamine (2C-B) in rats were examined. MATERIALS AND METHODS: Locomotor effects, prepulse inhibition (PPI) of acoustic startle reaction (ASR), dopamine and its metabolite levels in nucleus accumbens (NAc), EEG power spectra and coherence in freely moving rats were analysed. Amphetamine was used as a reference compound. RESULTS: 2C-B had a biphasic effect on locomotion with initial inhibitory followed by excitatory effect; amphetamine induced only hyperlocomotion. Both drugs induced deficits in the PPI; however they had opposite effects on ASR. 2C-B increased dopamine but decreased 3,4-dihydroxyphenylacetic acid (DOPAC) in the NAc. Low doses of 2C-B induced a decrease in EEG power spectra and coherence. On the contrary, high dose of 2C-B 50 mg/kg had a temporally biphasic effect with an initial decrease followed by an increase in EEG power; decrease as well as increase in EEG coherence was observed. Amphetamine mainly induced an increase in EEG power and coherence in theta and alpha bands. Increases in the theta and alpha power and coherence in 2C-B and amphetamine were temporally linked to an increase in locomotor activity and DA levels in NAc. CONCLUSIONS: 2C-B is a centrally active compound similar to other hallucinogens, entactogens and stimulants. Increased dopamine and decreased DOPAC in the NAc may reflect its psychotomimetic and addictive potential and monoaminoxidase inhibition. Alterations in brain functional connectivity reflected the behavioral and neurochemical changes produced by the drug; a correlation between EEG changes and locomotor behavior was observed.
Zobrazit více v PubMed
Neuropsychopharmacology. 1992 Aug;7(1):15-31 PubMed
Fundam Clin Pharmacol. 2007 Dec;21(6):567-74 PubMed
Pharmacol Biochem Behav. 1995 Jun-Jul;51(2-3):473-5 PubMed
Sleep. 1999 Feb 1;22(1):11-31 PubMed
Pharm World Sci. 2004 Apr;26(2):110-3 PubMed
J Chromatogr B Analyt Technol Biomed Life Sci. 2004 Nov 25;811(2):143-52 PubMed
Schizophr Bull. 2008 Sep;34(5):974-80 PubMed
Psychopharmacology (Berl). 1995 Apr;118(3):295-304 PubMed
Addict Biol. 2005 Dec;10(4):321-3 PubMed
Psychopharmacology (Berl). 2006 Jul;186(4):579-86 PubMed
Chem Res Toxicol. 2001 Sep;14(9):1203-8 PubMed
J Med Toxicol. 2005 Dec;1(1):22-5 PubMed
Acta Neurobiol Exp (Wars). 1973;33(4):771-89 PubMed
Neuroscience. 2007 Jul 13;147(3):833-41 PubMed
Psychopharmacology (Berl). 1999 Feb;142(1):85-94 PubMed
Physiol Behav. 1994 Nov;56(5):963-8 PubMed
Pharmacol Biochem Behav. 1977 Apr;6(4):427-31 PubMed
Toxicology. 2005 Jan 5;206(1):75-89 PubMed
Electroencephalogr Clin Neurophysiol. 1986 Aug;64(2):123-43 PubMed
Psychopharmacology (Berl). 1982;77(2):179-85 PubMed
Life Sci. 1986 Sep 22;39(12):1051-8 PubMed
Behav Brain Res. 2007 Feb 27;177(2):214-26 PubMed
Cereb Cortex. 2006 Mar;16(3):328-36 PubMed
Psychopharmacology (Berl). 1987;93(3):286-91 PubMed
Prog Neuropsychopharmacol Biol Psychiatry. 2010 May 30;34(4):588-96 PubMed
Prog Neurobiol. 1999 Oct;59(2):107-28 PubMed
Synapse. 1997 Jan;25(1):30-6 PubMed
Prog Neuropsychopharmacol Biol Psychiatry. 2011 Jan 15;35(1):293-4 PubMed
Behav Pharmacol. 2000 Jun;11(3-4):185-204 PubMed
Science. 1987 May 29;236(4805):1110-3 PubMed
Neuropsychobiology. 2011;63(4):202-18 PubMed
Br J Pharmacol. 2002 Jun;136(4):510-9 PubMed
Neuroscience. 1997 Jan;76(2):541-55 PubMed
Eur Neuropsychopharmacol. 2007 May-Jun;17(6-7):483-91 PubMed
Neuroscience. 1992;46(1):49-56 PubMed
Pharmacol Biochem Behav. 2011 Mar;98(1):130-9 PubMed
Psychopharmacology (Berl). 2001 Jul;156(2-3):117-54 PubMed
Neurology. 2004 Oct 12;63(7 Suppl 2):S32-5 PubMed
Sleep. 1989 Feb;12(1):13-21 PubMed
Psychopharmacology (Berl). 1979 Sep;65(1):35-40 PubMed
Pharmacopsychiatry. 1998 Jul;31 Suppl 2:73-9 PubMed
IEEE Trans Biomed Eng. 1986 Jun;33(6):550-9 PubMed
Neuropsychobiology. 1988;19(2):116-20 PubMed
Behav Brain Res. 1997 Dec;89(1-2):35-49 PubMed
Sleep. 1989 Feb;12(1):60-7 PubMed
Clin Electroencephalogr. 2003 Apr;34(2):39-53 PubMed
Forensic Sci Int. 2005 Mar 10;148(2-3):131-7 PubMed
Psychopharmacology (Berl). 2008 Jan;196(1):51-62 PubMed
Neuropsychopharmacology. 2003 Apr;28(4):640-50 PubMed
Psychopharmacology (Berl). 2001 Jul;156(2-3):194-215 PubMed
NIDA Res Monogr. 1989;94:101-26 PubMed
Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12304-8 PubMed
Gen Pharmacol. 1992 Nov;23(6):1139-42 PubMed
Behav Pharmacol. 1996 Nov;7(6):551-559 PubMed
Psychopharmacol Commun. 1975;1(1):93-8 PubMed
J Psychopharmacol. 2012 Jul;26(7):1026-35 PubMed
Pharmacol Biochem Behav. 2004 Dec;79(4):751-60 PubMed
Neuro Endocrinol Lett. 2007 Dec;28(6):781-8 PubMed
Physiol Behav. 2005 Nov 15;86(4):546-53 PubMed
Eur J Pharmacol. 2001 Jul 13;424(1):27-36 PubMed
J Psychoactive Drugs. 1986 Oct-Dec;18(4):305-13 PubMed
Psychopharmacology (Berl). 1989;98(3):297-303 PubMed
Neuropsychopharmacology. 1998 May;18(5):339-51 PubMed
Synapse. 1998 Jun;29(2):142-7 PubMed
Pharmacol Biochem Behav. 1988 Jun;30(2):489-92 PubMed
J Anal Toxicol. 1999 May-Jun;23(3):227-8 PubMed
Pharmacol Biochem Behav. 1989 Apr;32(4):835-40 PubMed
J Pharmacol Exp Ther. 2007 Jun;321(3):1054-61 PubMed
Neuroscience. 2004;124(2):481-8 PubMed
Pharmacol Biochem Behav. 1988 Jul;30(3):597-601 PubMed
Forensic Sci Int. 2001 Sep 15;121(1-2):47-56 PubMed
Chem Res Toxicol. 2001 Sep;14(9):1139-62 PubMed
Psychopharmacology (Berl). 2005 Jul;180(3):427-35 PubMed
Leg Med (Tokyo). 2009 Apr;11 Suppl 1:S429-30 PubMed
Toxicol Lett. 2008 Apr 21;178(1):29-36 PubMed
Behav Pharmacol. 2005 Mar;16(2):127-30 PubMed
Lakartidningen. 2008 Apr 16-22;105(16):1199-200 PubMed
Br J Psychiatry. 2003 Feb;182:97-100 PubMed
Forensic Sci Int. 2007 Aug 6;170(2-3):94-9 PubMed
J Chromatogr A. 2011 May 27;1218(21):3382-91 PubMed
Sci Justice. 2002 Oct-Dec;42(4):223-4 PubMed
Pharmacol Biochem Behav. 2007 Oct;87(4):453-61 PubMed
Neuropsychopharmacology. 1999 May;20(5):424-33 PubMed
Alcohol Health Res World. 1997;21(2):101-6 PubMed
Synthetic Aminoindanes: A Summary of Existing Knowledge
The effect of psilocin on memory acquisition, retrieval, and consolidation in the rat