Psilocin, LSD, mescaline, and DOB all induce broadband desynchronization of EEG and disconnection in rats with robust translational validity
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34601495
PubMed Central
PMC8487430
DOI
10.1038/s41398-021-01603-4
PII: 10.1038/s41398-021-01603-4
Knihovny.cz E-zdroje
- MeSH
- elektroencefalografie MeSH
- krysa rodu Rattus MeSH
- LSD * farmakologie MeSH
- meskalin * MeSH
- psilocybin analogy a deriváty farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- LSD * MeSH
- meskalin * MeSH
- psilocin MeSH Prohlížeč
- psilocybin MeSH
Serotonergic psychedelics are recently gaining a lot of attention as a potential treatment of several neuropsychiatric disorders. Broadband desynchronization of EEG activity and disconnection in humans have been repeatedly shown; however, translational data from animals are completely lacking. Therefore, the main aim of our study was to assess the effects of tryptamine and phenethylamine psychedelics (psilocin 4 mg/kg, LSD 0.2 mg/kg, mescaline 100 mg/kg, and DOB 5 mg/kg) on EEG in freely moving rats. A system consisting of 14 cortical EEG electrodes, co-registration of behavioral activity of animals with subsequent analysis only in segments corresponding to behavioral inactivity (resting-state-like EEG) was used in order to reach a high level of translational validity. Analyses of the mean power, topographic brain-mapping, and functional connectivity revealed that all of the psychedelics irrespective of the structural family induced overall and time-dependent global decrease/desynchronization of EEG activity and disconnection within 1-40 Hz. Major changes in activity were localized on the large areas of the frontal and sensorimotor cortex showing some subtle spatial patterns characterizing each substance. A rebound of occipital theta (4-8 Hz) activity was detected at later stages after treatment with mescaline and LSD. Connectivity analyses showed an overall decrease in global connectivity for both the components of cross-spectral and phase-lagged coherence. Since our results show almost identical effects to those known from human EEG/MEG studies, we conclude that our method has robust translational validity.
Zobrazit více v PubMed
Studerus E, Gamma A, Vollenweider FX. Psychometric evaluation of the altered states of consciousness rating scale (OAV) PLoS ONE. 2010;5:e12412. PubMed PMC
Shulgin, A. TiHKAL—tryptamines I have known and loved; the continuation. Berkeley, CA: Transform Press; 1997.
Araújo AM, Carvalho F, Bastos MDL, Guedes de Pinho P, Carvalho M. The hallucinogenic world of tryptamines: an updated review. Arch Toxicol. 2015;89:1151–1173. PubMed
Shulgin, A. PiHKAL—phenethylamines I have known and loved; a chemical love story. Berkeley, CA: Transform Press; 1991.
Halberstadt AL. Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behav Brain Res. 2015;277:99–120. PubMed PMC
Nichols DE. Psychedelics. Pharm Rev. 2016;68:264–355. PubMed PMC
Vollenweider FX, Kometer M. The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nature. 2010;11:642–651. PubMed
Baumeister D, Barnes G, Giaroli G, Tracy D. Classical hallucinogens as antidepressants? A review of pharmacodynamics and putative clinical roles. Ther Adv Psychopharmacol. 2014;4:156–69. PubMed PMC
Carhart-Harris RL, Bolstridge M, Rucker J, Day CMJ, Erritzoe D, Kaelen M, et al. Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study. Lancet Psychiatry. 2016;0366:11–13. PubMed
Atasoy S, Roseman L, Kaelen M, Kringelbach ML, Deco G, Carhart-Harris RL. Connectome-harmonic decomposition of human brain activity reveals dynamical repertoire re-organization under LSD. Sci Rep. 2017;7:1–18. PubMed PMC
Carhart-Harris RL, Leech R, Hellyer PJ, Shanahan M, Feilding A, Tagliazucchi E, et al. The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs. Front Hum Neurosci. 2014;8:20. PubMed PMC
Daws R, Timmerman C, Giribaldi B, Sexton J, Wall M, Erritzoe D, et al. Decreased brain modularity after psilocybin therapy for depression. 2021:1–19. 10.21203/rs.3.rs-513323/v1.
Yamamoto T, Ueki S. Behavioral effects of 2,5-dimethoxy-4-methylamphetamine (DOM) in rats and mice. Eur J Pharmacol. 1975;32:156–62. PubMed
Sipes TA, Geyer MA. Multiple serotonin receptor subtypes modulate prepulse inhibition of the startle response in rats. Neuropharmacology. 1994;33:441–8. PubMed
Krebs-Thomson K, Paulus MP, Geyer MA. Effects of hallucinogens on locomotor and investigatory activity and patterns: Influence of 5-HT(2A) and 5-HT(2C) receptors. Neuropsychopharmacology. 1998;18:339–51. PubMed
Ouagazzal A, Grottick AJ, Moreau J, Higgins GA. Effect of LSD on prepulse inhibition and spontaneous behavior in the rat. A pharmacological analysis and comparison between two rat strains. Neuropsychopharmacology. 2001;25:565–75. PubMed
Body S, Kheramin S, Ho MY, Miranda F, Bradshaw CM, Szabadi E. Effects of a 5-HT2 receptor agonist, DOI (2,5-dimethoxy-4-iodoamphetamine), and antagonist, ketanserin, on the performance of rats on a free-operant timing schedule. Behav Pharmacol. 2003;14:599–607. PubMed
Asgari K, Body S, Bak VK, Zhang ZQ, Rickard JF, Glennon JC, et al. Effects of 5-HT2A receptor stimulation on the discrimination of durations by rats. Behav Pharmacol. 2006;17:51–59. PubMed
Páleníček T, Balíková M, Bubeníková-Valešová V, Horáček J. Mescaline effects on rat behavior and its time profile in serum and brain tissue after a single subcutaneous dose. Psychopharmacology. 2008;196:51–62. PubMed
Hasler F, Grimberg U, Benz MA, Huber T, Vollenweider FX. Acute psychological and physiological effects of psilocybin in healthy humans: a double-blind, placebo-controlled dose-effect study. Psychopharmacology. 2004;172:145–56. PubMed
Fink M. EEG and human psychopharmacology. Annu Rev Pharmacol. 1969;9:241–58. PubMed
Riba J, Anderer P, Jané F, Saletu B, Barbanoj MJ. Effects of the South American psychoactive beverage Ayahuasca on regional brain electrical activity in humans: a functional neuroimaging study using low-resolution electromagnetic tomography. Neuropsychobiology. 2004;50:89–101. PubMed
Kometer M, Pokorny T, Seifritz E, Volleinweider FX. Psilocybin-induced spiritual experiences and insightfulness are associated with synchronization of neuronal oscillations. Psychopharmacology. 2015;232:3663–76. PubMed
Pallavicini C, Vilas MG, Villarreal M, Zamberlan F, Muthukumaraswamy S, Nutt D, et al. Spectral signatures of serotonergic psychedelics and glutamatergic dissociatives. Neuroimage. 2019;200:281–91. PubMed
Timmermann C, Roseman L, Schartner M, Milliere R, Williams L, Erritzoe D, et al. Neural correlates of the DMT experience assessed with multivariate EEG. Sci Rep. 2019;9:1–13. PubMed PMC
Stuckey DE, Lawson R, Luna LE. EEG gamma coherence and other correlates of subjective reports during ayahuasca experiences. J Psychoact Drugs. 2005;37:163–78. PubMed
Don NS, McDonough BE, Moura G, Warren CA, Kawanishi K, Tomita H, et al. Effects of Ayahuasca on the human EEG. Phytomedicine. 1998;5:87–96. PubMed
Schenberg EE, Alexandre JFM, Filev R, Cravo AM, Sato JR, Muthukumaraswamy SD, et al. Acute biphasic effects of ayahuasca. PLoS ONE. 2015;10:1–27. PubMed PMC
Riba J, Anderer P, Morte A, Urbano G, Jané F, Saletu B, et al. Topographic pharmaco-EEG mapping of the effects of the South American psychoactive beverage ayahuasca in healthy volunteers. Br J Clin Pharmacol. 2002;53:613–28. PubMed PMC
Muthukumaraswamy SD. High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations. Front Hum Neurosci. 2013;7:1–11. PubMed PMC
Muthukumaraswamy SD, Carhart-Harris RL, Moran RJ, Brookes MJ, Williams TM, Errtizoe D, et al. Broadband cortical desynchronization underlies the human psychedelic state. J Neurosci. 2013;33:15171–83. PubMed PMC
Vogt M, Gunn CG, Sawyer CH. Electroencephalographic effects of intraventricular 5-HT and LSD in the cat. Neurology. 1957;7:559–66. PubMed
Bradley PB, Elkes J. The effects of some drugs on the electrical activity of the brain. Brain. 1957;80:77–117. PubMed
Speck LB. Electroencephalographic changes in the rat with mescaline intoxication. J Pharmacol Exp Therapeut. 1958;122:201–206. PubMed
Adey RW, Bell FR, Dennis BJ. Effects of LSD-25, psilocybin, and psilocin on temporal lobe EEG patterns and learned behavior in the cat. Neurology. 1962;12:591–602. PubMed
Horovitz ZP, Mulroy MI, Waldron T, Leaf R. Behavioral and electroencephalographic effects of LSD. J Pharm Sci. 1965;54:108–10. PubMed
Celada P, Puig MV, Díaz-Mataix L, Artigas F. The hallucinogen DOI reduces low-frequency oscillations in rat prefrontal cortex: reversal by antipsychotic drugs. Biol Psychiatry. 2008;64:392–400. PubMed
Riga MS, Soria G, Tudela R, Artigas F, Celada P. The natural hallucinogen 5-MeO-DMT, component of Ayahuasca, disrupts cortical function in rats: reversal by antipsychotic drugs. Int J Neuropsychopharmacol. 2014;17:1269–82. PubMed
Wood J, Kim Y, Moghaddam B. Disruption of prefrontal cortex large scale neuronal activity by different classes of psychotomimetic drugs. J Neurosci. 2012;32:3022–31. PubMed PMC
Goda SA, Piasecka J, Olszewski M, Kasicki S, Hunt MJ. Serotonergic hallucinogens differentially modify gamma and high frequency oscillations in the rat nucleus accumbens. Psychopharmacology. 2013;228:271–82. PubMed PMC
Páleníček T, Fujáková M, Brunovský M, Horáček J, Gorman I, Balíková M, et al. Behavioral, neurochemical and pharmaco-EEG profiles of the psychedelic drug 4-bromo-2,5-dimethoxyphenethylamine (2C-B) in rats. Psychopharmacology. 2013;225:75–93. PubMed
Fujáková M, Páleníček T, Brunovský M, Gorman I, Tylš F, Kubešová A, et al. The effect of ((-)-2-oxa-4-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY379268), an mGlu2/3 receptor agonist, on EEG power spectra and coherence in ketamine model of psychosis. Pharmacol Biochem Behav. 2014;122:212–21. PubMed
Nichols DE. Hallucinogens. Pharmacol Ther. 2004;101:131–81. PubMed
Páleníček T, Hliňák Z, Bubeníková-Valešová V, Novák T, Horáček J. Sex differences in the effects of N,N-diethyllysergamide (LSD) on behavioural activity and prepulse inhibition. Prog Neuro-Psychopharmacology Biol Psychiatry. 2010;34:588–96. PubMed
Tylš F, Páleníček T, Kadeřábek L, Lipski M, Kubešová A, Horáček J. Sex differences and serotonergic mechanisms in the behavioural effects of psilocin. Behav Pharmacol. 2016;27:309–20. PubMed
Paxinos G, Watson C. The rat brain in stereotaxic coordinates. Amsterdam: Academic Press/Elsevier Inc.; 2014.
Vejmola Č, Tylš F, Kadeřábek L, Lipski M, Páleníček T. Poster, Quantitative EEG study of serotonergic hallucinogens in rats—the relationship of brain activity and behavior. In: 29th ECNP Congress. Vienna: ECNP Congress; 2016, P.1.g.080., Vieta E.
Hansen IH, Agerskov C, Arvastson L, Bastlund JF, Sørensen H, Herrik KF. Pharmaco-electroencephalographic responses in the rat differ between active and inactive locomotor states. Eur J Neurosci. 2019;50:1948–71. PubMed PMC
Thatcher RW, Biver CJ, North DM. Quantitative EEG and the Frye and Daubert standards of admissibility. Clin EEG Neurosci. 2003;34:39–53. PubMed
Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M. Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol. 2004;115:2292–307. PubMed
Stam CJ, Nolte G, Daffertshofer A. Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp. 2007;28:1178–93. PubMed PMC
Andreou C, Faber PL, Leicht G, Schoettle D, Polomac N, Hanganu-Opatz IL, et al. Resting-state connectivity in the prodromal phase of schizophrenia: Insights from EEG microstates. Schizophr Res. 2014;152:513–20. PubMed
Thatcher RW. Coherence, phase differences, phase shift, and phase lock in EEG/ERP analyses. Dev Neuropsychol. 2012;37:476–96. PubMed
Erra RG, Velazquez JLP, Rosenblum M. Neural synchronization from the perspective of non-linear dynamics. Front Comput Neurosci. 2017;11:1–4. PubMed PMC
Buzsáki G, Logothetis N, Singer W. Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron. 2013;80:751–64. PubMed PMC
John JA, Draper NR. An alternative family of transformations. J R Stat Soc. 1980;29:190–197.
Koopman PAR, Wouters PAWM, Krijzer FNC. Mean power spectra from pharmaco-electrocorticographic studies: Relative baseline correction and log transformation for a proper analysis of variance to assess drug effects. Neuropsychobiology. 1996;33:100–105. PubMed
Piorecká V, Krajča V, Tylš F, Páleníček T. Methods for animal brain mapping. Radioengineering. 2018;27:806–12.
Saito K, Toyo’oka T, Fukushima T, Kato M, Shirota O, Goda Y. Determination of psilocin in magic mushrooms and rat plasma by liquid chromatography with fluorimetry and electrospray ionization mass spectrometry. Anal Chim Acta. 2004;527:149–56.
Nakahara Y, Kikura R, Takahashi K, Foltz RL, Mieczkowski T. Detection of LSD and metabolite in rat hair and human hair. J Anal Toxicol. 1996;20:323–329. PubMed
Beránková K, Szkutová M, Balíková M. Distribution profile of 2,5-dimethoxy-4-bromoamphetamine (DOB) in rats after oral and subcutaneous doses. Forensic Sci Int. 2007;170:94–99. PubMed
Drinkenburg WHIM, Ruigt GSF, Ahnaou A. Pharmaco-EEG studies in animals: an overview of contemporary translational applications. Neuropsychobiology. 2016;72:151–64. PubMed
Young GA. Relationship between amphetamine-induced effects on EEG power spectra and motor activity in rats. Pharmacol Biochem Behav. 1988;30:489–92. PubMed
Ahnaou A, Huysmans H, Jacobs T, Drinkenburg WHIM. Cortical EEG oscillations and network connectivity as efficacy indices for assessing drugs with cognition enhancing potential. Neuropharmacology. 2014;86:362–77. PubMed
Marona-Lewicka D, Thisted RA, Nichols DE. Distinct temporal phases in the behavioral pharmacology of LSD: dopamine D2 receptor-mediated effects in the rat and implications for psychosis. Psychopharmacology. 2005;180:427–35. PubMed
Marona-Lewicka D, Nichols DE. Further evidence that the delayed temporal dopaminergic effects of LSD are mediated by a mechanism different than the first temporal phase of action. Pharmacol Biochem Behav. 2007;87:453–61. PubMed
Marona-Lewicka D, Chemel BR, Nichols DE. Dopamine D4 receptor involvement in the discriminative stimulus effects in rats of LSD, but not the phenethylamine hallucinogen DOI. Psychopharmacology. 2009;203:265–77. PubMed
Kropf W, Kuschinsky K, Krieglstein J. Apomorphine-induced alterations in cortical EEG activity of rats: involvement of D-1 and D-2 dopamine receptors. Naunyn Schmiedebergs Arch Pharmacol. 1989;340:718–25. PubMed
Hwan SJ, Ji YK, Sang HK, Lee MG. Role of dopamine receptors on electroencephalographic changes produced by repetitive apomorphine treatments in rats. Korean J Physiol Pharmacol. 2009;13:147–51. PubMed PMC
Nelson ME, Bryant SM, Aks SE. Emerging drugs of abuse. Dis-a-Mon. 2014;60:110–32. PubMed
Dimpfel W, Spüler M, Nichols DE. Hallucinogenic and stimulatory amphetamine derivatives: fingerprinting DOM, DOI, DOB, MDMA, and MBDB by spectral analysis of brain field potentials in the freely moving rat (Tele-Stereo-EEG) Psychopharmacology. 1989;98:297–303. PubMed
Titeler M, Lyon RA, Davis KH, Glennon RA. Selectivity of serotonergic drugs for multiple brain serotonin receptors. Role of [3H]-4-bromo-2,5-dimethoxyphenylisopropylamine ([3H]DOB), A 5-HT2 agonist radioligand. Biochem Pharmacol. 1987;36:3265–71. PubMed
Rickli A, Moning OD, Hoener MC, Liechti ME. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens. Eur Neuropsychopharmacol. 2016;26:1327–37. PubMed
Puig MV, Watakabe A, Ushimaru M, Yamamori T, Kawaguchi Y. Serotonin modulates fast-spiking interneuron and synchronous activity in the rat prefrontal cortex through 5-HT1A and 5-HT2A receptors. J Neurosci. 2010;30:2211–22. PubMed PMC
Carhart-Harris RL, Kaelen M, Bolstridge M, Williams TM, Williams LT, Underwood R, et al. Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proc Natl Acad Sci USA. 2016;46:1379–90. PubMed PMC
Kometer M, Schmidt A, Jäncke L, Vollenweider FX. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations. J Neurosci. 2013;33:10544–51. PubMed PMC
Burn CC. What is it like to be a rat? Rat sensory perception and its implications for experimental design and rat welfare. Appl Anim Behav Sci. 2008;112:1–32.
Jiricek S, Koudelka V, Lacik J, Vejmola C, Kuratko D, Wójcik DK, et al. Electrical source imaging in freely moving rats: evaluation of twelve-electrode cortical EEG system. Front Neuroinform. 2021;14:68. PubMed PMC
Psilocybin-induced default mode network hypoconnectivity is blunted in alcohol-dependent rats