Underlying pharmacological mechanisms of psilocin-induced broadband desynchronization and disconnection of EEG in rats

. 2023 ; 17 () : 1152578. [epub] 20230622

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37425017

INTRODUCTION: Psilocybin is one of the most extensively studied psychedelic drugs with a broad therapeutic potential. Despite the fact that its psychoactivity is mainly attributed to the agonism at 5-HT2A receptors, it has high binding affinity also to 5-HT2C and 5-HT1A receptors and indirectly modulates the dopaminergic system. Psilocybin and its active metabolite psilocin, as well as other serotonergic psychedelics, induce broadband desynchronization and disconnection in EEG in humans as well as in animals. The contribution of serotonergic and dopaminergic mechanisms underlying these changes is not clear. The present study thus aims to elucidate the pharmacological mechanisms underlying psilocin-induced broadband desynchronization and disconnection in an animal model. METHODS: Selective antagonists of serotonin receptors (5-HT1A WAY100635, 5-HT2A MDL100907, 5-HT2C SB242084) and antipsychotics haloperidol, a D2 antagonist, and clozapine, a mixed D2 and 5-HT receptor antagonist, were used in order to clarify the underlying pharmacology. RESULTS: Psilocin-induced broadband decrease in the mean absolute EEG power was normalized by all antagonists and antipsychotics used within the frequency range 1-25 Hz; however, decreases in 25-40 Hz were influenced only by clozapine. Psilocin-induced decrease in global functional connectivity and, specifically, fronto-temporal disconnection were reversed by the 5-HT2A antagonist while other drugs had no effect. DISCUSSION: These findings suggest the involvement of all three serotonergic receptors studied as well as the role of dopaminergic mechanisms in power spectra/current density with only the 5-HT2A receptor being effective in both studied metrics. This opens an important discussion on the role of other than 5-HT2A-dependent mechanisms underlying the neurobiology of psychedelics.

Zobrazit více v PubMed

Amargós-Bosch M., Bortolozzi A., Puig M. V., Serrats J., Adell A., Celada P., et al. (2004). Co-expression and in vivo interaction of serotonin1A and serotonin2A receptors in pyramidal neurons of prefrontal cortex. Cereb. Cortex 14 281–299. 10.1093/cercor/bhg128 PubMed DOI

Araneda R., Andrade R. (1991). 5-Hydroxytryptamine2 and 5-hydroxytryptamine1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience 40 399–412. 10.1016/0306-4522(91)90128-b PubMed DOI

Barnes N. M., Sharp T. (1999). A review of central 5-HT receptors and their function. Neuropharmacology 38 1083–1152. PubMed

Bogdanov N. N., Bogdanov M. B. (1994). The role of 5-HT1A serotonin and D 2 dopamine receptors in buspirone effects on cortical electrical activity in rats. Neurosci. Lett. 177 1–4. 10.1016/0304-3940(94)90030-2 PubMed DOI

Bradley P. B., Elkes J. (1957). The effects of some drugs on the electrical activity of the brain. Brain 80 77–117. PubMed

Carhart-Harris R. L., Friston K. J. (2010). The default-mode, ego-functions and free-energy: A neurobiological account of Freudian ideas. Brain 133(Pt 4) 1265–1283. 10.1093/brain/awq010 PubMed DOI PMC

Carhart-Harris R. L., Bolstridge M., Rucker J., Day C. M., Erritzoe D., Kaelen M., et al. (2016a). Psilocybin with psychological support for treatment-resistant depression: An open-label feasibility study. Lancet Psychiatry 3 619–627. 10.1016/S2215-0366(16)30065-7 PubMed DOI

Carhart-Harris R. L., Erritzoe D., Williams T., Stone J. M., Reed L. J., Colasanti A., et al. (2012). Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proc. Natl. Acad. Sci. U.S.A. 109 2138–2143. 10.1073/pnas.1119598109 PubMed DOI PMC

Carhart-Harris R. L., Muthukumaraswamy S., Roseman L., Kaelen M., Droog W., Murphy K., et al. (2016b). Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proc. Natl. Acad. Sci. U.S.A. 113 4853–4858. 10.1073/pnas.1518377113 PubMed DOI PMC

Carhart-Harris R., Giribaldi B., Watts R., Baker-Jones M., Murphy-Beiner A., Murphy R., et al. (2021). Trial of psilocybin versus escitalopram for depression. N. Engl. J. Med. 384 1402–1411. 10.1056/NEJMoa2032994 PubMed DOI

Carter O. L., Burr D. C., Pettigrew J. D., Wallis G. M., Hasler F., Vollenweider F. X. (2005). Using psilocybin to investigate the relationship between attention, working memory, and the serotonin 1A and 2A receptors. J. Cogn. Neurosci. 17 1497–1508. 10.1167/5.8.683 PubMed DOI

Castro-Zaballa S., Cavelli M., González J., Monti J., Falconi A., Torterolo P. (2019). EEG dissociation induced by muscarinic receptor antagonists: Coherent 40 Hz oscillations in a background of slow waves and spindles. Behav. Brain Res. 359 28–37. 10.1016/j.bbr.2018.10.016 PubMed DOI

Celada P., Puig M. V., Diaz-Mataix L., Artigas F. (2008). The hallucinogen DOI reduces low-frequency oscillations in rat prefrontal cortex: Reversal by antipsychotic drugs. Biol. Psychiatry 64 392–400. 10.1016/j.biopsych.2008.03.013 PubMed DOI

Centorrino F., Price B. H., Tuttle M., Bahk W.-M., Hennen J., Albert M. J., et al. (2002). EEG abnormalities during treatment with typical and atypical antipsychotics. Am. J. Psychiatry 159 109–115. PubMed

Chweitzer A., Geblewicz E., Liberson W. (1936). V. Étude de l’électrencéphalogramme humain dans un cas d’intoxication mescalinique. L’année Psychol. 37 94–119.

Czobor P., Volavka J. (1992). Level of haloperidol in plasma is related to electroencephalographic findings in patients who improve. Psychiatry Res. 42 129–144. 10.1016/0165-1781(92)90077-G PubMed DOI

De Deurwaerdère P., Di Giovanni G. (2017). Serotonergic modulation of the activity of mesencephalic dopaminergic systems: Therapeutic implications. Prog. Neurobiol. 151 175–236. 10.1016/j.pneurobio.2016.03.004 PubMed DOI

Di Matteo V., Di Giovanni G., Di Mascio M., Esposito E. (1999). SB 242 084, a selective serotonin2C receptor antagonist, increases dopaminergic transmission in the mesolimbic system. Neuropharmacology 38 1195–1205. 10.1016/s0028-3908(99)00047-7 PubMed DOI

Don N. S., McDonough B. E., Moura G., Warren C. A., Kawanishi K., Tomita H., et al. (1998). Effects of ayahuasca on the human EEG. Phytomedicine 5 87–96. 10.1016/S0944-7113(98)80003-2 PubMed DOI

Fano S., Caliskan G., Behrens C. J., Heinemann U. (2011). Histaminergic modulation of acetylcholine-induced γ oscillations in rat hippocampus. Neuroreport 22 520–524. 10.1097/WNR.0b013e32834889dd PubMed DOI

Fink M. (1969). EEG and human psychopharmacology. Annu. Rev. Pharmacol. 9 241–258. 10.1146/annurev.pa.09.040169.001325 PubMed DOI

Ford J. M., Mathalon D. H. (2005). Corollary discharge dysfunction in schizophrenia: Can it explain auditory hallucinations? Int. J. Psychophysiol. 58 179–189. 10.1016/j.ijpsycho.2005.01.014 PubMed DOI

Forrest A. D., Coto C. A., Siegel S. J. (2014). Animal models of psychosis: Current state and future directions. Curr. Behav. Neurosci. Rep. 1 100–116. 10.1007/s40473-014-0013-2 PubMed DOI PMC

Friston K. J., Frith C. D. (1995). Schizophrenia: A disconnection syndrome? Clin. Neurosci. 3 89–97. PubMed

Fujakova M., Palenicek T., Brunovsky M., Gorman I., Tyls F., Kubesova A., et al. (2014). The effect of ((-)-2-oxa-4-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY379268), an mGlu2/3 receptor agonist, on EEG power spectra and coherence in ketamine model of psychosis. Pharmacol. Biochem. Behav. 122 212–221. 10.1016/j.pbb.2014.03.001 PubMed DOI

Gastaut H., Ferrer S., Castells C., Lesevre N., Luschnat K. (1953). [Effect of the d-lysergic acid diethylamide on the psychic functions and on electroencephalogram]. Confin. Neurol. 13 102–120. PubMed

Glennon R. A., Titeler M., McKenney J. D. (1984). Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci. 35 2505–2511. PubMed

Goldstein L., Murphree H. B., Sugerman A. A., Pfeiffer C. C., Jenney E. H. (1963). Quantitative electroencephalographic analysis of naturally occurring (schizophrenic) and drug-induced psychotic states in human males. Clin. Pharmacol. Ther. 4 10–21. 10.1002/cpt19634110 PubMed DOI

González-Maeso J., Weisstaub N. V., Zhou M., Chan P., Ivic L., Ang R., et al. (2007). Hallucinogens recruit specific cortical 5-HT2A receptor-mediated signaling pathways to affect behavior. Neuron 53 439–452. 10.1016/j.neuron.2007.01.008 PubMed DOI

Halberstadt A. L., Geyer M. A. (2012). Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology 61 364–381. 10.1016/j.neuropharm.2011.01.017.Multiple PubMed DOI PMC

Halberstadt A. L., Koedood L., Powell S. B., Geyer M. A. (2011). Differential contributions of serotonin receptors to the behavioral effects of indoleamine hallucinogens in mice. J. Psychopharmacol. 25 1548–1561. 10.1177/0269881110388326 PubMed DOI PMC

Hamon M., Gozlan H., El Mestikawy S., Emerit M., Bolanos F., Schechter L. (1990). The central 5-HT1A receptors: Pharmacological, biochemical, functional, and regulatory properties. Ann. N. Y. Acad. Sci. 600 114–129. 10.1111/j.1749-6632.1990.tb16877.x PubMed DOI

Hoyer D., Hannon J. P., Martin G. R. (2002). Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol. Biochem. Behav. 71 533–554. 10.1016/S0091-3057(01)00746-8 PubMed DOI

Jakab R. L., Goldman-Rakic P. S. (1998). 5-Hydroxytryptamine 2A serotonin receptors in the primate cerebral cortex: Possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc. Natl. Acad. Sci. U.S.A. 95 735–740. 10.1073/pnas.95.2.735 PubMed DOI PMC

Johansson C., Jackson D. M., Zhang J., Svensson L. (1995). Prepulse inhibition of acoustic startle, a measure of sensorimotor gating: Effects of antipsychotics and other agents in rats. Pharmacol. Biochem. Behav. 52 649–654. 10.1016/0091-3057(95)00160-X PubMed DOI

John J., Draper N. R. (1980). An alternative family of transformations. J. R. Stat. Soc. Ser. C (Appl. Stat.) 29 190–197.

Kantor S., Jakus R., Molnar E., Gyongyosi N., Toth A., Detari L., et al. (2005). Despite similar anxiolytic potential, the 5-hydroxytryptamine 2C receptor antagonist SB-242084 [6-chloro-5-methyl-1-[2-(2-methylpyrid-3-yloxy)-pyrid-5-yl carbamoyl] indoline] and chlordiazepoxide produced differential effects on electroencephalogram power. J. Pharmacol. Exp. Ther. 315 921–930. 10.1124/jpet.105.086413 PubMed DOI

Kometer M., Schmidt A., Jancke L., Vollenweider F. X. (2013). Activation of serotonin 2A receptors underlies the psilocybin-induced effects on alpha oscillations, N170 visual-evoked potentials, and visual hallucinations. J. Neurosci. 33 10544–10551. 10.1523/JNEUROSCI.3007-12.2013 PubMed DOI PMC

Koopman P., Wouters P., Krijzer F. (1996). Mean power spectra from pharmaco-electrocorticographic studies: Relative baseline correction and log transformation for a proper analysis of variance to assess drug effects. Neuropsychobiology 33 100–105. 10.1159/000119258 PubMed DOI

Krajèa V., Petránek S., Pietilä T., Frey H. (1993). “‘Wave-Finder’: A new system for an automatic processing of long-term EEG recordings,” in Quantitative EEG analysis-clinical utility and new methods, eds Rother M., Zwiener U. (Jena: Universitätsverlag GnbH; ), 103–106.

Kuhn D. M., White F. J., Appel J. B. (1978). The discriminative stimulus properties of LSD: Mechanisms of action. Neuropharmacology 17 257–263. 10.1016/0028-3908(78)90109-0 PubMed DOI

Madsen M. K., Fisher P. M., Burmester D., Dyssegaard A., Stenbaek D. S., Kristiansen S., et al. (2019). Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels. Neuropsychopharmacology 44 1328–1334. 10.1038/s41386-019-0324-9 PubMed DOI PMC

Mahapatra A., Gupta R. (2017). Role of psilocybin in the treatment of depression. Ther. Adv. Psychopharmacol. 7 54–56. 10.1177/2045125316676092 PubMed DOI PMC

Majka P., Kowalski J. M., Chlodzinska N., Wojcik D. K. (2013). 3D brain atlas reconstructor service–online repository of three-dimensional models of brain structures. Neuroinformatics 11 507–518. 10.1007/s12021-013-9199-9 PubMed DOI PMC

Marrosu F., Fornal C. A., Metzler C. W., Jacobs B. L. (1996). 5-HT(1A) agonists induce hippocampal theta activity in freely moving cats: Role of presynaptic 5-HT(1A) receptors. Brain Res. 739 192–200. 10.1016/S0006-8993(96)00826-8 PubMed DOI

McAllister-Williams R. H., Massey A. E. (2003). EEG effects of buspirone and pindolol: A method of examining 5-HT1A receptor function in humans. Psychopharmacology 166 284–293. 10.1007/s00213-002-1339-0 PubMed DOI

Meldrum B. S., Naquet R. (1971). Effects of psilocybin, dimethyltryptamine, mescaline and various lysergic acid derivatives on the EEG and on photically induced epilepsy in the baboon (Papio papio). Electroencephalogr. Clin. Neurophysiol. 31 563–572. 10.1016/0013-4694(71)90072-1 PubMed DOI

Millan M. J., Brocco M., Gobert A., Dekeyne A. (2005). Anxiolytic properties of agomelatine, an antidepressant with melatoninergic and serotonergic properties: Role of 5-HT2C receptor blockade. Psychopharmacology 177 448–458. 10.1007/s00213-004-1962-z PubMed DOI

Moreau W. A., Amar M., Le Roux N., Morel N., Fossier P. (2010). Serotoninergic fine-tuning of the excitation-inhibition balance in rat visual cortical networks. Cereb. Cortex 20 456–467. 10.1093/cercor/bhp114 PubMed DOI

Muthukumaraswamy S. D., Carhart-Harris R. L., Moran R. J., Brookes M. J., Williams T. M., Errtizoe D., et al. (2013). Broadband cortical desynchronization underlies the human psychedelic state. J. Neurosci. 33 15171–15183. 10.1523/JNEUROSCI.2063-13.2013 PubMed DOI PMC

Nichols D. E. (2016). Psychedelics. Pharmacol. Rev. 68 264–355. 10.1124/pr.115.011478 PubMed DOI PMC

Nocjar C., Alex K. D., Sonneborn A., Abbas A. I., Roth B. L., Pehek E. A. (2015). Serotonin-2C and –2a receptor co-expression on cells in the rat medial prefrontal cortex. Neuroscience 297 22–37. 10.1016/j.neuroscience.2015.03.050 PubMed DOI PMC

Nour M. M., Evans L., Nutt D., Carhart-Harris R. L. (2016). Ego-dissolution and psychedelics: Validation of the ego-dissolution inventory (EDI). Front. Hum. Neurosci. 10:269. 10.3389/fnhum.2016.00269 PubMed DOI PMC

Ouagazzal A. M., Grottick A. J., Moreau J. L., Higgins G. A. (2001). Effect of LSD on prepulse inhibition and spontaneous behavior in the rat: A pharmacological analysis and comparison between two rat strains. Neuropsychopharmacology 25 565–575. 10.1016/S0893-133X(01)00282-2 PubMed DOI

Palenicek T., Fujakova M., Brunovsky M., Balikova M., Horacek J., Gorman I., et al. (2011). Electroencephalographic spectral and coherence analysis of ketamine in rats: Correlation with behavioral effects and pharmacokinetics. Neuropsychobiology 63 202–218. 10.1159/000321803 PubMed DOI

Palenicek T., Fujakova M., Brunovsky M., Horacek J., Gorman I., Balikova M., et al. (2013). Behavioral, neurochemical and pharmaco-EEG profiles of the psychedelic drug 4-bromo-2,5-dimethoxyphenethylamine (2C-B) in rats. Psychopharmacology (Berl.) 225 75–93. 10.1007/s00213-012-2797-7 PubMed DOI

Pallavicini C., Cavanna F., Zamberlan F., de la Fuente L. A., Arias M., Romero M. C., et al. (2020). Neural and subjective effects of inhaled DMT in natural settings. bioRxiv [preprint]. 10.1101/2020.08.19.258145 PubMed DOI

Papp N., Koncz S., Kostyalik D., Kitka T., Petschner P., Vas S., et al. (2020). Acute 5-HT2C receptor antagonist SB-242084 treatment affects EEG gamma band activity similarly to chronic escitalopram. Front. Pharmacol. 10:1636. 10.3389/fphar.2019.01636 PubMed DOI PMC

Paxinos G., Watson C. (2007). THE RAT BRAIN in stereotaxic coordinates. Amsterdam: Elsevier Inc. PubMed

Petri G., Expert P., Turkheimer F., Carhart-Harris R., Nutt D., Hellyer P. J., et al. (2014). Homological scaffolds of brain functional networks. J. R. Soc. Interface 11:20140873. PubMed PMC

Piorecka V., Krajca V., Tyls F., Palenicek T. (2018). Methods for animal brain mapping. Radioengineering 27 806–812.

Preller K. H., Duerler P., Burt J. B., Ji J. L., Adkinson B., Stämpfli P., et al. (2020). Psilocybin induces time-dependent changes in global functional connectivity. Biol. Psychiatry 88 197–207. PubMed

Preller K. H., Razi A., Zeidman P., Stämpfli P., Friston K. J., Vollenweider F. X. (2019). Effective connectivity changes in LSD-induced altered states of consciousness in humans. Proc. Natl. Acad. Sci. U.S.A. 116 2743–2748. PubMed PMC

Riba J., Anderer P., Morte A., Urbano G., Jane F., Saletu B., et al. (2002). Topographic pharmaco-EEG mapping of the effects of the South American psychoactive beverage ayahuasca in healthy volunteers. Br. J. Clin. Pharmacol. 53 613–628. 10.1046/j.1365-2125.2002.01609.x PubMed DOI PMC

Richelson E., Souder T. (2000). Binding of antipsychotic drugs to human brain receptors focus on newer generation compounds. Life Sci. 68 29–39. 10.1016/S0024-3205(00)00911-5 PubMed DOI

Riga M. S., Bortolozzi A., Campa L., Artigas F., Celada P. (2016). The serotonergic hallucinogen 5-methoxy-N, N-dimethyltryptamine disrupts cortical activity in a regionally-selective manner via 5-HT1A and 5-HT2A receptors. Neuropharmacology 101 370–378. 10.1016/j.neuropharm.2015.10.016 PubMed DOI

Riga M. S., Lladó-Pelfort L., Artigas F., Celada P. (2018). The serotonin hallucinogen 5-MeO-DMT alters cortico-thalamic activity in freely moving mice: Regionally-selective involvement of 5-HT1A and 5-HT2A receptors. Neuropharmacology 142 219–230. 10.1016/j.neuropharm.2017.11.049 PubMed DOI

Santana N., Bortolozzi A., Serrats J., Mengod G., Artigas F. (2004). Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb. Cortex 14 1100–1109. 10.1093/cercor/bhh070 PubMed DOI

Schartner M. M., Carhart-Harris R. L., Barrett A. B., Seth A. K., Muthukumaraswamy S. D. (2017). Increased spontaneous MEG signal diversity for psychoactive doses of ketamine, LSD and psilocybin. Sci. Rep. 7:46421. 10.1038/srep46421 PubMed DOI PMC

Schenberg E. E., Alexandre J. F., Filev R., Cravo A. M., Sato J. R., Muthukumaraswamy S. D., et al. (2015). Acute biphasic effects of ayahuasca. PLoS One 10:e0137202. 10.1371/journal.pone.0137202 PubMed DOI PMC

Schreiber R., Brocco M., Millan M. J. (1994). Blockade of the discriminative stimulus effects of DOI by MDL 100,907 and the ‘atypical’ antipsychotics, clozapine and risperidone. Eur. J. Pharmacol. 264 99–102. 10.1016/0014-2999(94)90643-2 PubMed DOI

Sebban C., Tesolin-Decros B., Ciprian-Ollivier J., Perret L., Spedding M. (2002). Effects of phencyclidine (PCP) and MK 801 on the EEGq in the prefrontal cortex of conscious rats; antagonism by clozapine, and antagonists of AMPA-, α1- and 5-HT2A-receptors. Br. J. Pharmacol. 135 65–78. 10.1038/sj.bjp.0704451 PubMed DOI PMC

Sebban C., Tesolin-Decros B., Millan M. J., Spedding M. (1999). Contrasting EEG profiles elicited by antipsychotic agents in the prefrontal cortex of the conscious rat: Antagonism of the effects of clozapine by modafinil. Br. J. Pharmacol. 128 1055–1063. 10.1038/sj.bjp.0702893 PubMed DOI PMC

Seifritz E., Moore P., Trachsel L., Bhatti T., Stahl S. M., Gillin J. C. (1996). The 5-HT1A agonist ipsapirone enhances EEG slow wave activity in human sleep and produces a power spectrum similar to 5-HT2 blockade. Neurosci. Lett. 209 41–44. 10.1016/0304-3940(96)12607-0 PubMed DOI

Shagass C. (1966). Effects of LSD on somatosensory and visual evoked responses and on the EEG in man. Recent Adv. Biol. Psychiatry 9 209–227. 10.1007/978-1-4684-8228-7_15 PubMed DOI

Sipes T., Geyer M. (1994). Multiple serotonin receptor subtypes modulate prepulse inhibition of the startle response in rats. Neuropharmacology 33 441–448. 10.1016/0028-3908(94)90074-4 PubMed DOI

Speck L. B. (1958). Electroencephalographic changes in the rat with mescaline intoxication. J. Pharmacol. Exp. Ther. 122 201–206. PubMed

Tagliazucchi E., Carhart-Harris R., Leech R., Nutt D., Chialvo D. R. (2014). Enhanced repertoire of brain dynamical states during the psychedelic experience. Hum. Brain Mapp. 35 5442–5456. 10.1002/hbm.22562 PubMed DOI PMC

Timmermann C., Roseman L., Schartner M., Milliere R., Williams L. T. J., Erritzoe D., et al. (2019). Neural correlates of the DMT experience assessed with multivariate EEG. Sci. Rep. 9:16324. 10.1038/s41598-019-51974-4 PubMed DOI PMC

Tylš F. (2015). Neurobiologie psilocybinu ve vztahu k jeho potenciálnímu terapeutickému využití. Psychiatrie 19:8.

Tyls F., Palenicek T., Horacek J. (2014). Psilocybin–summary of knowledge and new perspectives. Eur. Neuropsychopharmacol. 24 342–356. 10.1016/j.euroneuro.2013.12.006 PubMed DOI

Tyls F., Palenicek T., Kaderabek L., Lipski M., Kubesova A., Horacek J. (2016). Sex differences and serotonergic mechanisms in the behavioural effects of psilocin. Behav. Pharmacol. 27 309–320. 10.1097/FBP.0000000000000198 PubMed DOI

Vejmola C., Tyls F., Piorecka V., Koudelka V., Kaderabek L., Novak T., et al. (2021). Psilocin, LSD, mescaline, and DOB all induce broadband desynchronization of EEG and disconnection in rats with robust translational validity. Transl. Psychiatry 11:506. 10.1038/s41398-021-01603-4 PubMed DOI PMC

Vickers S. P., Easton N., Malcolm C. S., Allen N. H., Porter R. H., Bickerdike M. J., et al. (2001). Modulation of 5-HT(2A) receptor-mediated head-twitch behaviour in the rat by 5-HT(2C) receptor agonists. Pharmacol. Biochem. Behav. 69 643–652. 10.1016/S0091-3057(01)00552-4 PubMed DOI

Vogt M., Gunn C. G., Jr., Sawyer C. H. (1957). Electroencephalographic effects of intraventricular 5-HT and LSD in the cat. Neurology 7 559–566. 10.1212/wnl.7.8.559 PubMed DOI

Vollenweider F. X., Vollenweider-Scherpenhuyzen M. F., Babler A., Vogel H., Hell D. (1998b). Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport 9 3897–3902. PubMed

Vollenweider F. X., Margreet C. A. F. I., Bäbler A., Vogel H., Hell D. (1998a). Psilocybin induces psychosis in humans via a serotonin-2 agonist action. Cogn. Neurosci. 9 3897–3902. PubMed

Vollenweider F. X., Vontobel P., Hell D., Leenders K. L. (1999). 5-HT modulation of dopamine release in basal ganglia in psilocybin-induced psychosis in man–a PET study with [11C]raclopride. Neuropsychopharmacology 20 424–433. 10.1016/S0893-133X(98)00108-0 PubMed DOI

Watakabe A., Komatsu Y., Sadakane O., Shimegi S., Takahata T., Higo N., et al. (2009). Enriched expression of serotonin 1B and 2A receptor genes in macaque visual cortex and their bidirectional modulatory effects on neuronal responses. Cereb. Cortex 19 1915–1928. 10.1093/cercor/bhn219 PubMed DOI PMC

Wing L. L., Tapson G. S., Geyer M. A. (1990). 5HT-2 mediation of acute behavioral effects of hallucinogens in rats. Psychopharmacology 100 417–425. PubMed

Winter J. C., Rice K. C., Amorosi D. J., Rabin R. A. (2007). Psilocybin-induced stimulus control in the rat. Pharmacol. Biochem. Behav. 87 472–480. 10.1016/j.pbb.2007.06.003 PubMed DOI PMC

Wittmann M., Carter O., Hasler F., Cahn B. R., Grimberg U., Spring P., et al. (2007). Effects of psilocybin on time perception and temporal control of behaviour in humans. J. Psychopharmacol. (Oxf. Engl.) 21 50–64. 10.1177/0269881106065859 PubMed DOI

Wood J., Kim Y., Moghaddam B. (2012). Disruption of prefrontal cortex large scale neuronal activity by different classes of psychotomimetic drugs. J. Neurosci. 32 3022–3031. 10.1523/JNEUROSCI.6377-11.2012 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...