Psilocybin-induced default mode network hypoconnectivity is blunted in alcohol-dependent rats
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu randomizované kontrolované studie, časopisecké články
Grantová podpora
FKZ: 01EW1908
Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
01EW2010B
Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
01EW2010B
Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
01EW1908
Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
01ZX1909A
Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
ME 5279/3-1
Deutsche Forschungsgemeinschaft (German Research Foundation)
PubMed
38097569
PubMed Central
PMC10721862
DOI
10.1038/s41398-023-02690-1
PII: 10.1038/s41398-023-02690-1
Knihovny.cz E-zdroje
- MeSH
- alkoholismus * diagnostické zobrazování farmakoterapie MeSH
- default mode network MeSH
- ethanol MeSH
- halucinogeny * farmakologie MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- mozek diagnostické zobrazování MeSH
- psilocybin farmakologie MeSH
- recidiva MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
- Názvy látek
- ethanol MeSH
- halucinogeny * MeSH
- psilocybin MeSH
Alcohol Use Disorder (AUD) adversely affects the lives of millions of people, but still lacks effective treatment options. Recent advancements in psychedelic research suggest psilocybin to be potentially efficacious for AUD. However, major knowledge gaps remain regarding (1) psilocybin's general mode of action and (2) AUD-specific alterations of responsivity to psilocybin treatment in the brain that are crucial for treatment development. Here, we conducted a randomized, placebo-controlled crossover pharmaco-fMRI study on psilocybin effects using a translational approach with healthy rats and a rat model of alcohol relapse. Psilocybin effects were quantified with resting-state functional connectivity using data-driven whole-brain global brain connectivity, network-based statistics, graph theory, hypothesis-driven Default Mode Network (DMN)-specific connectivity, and entropy analyses. Results demonstrate that psilocybin induced an acute wide-spread decrease in different functional connectivity domains together with a distinct increase of connectivity between serotonergic core regions and cortical areas. We could further provide translational evidence for psilocybin-induced DMN hypoconnectivity reported in humans. Psilocybin showed an AUD-specific blunting of DMN hypoconnectivity, which strongly correlated to the alcohol relapse intensity and was mainly driven by medial prefrontal regions. In conclusion, our results provide translational validity for acute psilocybin-induced neural effects in the rodent brain. Furthermore, alcohol relapse severity was negatively correlated with neural responsivity to psilocybin treatment. Our data suggest that a clinical standard dose of psilocybin may not be sufficient to treat severe AUD cases; a finding that should be considered for future clinical trials.
Zobrazit více v PubMed
Carhart-Harris R, Giribaldi B, Watts R, Baker-Jones M, Murphy-Beiner A, Murphy R, et al. Trial of psilocybin versus escitalopram for depression. N Engl J Med. 2021;384:1402–11. doi: 10.1056/NEJMoa2032994. PubMed DOI
Davis AK, Barrett FS, May DG, Cosimano MP, Sepeda ND, Johnson MW, et al. Effects of psilocybin-assisted therapy on major depressive disorder: a randomized clinical trial. JAMA Psychiatry. 2021;78:481–9. doi: 10.1001/jamapsychiatry.2020.3285. PubMed DOI PMC
Griffiths RR, Johnson MW, Carducci MA, Umbricht A, Richards WA, Richards BD, et al. Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: a randomized double-blind trial. J Psychopharmacol. 2016;30:1181–97. doi: 10.1177/0269881116675513. PubMed DOI PMC
Ross S, Bossis A, Guss J, Agin-Liebes G, Malone T, Cohen B, et al. Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: a randomized controlled trial. J Psychopharmacol. 2016;30:1165–80. doi: 10.1177/0269881116675512. PubMed DOI PMC
Rucker JJH, Iliff J, Nutt DJ. Psychiatry & the psychedelic drugs. Past, present & future. Neuropharmacology. 2018;142:200–18. doi: 10.1016/j.neuropharm.2017.12.040. PubMed DOI
Hollister LE, Shelton J, Krieger G. A controlled comparison of lysergic acid diethylamide (LSD) and dextroamphetamine in alcoholics. Am J Psychiatry. 2006;125:1352–7. PubMed
Smart RG, Storm T, Baker EF, Solursh L. A controlled study of lysergide in the treatment of alcoholism./. The effects on drinking behavior. Q J Stud Alcohol. 2020;27:469–82. doi: 10.15288/qjsa196627469. PubMed DOI
Ludwig A, Levine J, Stark L, Lazar R. A clinical study of LSD treatment in alcoholism. Am J Psychiatry. 2006;126:59–69. PubMed
Bowen WT, Soskin RA, Chotlos JW. Lysergic acid diethylamide as a variable in the hospital treatment of alcoholism: a follow-up study. J Nerv Ment Dis. 1970;150:111–8. doi: 10.1097/00005053-197002000-00003. PubMed DOI
Bogenschutz MP, Forcehimes AA, Pommy JA, Wilcox CE, Barbosa P, Strassman RJ. Psilocybin-assisted treatment for alcohol dependence: a proof-of-concept study. J Psychopharmacol. 2015;29:289–99. doi: 10.1177/0269881114565144. PubMed DOI
Bogenschutz MP, Ross S, Bhatt S, Baron T, Forcehimes AA, Laska E, et al. Percentage of heavy drinking days following psilocybin-assisted psychotherapy vs placebo in the treatment of adult patients with alcohol use disorder: a randomized clinical trial. JAMA Psychiatry. 2022;79:953–62. doi: 10.1001/jamapsychiatry.2022.2096. PubMed DOI PMC
Vollenweider FX, Preller KH. Psychedelic drugs: neurobiology and potential for treatment of psychiatric disorders. Nat Rev Neurosci. 2020;21:611–24. doi: 10.1038/s41583-020-0367-2. PubMed DOI
McCulloch DE-W, Knudsen GM, Barrett FS, Doss MK, Carhart-Harris RL, Rosas FE, et al. Psychedelic resting-state neuroimaging: A review and perspective on balancing replication and novel analyses. Neurosci Biobehav Rev. 2022;138:104689. doi: 10.1016/j.neubiorev.2022.104689. PubMed DOI
Preller KH, Burt JB, Ji JL, Schleifer CH, Adkinson BD, Stämpfli P, et al. Changes in global and thalamic brain connectivity in LSD-induced altered states of consciousness are attributable to the 5-HT2A receptor. Elife. 2018;7:1–31. doi: 10.7554/eLife.35082. PubMed DOI PMC
Carhart-Harris RL, Bolstridge M, Rucker J, Day CMJ, Erritzoe D, Kaelen M, et al. Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study. Lancet Psychiatry. 2016;3:619–27. doi: 10.1016/S2215-0366(16)30065-7. PubMed DOI
Carhart-Harris RL, Erritzoe D, Williams T, Stone JM, Reed LJ, Colasanti A, et al. Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proc Natl Acad Sci USA. 2012;109:2138–43. doi: 10.1073/pnas.1119598109. PubMed DOI PMC
Müller F, Dolder PC, Schmidt A, Liechti ME, Borgwardt S. Altered network hub connectivity after acute LSD administration. Neuroimage Clin. 2018;18:694–701. doi: 10.1016/j.nicl.2018.03.005. PubMed DOI PMC
Muthukumaraswamy SD, Carhart-Harris RL, Moran RJ, Brookes MJ, Williams TM, Errtizoe D, et al. Broadband cortical desynchronization underlies the human psychedelic state. J Neurosci. 2013;33:15171–83. doi: 10.1523/JNEUROSCI.2063-13.2013. PubMed DOI PMC
Palhano-Fontes F, Andrade KC, Tofoli LF, Jose ACS, Crippa AS, Hallak JEC, et al. The psychedelic state induced by Ayahuasca modulates the activity and connectivity of the Default Mode Network. PLoS One. 2015;10:e0118143. doi: 10.1371/journal.pone.0118143. PubMed DOI PMC
Müller-Oehring EM, Jung YC, Pfefferbaum A, Sullivan EV, Schulte T. The resting brain of alcoholics. Cereb Cortex. 2015;25:4155–68. doi: 10.1093/cercor/bhu134. PubMed DOI PMC
Pérez-Ramírez Ú, López-Madrona VJ, Pérez-Segura A, Pallarés V, Moreno A, Ciccocioppo R, et al. Brain network allostasis after chronic alcohol drinking is characterized by functional dedifferentiation and narrowing. J Neurosci. 2022;42:4401–13. doi: 10.1523/JNEUROSCI.0389-21.2022. PubMed DOI PMC
Spanagel R. Animal models of addiction. Dialogues Clin Neurosci. 2017;19:247–58. doi: 10.31887/DCNS.2017.19.3/rspanagel. PubMed DOI PMC
Vengeliene V, Bilbao A, Spanagel R. The alcohol deprivation effect model for studying relapse behavior: a comparison between rats and mice. Alcohol. 2014;48:313–20. doi: 10.1016/j.alcohol.2014.03.002. PubMed DOI
Vengeliene V, Celerier E, Chaskiel L, Penzo F, Spanagel R. Compulsive alcohol drinking in rodents. Addict Biol. 2009;14:384–96. doi: 10.1111/j.1369-1600.2009.00177.x. PubMed DOI
Hölter SM, Spanagel R. Effects of opiate antagonist treatment on the alcohol deprivation effect in long-term ethanol-experienced rats. Psychopharmacology. 1999;145:360–9. doi: 10.1007/s002130051069. PubMed DOI
Meinhardt MW, Güngör C, Skorodumov I, Mertens LJ. Spanagel R. Psilocybin and LSD have no long-lasting effects in an animal model of alcohol relapse. Neuropsychopharmacology. 2020;45:1316–22. doi: 10.1038/s41386-020-0694-z. PubMed DOI PMC
Scuppa G, Tambalo S, Pfarr S, Sommer WH, Bifone A. Aberrant insular cortex connectivity in abstinent alcohol-dependent rats is reversed by dopamine D3 receptor blockade. Addict Biol. 2020;25. 10.1111/ADB.12744. PubMed PMC
Vengeliene V, Leonardi-Essmann F, Sommer WH, Marston HM, Spanagel R. Glycine transporter-1 blockade leads to persistently reduced relapse-like alcohol drinking in rats. Biol Psychiatry. 2010;68:704–11. doi: 10.1016/j.biopsych.2010.05.029. PubMed DOI
Hölter SM, Engelmann M, Kirschke C, Liebsch G, Landgraf R, Spanagel R. Long-term ethanol self-administration with repeated ethanol deprivation episodes changes ethanol drinking pattern and increases anxiety-related behaviour during ethanol deprivation in rats. Behavioural Pharmacol. 1998;9:41–8. PubMed
Grandjean J, Buehlmann D, Buerge M, Sigrist H, Seifritz E, Vollenweider FX, et al. Psilocybin exerts distinct effects on resting state networks associated with serotonin and dopamine in mice. Neuroimage. 2021;225. 10.1016/j.neuroimage.2020.117456. PubMed
Meinhardt MW, Pfarr S, Fouquet G, Rohleder C, Meinhardt ML, Barroso-Flores J, et al. Psilocybin targets a common molecular mechanism for cognitive impairment and increased craving in alcoholism. Sci Adv. 2021;7. 10.1126/SCIADV.ABH2399. PubMed PMC
Reinwald JR, Gass N, Mallien AS, Sartorius A, Becker R, Sack M, et al. Dopamine transporter silencing in the rat: systems-level alterations in striato-cerebellar and prefrontal-midbrain circuits. Mol Psychiatry. 2022;27. 10.1038/s41380-022-01471-4. PubMed PMC
Paasonen J, Stenroos P, Salo RA, Kiviniemi V, Gröhn O. Functional connectivity under six anesthesia protocols and the awake condition in rat brain. Neuroimage. 2018;172:9–20. doi: 10.1016/j.neuroimage.2018.01.014. PubMed DOI
Reinwald JR, Becker R, Mallien AS, Falfan-Melgoza C, Sack M, Clemm von Hohenberg C, et al. Neural Mechanisms of Early-Life Social Stress as a Developmental Risk Factor for Severe Psychiatric Disorders. Biol Psychiatry. 2018;84:116–28. doi: 10.1016/j.biopsych.2017.12.010. PubMed DOI
Van Buuren M, Gladwin TE, Zandbelt BB, Van Den Heuvel M, Ramsey NF, Kahn RS, et al. Cardiorespiratory effects on default-mode network activity as measured with fMRI. Hum Brain Mapp. 2009;30:3031–42. doi: 10.1002/hbm.20729. PubMed DOI PMC
Barrière DA, Magalhães R, Novais A, Marques P, Selingue E, Geffroy F, et al. The SIGMA rat brain templates and atlases for multimodal MRI data analysis and visualization. Nat Commun. 2019;10. 10.1038/s41467-019-13575-7. PubMed PMC
Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage. 2014;84:320–41. doi: 10.1016/j.neuroimage.2013.08.048. PubMed DOI PMC
Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res. 1996;29:162–73. doi: 10.1006/cbmr.1996.0014. PubMed DOI
Preller KH, Duerler P, Burt JB, Ji JL, Adkinson B, Stämpfli P, et al. Psilocybin induces time-dependent changes in global functional connectivity. Biol Psychiatry. 2020;88:197–207. doi: 10.1016/j.biopsych.2019.12.027. PubMed DOI
Anticevic A, Hu S, Zhang S, Savic A, Billingslea E, Wasylink S, et al. Global resting-state functional magnetic resonance imaging analysis identifies frontal cortex, striatal, and cerebellar dysconnectivity in obsessive-compulsive disorder. Biol Psychiatry. 2014;75:595–605. doi: 10.1016/j.biopsych.2013.10.021. PubMed DOI PMC
Zalesky A, Fornito A, Bullmore ET. Network-based statistic: Identifying differences in brain networks. Neuroimage. 2010;53:1197–207. doi: 10.1016/j.neuroimage.2010.06.041. PubMed DOI
Reinwald JR, Sartorius A, Weber-Fahr W, Sack M, Becker R, Didriksen M, et al. Separable neural mechanisms for the pleiotropic association of copy number variants with neuropsychiatric traits. Transl Psychiatry. 2020;10. 10.1038/S41398-020-0771-4. PubMed PMC
Reinwald JR, Weber-Fahr W, Cosa-Linan A, Becker R, Sack M, Falfan-Melgoza C, et al. TRIAC Treatment Improves Impaired Brain Network Function and White Matter Loss in Thyroid Hormone Transporter Mct8/Oatp1c1 Deficient Mice. Int J Mol Sci. 2022;23. 10.3390/IJMS232415547. PubMed PMC
Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52:1059–69. doi: 10.1016/j.neuroimage.2009.10.003. PubMed DOI
Watts DJ, Strogatz SH. Collective dynamics of’small-world9 networks. Nature. 1998;393:440–2. doi: 10.1038/30918. PubMed DOI
Muldoon SF, Bridgeford EW, Bassett DS. Small-world propensity and weighted brain networks. Sci Rep. 2016;6. 10.1038/srep22057. PubMed PMC
Lu H, Zou Q, Gu H, Raichle ME, Stein EA, Yang Y. Rat brains also have a default mode network. Proc Natl Acad Sci USA. 2012;109:3979–84. doi: 10.1073/pnas.1200506109. PubMed DOI PMC
Carhart-Harris RL, Friston KJ. REBUS and the anarchic brain: toward a unified model of the brain action of psychedelics. Pharm Rev. 2019;71:316–44. doi: 10.1124/pr.118.017160. PubMed DOI PMC
Richman JS, Moorman JR. Physiological time-series analysis using approximate and sample entropy. Am J Physiol Heart Circ Physiol. 2000;278:2039–49. doi: 10.1152/ajpheart.2000.278.6.H2039. PubMed DOI
Nezafati M, Temmar H, Keilholz SD. Functional MRI signal complexity analysis using sample entropy. Front Neurosci. 2020;14:700. doi: 10.3389/fnins.2020.00700. PubMed DOI PMC
Wang Z, Li Y, Childress AR, Detre JA. Brain entropy mapping using fMRI. PLoS One. 2014;9:e89948. doi: 10.1371/journal.pone.0089948. PubMed DOI PMC
Jiang X, Li X, Xing H, Huang X, Xu X, Li J. Brain entropy study on obsessive-compulsive disorder using resting-state fMRI. Front Psychiatry. 2021;12. 10.3389/fpsyt.2021.764328. PubMed PMC
Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples) Biometrika. 1965;52:591. doi: 10.1093/biomet/52.3-4.591. DOI
Bartlett MS. Properties of sufficiency and statistical tests. Proc R Soc Lond A Math Phys Sci. 1937;160:268–82. doi: 10.1098/rspa.1937.0109. DOI
Frossard J, Renaud O. Permutation tests for regression, ANOVA, and comparison of signals: the permuco package. J Stat Softw. 2021;99:1–32. doi: 10.18637/jss.v099.i15. DOI
Kherad-Pajouh S, Renaud O. A general permutation approach for analyzing repeated measures ANOVA and mixed-model designs. Stat Pap. 2015;56:947–67. doi: 10.1007/s00362-014-0617-3. DOI
Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SMFSL. Neuroimage. 2012;62:782–90. doi: 10.1016/j.neuroimage.2011.09.015. PubMed DOI
Vejmola Č, Tylš F, Piorecká V, Koudelka V, Kadeřábek L, Novák T, et al. Psilocin, LSD, mescaline, and DOB all induce broadband desynchronization of EEG and disconnection in rats with robust translational validity. Transl Psychiatry. 2021;11:1–8. doi: 10.1038/s41398-021-01603-4. PubMed DOI PMC
Nutt D, Erritzoe D, Carhart-Harris R. Leading edge commentary psychedelic psychiatry’s brave new world. 2020. 10.1016/j.cell.2020.03.020. PubMed
Barnett L, Muthukumaraswamy SD, Carhart-Harris RL, Seth AK. Decreased directed functional connectivity in the psychedelic state. Neuroimage. 2020; 209. 10.1016/J.NEUROIMAGE.2019.116462. PubMed
Kaelen M, Roseman L, Kahan J, Santos-Ribeiro A, Orban C, Lorenz R, et al. LSD modulates music-induced imagery via changes in parahippocampal connectivity. Eur Neuropsychopharmacol. 2016;26:1099–109. doi: 10.1016/j.euroneuro.2016.03.018. PubMed DOI
Lebedev AV, Kaelen M, Lövdén M, Nilsson J, Feilding A, Nutt DJ, et al. LSD-induced entropic brain activity predicts subsequent personality change. Hum Brain Mapp. 2016;37:3203–13. doi: 10.1002/hbm.23234. PubMed DOI PMC
Ling S, Ceban F, Lui LMW, Lee Y, Teopiz KM, Rodrigues NB, et al. Molecular mechanisms of psilocybin and implications for the treatment of depression. CNS Drugs. 2022;36:17–30. doi: 10.1007/s40263-021-00877-y. PubMed DOI
Lesch KP, Waider J. Serotonin in the modulation of neural plasticity and networks: implications for neurodevelopmental disorders. Neuron. 2012;76:175–91. doi: 10.1016/j.neuron.2012.09.013. PubMed DOI
Hornung JP. The neuronatomy of the serotonergic system. In: Handbook of Behavioral Neuroscience. Amsterdam, Netherlands: Elsevier; 2010. p. 51–64.
Lee HS, Kim MA, Valentino RJ, Waterhouse BD. Glutamatergic afferent projections to the dorsal raphe nucleus of the rat. Brain Res. 2003;963:57–71. doi: 10.1016/S0006-8993(02)03841-6. PubMed DOI
Jones KA, Srivastava DP, Allen JA, Strachan RT, Roth BL, Penzes P. Rapid modulation of spine morphology by the 5-HT2A serotonin receptor through kalirin-7 signaling. Proc Natl Acad Sci USA. 2009;106:19575–80. doi: 10.1073/pnas.0905884106. PubMed DOI PMC
Shao LX, Liao C, Gregg I, Davoudian PA, Savalia NK, Delagarza K, et al. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron. 2021;109:2535–44.e4. doi: 10.1016/j.neuron.2021.06.008. PubMed DOI PMC
Daws RE, Timmermann C, Giribaldi B, Sexton JD, Wall MB, Erritzoe D, et al. Increased global integration in the brain after psilocybin therapy for depression. Nat Med. 2022;28:844–51. doi: 10.1038/s41591-022-01744-z. PubMed DOI
Kwan AC, Olson DE, Preller KH, Roth BL. The neural basis of psychedelic action. Nat Neurosci. 2022;25:1407–19. doi: 10.1038/s41593-022-01177-4. PubMed DOI PMC
Schindler EAD, Wallace RM, Sloshower JA, D’Souza DC. Neuroendocrine associations underlying the persistent therapeutic effects of classic serotonergic psychedelics. Front Pharmacol. 2018;9. 10.3389/fphar.2018.00177. PubMed PMC
Luppi AI, Carhart-Harris RL, Roseman L, Pappas I, Menon DK, Stamatakis EA. LSD alters dynamic integration and segregation in the human brain. Neuroimage. 2021;227. 10.1016/j.neuroimage.2020.117653. PubMed PMC
Stählin O. Characterisation of transcriptome changes caused by alcohol addiction. University of Heidelberg; 2013. 10.1002/ana.24090.
Kasanetz F, Deroche-Gamonet V, Berson N, Balado E, Lafourcade M, Manzoni O, et al. Transition to addiction is associated with a persistent impairment in synaptic plasticity. Science. 2010;328:1709–12. doi: 10.1126/science.1187801. PubMed DOI
Foo J, Meinhardt MW, Skorodumov I, Spanagel R. Alcohol solution strength preference predicts compulsive-like drinking in rats. Alcohol Clin Exp Res. 2022;46:1710–19. doi: 10.1111/acer.14910. PubMed DOI
Pallarés V, Dudek M, Moreno A, Pérez-Ramírez Ú, Moratal D, Haaranen M, et al. Neuroimaging reveals functionally distinct neuronal networks associated with high-level alcohol consumption in two genetic rat models. Behavioural Pharmacol. 2021;32:229–38. doi: 10.1097/FBP.0000000000000582. PubMed DOI
Degiorgis L, Arefin TM, Ben-Hamida S, Noblet V, Antal C, Bienert T, et al. Translational structural and functional signatures of chronic alcohol effects in mice. Biol Psychiatry. 2022;91:1039–50. doi: 10.1016/j.biopsych.2022.02.013. PubMed DOI
Duka T, Townshend JM, Collier K, Stephens DN. Impairment in cognitive functions after multiple detoxifications in alcoholic inpatients. Alcohol Clin Exp Res. 2003;27:1563–72. doi: 10.1097/01.ALC.0000090142.11260.D7. PubMed DOI
Duka T, Trick L, Nikolaou K, Gray M a, Kempton MJ, Williams H, et al. Unique brain areas associated with abstinence control are damaged in multiply detoxified alcoholics. Biol Psychiatry. 2011. 10.1016/j.biopsych.2011.04.006. PubMed PMC
Holmes A, Fitzgerald PJ, MacPherson KP, DeBrouse L, Colacicco G, Flynn SM, et al. Chronic alcohol remodels prefrontal neurons and disrupts NMDAR-mediated fear extinction encoding. Nat Neurosci. 2012;15:1359–61. doi: 10.1038/nn.3204. PubMed DOI PMC
Kroener S, Mulholland PJ, New NN, Gass JT, Becker HC, Chandler LJ. Chronic alcohol exposure alters behavioral and synaptic plasticity of the rodent prefrontal cortex. PLoS One. 2012;7:e37541. doi: 10.1371/journal.pone.0037541. PubMed DOI PMC
Meinhardt MW, Hansson AC, Perreau-Lenz S, Bauder-Wenz C, Stählin O, Heilig M, et al. Rescue of infralimbic mGluR2 deficit restores control over drug-seeking behavior in alcohol dependence. J Neurosci. 2013;33:2794–806. doi: 10.1523/JNEUROSCI.4062-12.2013. PubMed DOI PMC
Kasanetz F, Lafourcade M, Deroche-Gamonet V, Revest J-M, Berson N, Balado E, et al. Prefrontal synaptic markers of cocaine addiction-like behavior in rats. Mol Psychiatry. 2012. 10.1038/mp.2012.59. PubMed
Toneatti R, Shin JM, Shah UH, Mayer CR, Saunders JM, Fribourg M, et al. Interclass GPCR heteromerization affects localization and trafficking. Sci Signal. 2020;13. 10.1126/scisignal.aaw3122. PubMed PMC
Baki L, Fribourg M, Younkin J, Eltit JM, Moreno JL, Park G, et al. Cross-signaling in metabotropic glutamate 2 and serotonin 2A receptor heteromers in mammalian cells. Pflug Arch. 2016;468:775–93. doi: 10.1007/s00424-015-1780-7. PubMed DOI PMC
Fribourg M, Moreno JL, Holloway T, Provasi D, Baki L, Mahajan R, et al. Decoding the signaling of a GPCR heteromeric complex reveals a unifying mechanism of action of antipsychotic drugs. Cell. 2011;147:1011–23. doi: 10.1016/j.cell.2011.09.055. PubMed DOI PMC
González-Maeso J, Ang RL, Yuen T, Chan P, Weisstaub NV, López-Giménez JF, et al. Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature. 2008;452:93–97. doi: 10.1038/nature06612. PubMed DOI PMC
Domanegg K, Sommer WH, Meinhardt MW. Psychedelic targeting of metabotropic glutamate receptor 2 and its implications for the treatment of alcoholism. Cells. 2023;12. 10.3390/CELLS12060963. PubMed PMC
Gewirtz JC, Marek GJ. Behavioral evidence for interactions between a hallucinogenic drug and group II metabotropic glutamate receptors. Neuropsychopharmacology. 2000;23:569–76. doi: 10.1016/S0893-133X(00)00136-6. PubMed DOI
Klodzinska A, Bijak M, Tokarski K, Pilc A. Group II mGlu receptor agonists inhibit behavioural and electrophysiological effects of DOI in mice. Pharm Biochem Behav. 2002;73:327–32. doi: 10.1016/S0091-3057(02)00845-6. PubMed DOI
Benneyworth MA, Xiang Z, Smith RL, Garcia EE, Conn PJ, Sanders-Bush E. A selective positive allosteric modulator of metabotropic glutamate receptor subtype 2 blocks a hallucinogenic drug model of psychosis. Mol Pharm. 2007;72:477–84. doi: 10.1124/mol.107.035170. PubMed DOI
Moreno JL, Holloway T, Albizu L, Sealfon SC, González-Maeso J. Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists. Neurosci Lett. 2011;493:76–9. doi: 10.1016/j.neulet.2011.01.046. PubMed DOI PMC
Benvenga MJ, Chaney SF, Baez M, Britton TC, Hornback WJ, Monn JA, et al. Metabotropic glutamate2 receptors play a key role in modulating head twitches induced by a serotonergic hallucinogen in mice. Front Pharmacol. 2018;9. 10.3389/fphar.2018.00208. PubMed PMC
Madsen MK, Stenbæk DS, Arvidsson A, Armand S, Marstrand-Joergensen MR, Johansen SS, et al. Psilocybin-induced changes in brain network integrity and segregation correlate with plasma psilocin level and psychedelic experience. Eur Neuropsychopharmacol. 2021;50:121–32. doi: 10.1016/j.euroneuro.2021.06.001. PubMed DOI
Maclean JR, Macdonald DC, Byrne UP, Hubbard AM. The use of LSD-25 in the treatment of alcoholism and other psychiatric problems. Q J Stud Alcohol. 1961;22:34–45. doi: 10.15288/qjsa.1961.22.034. PubMed DOI
Grandjean J, Desrosiers-Gregoire G, Anckaerts C, Angeles-Valdez D, Ayad F, Barrière DA, et al. A consensus protocol for functional connectivity analysis in the rat brain. Nat Neurosci. 2023;26:673–81. doi: 10.1038/s41593-023-01286-8. PubMed DOI PMC
Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA. The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? Neuroimage. 2009;44:893–905. doi: 10.1016/j.neuroimage.2008.09.036. PubMed DOI PMC
Bianchi PC, Gomes-de-Souza L, Costa-Ferreira W, Palombo P, Carneiro de Oliveira PE, Engi SA, et al. Chronic ethanol vapor exposure potentiates cardiovascular responses to acute stress in male but not in female rats. Biol Sex Differ. 2021;12:1–13. doi: 10.1186/s13293-021-00371-6. PubMed DOI PMC
Kervern M, Dubois C, Naassila M, Daoust M, Pierrefiche O. Perinatal alcohol exposure in rat induces long-term depression of respiration after episodic hypoxia. Am J Respir Crit Care Med. 2009;179:608–14. doi: 10.1164/rccm.200703-434OC. PubMed DOI
Heinz A, Kiefer F, Smolka MN, Endrass T, Beste C, Beck A, et al. Addiction Research Consortium: Losing and regaining control over drug intake (ReCoDe)—From trajectories to mechanisms and interventions. Addict Biol. 2020;25. 10.1111/adb.12866. PubMed