Psilocybin-Mediated Attenuation of Gamma Band Auditory Steady-State Responses (ASSR) Is Driven by the Intensity of Cognitive and Emotional Domains of Psychedelic Experience
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-25349S; 21-32608S
Czech Science Foundation
RVO 00023752
Long-term conceptual development of research organization
NU21-04-00307; NV18-04-00260
Czech Health Research Council
260533/SVV/2021
Specific University Research, Czech Ministry of Education, Youth and Sports
PubMed
35743788
PubMed Central
PMC9225116
DOI
10.3390/jpm12061004
PII: jpm12061004
Knihovny.cz E-zdroje
- Klíčová slova
- EEG, auditory steady-state response, model of psychosis, psilocybin, psychedelics, serotonin,
- Publikační typ
- časopisecké články MeSH
Psilocybin is a classical serotoninergic psychedelic that induces cognitive disruptions similar to psychosis. Gamma activity is affected in psychosis and is tightly related to cognitive processing. The 40 Hz auditory steady-state responses (ASSR) are frequently used as indicators to test the ability to generate gamma activity. Based on previous literature, we studied the impact of psilocybin on 40 Hz ASSR in healthy volunteers. The study was double blind and placebo controlled with a crossover design. A sample of 20 healthy subjects (10M/10F) received psilocybin orally 0.26 mg/kg or placebo. Participants were measured four times in total, one time before ingestion of psilocybin/placebo and one time after ingestion, during the peak of intoxication. A series of 500 ms click trains were used for stimulation. Psilocybin induced a psychedelic effect and decreased 40 Hz ASSR phase-locking index compared to placebo. The extent of the attenuation was related to Cognition and Affect on the Hallucinogen Rating Scale. The current study shows that psilocybin lowers the synchronization level and the amplitude of 40 Hz auditory steady-state responses, which yields further support for the role of gamma oscillations in cognitive processing and its disturbance.
1st Faculty of Medicine Charles University Kateřinská 32 121 08 Prague Czech Republic
3rd Faculty of Medicine Charles University Ruská 2411 100 00 Prague Czech Republic
Institute of Biosciences Vilnius University 7 Saulėtekio Ave 10257 Vilnius Lithuania
National Institute of Mental Health Topolová 748 250 67 Klecany Czech Republic
Zobrazit více v PubMed
Nutt D. Psychedelic drugs—A new era in psychiatry? Dialog-Clin. Neurosci. 2019;21:139–147. doi: 10.31887/DCNS.2019.21.2/dnutt. PubMed DOI PMC
Li N.-X., Hu Y.-R., Chen W.-N., Zhang B. Dose effect of psilocybin on primary and secondary depression: A preliminary systematic review and meta-analysis. J. Affect. Disord. 2021;296:26–34. doi: 10.1016/j.jad.2021.09.041. PubMed DOI
Więckiewicz G., Stokłosa I., Piegza M., Gorczyca P., Pudlo R. Lysergic Acid Diethylamide, Psilocybin and Dimethyltryptamine in Depression Treatment: A Systematic Review. Pharmaceuticals. 2021;14:793. doi: 10.3390/ph14080793. PubMed DOI PMC
Studerus E., Gamma A., Kometer M., Vollenweider F.X. Prediction of Psilocybin Response in Healthy Volunteers. PLoS ONE. 2012;7:e30800. doi: 10.1371/journal.pone.0030800. PubMed DOI PMC
Meinhardt M.W., Pfarr S., Fouquet G., Rohleder C., Meinhardt M.L., Barroso-Flores J., Hoffmann R., Jeanblanc J., Paul E., Wagner K., et al. Psilocybin targets a common molecular mechanism for cognitive impairment and increased craving in alcoholism. Sci. Adv. 2021;7:eabh2399. doi: 10.1126/sciadv.abh2399. PubMed DOI PMC
Vollenweider F.X., Preller K.H. Psychedelic drugs: Neurobiology and potential for treatment of psychiatric disorders. Nat. Rev. Neurosci. 2020;21:611–624. doi: 10.1038/s41583-020-0367-2. PubMed DOI
Doss M.K., Považan M., Rosenberg M.D., Sepeda N.D., Davis A.K., Finan P.H., Smith G.S., Pekar J.J., Barker P.B., Griffiths R.R., et al. Psilocybin therapy increases cognitive and neural flexibility in patients with major depressive disorder. Transl. Psychiatry. 2021;11:1–10. doi: 10.1038/s41398-021-01706-y. PubMed DOI PMC
Barrett F.S., Carbonaro T.M., Hurwitz E., Johnson M.W., Griffiths R.R. Double-blind comparison of the two hallucinogens psilocybin and dextromethorphan: Effects on cognition. Psychopharmacologia. 2018;235:2915–2927. doi: 10.1007/s00213-018-4981-x. PubMed DOI PMC
Bravermanová A., Viktorinová M., Tylš F., Novák T., Androvičová R., Korčák J., Horáček J., Balíková M., Griškova-Bulanova I., Danielová D., et al. Psilocybin disrupts sensory and higher order cognitive processing but not pre-attentive cognitive processing—study on P300 and mismatch negativity in healthy volunteers. Psychopharmacology. 2018;235:491–503. doi: 10.1007/s00213-017-4807-2. PubMed DOI
Kometer M., Cahn B.R., Andel D., Carter O.L., Vollenweider F.X. The 5-HT2A/1A Agonist Psilocybin Disrupts Modal Object Completion Associated with Visual Hallucinations. Biol. Psychiatry. 2011;69:399–406. doi: 10.1016/j.biopsych.2010.10.002. PubMed DOI
Kometer M., Schmidt A., Jäncke L., Vollenweider F.X. Activation of Serotonin 2A Receptors Underlies the Psilocybin-Induced Effects on α Oscillations, N170 Visual-Evoked Potentials, and Visual Hallucinations. J. Neurosci. 2013;33:10544–10551. doi: 10.1523/JNEUROSCI.3007-12.2013. PubMed DOI PMC
Umbricht D.S., Vollenweider F.X., Schmid L., Grübel C., Skrabo A., Huber T., Koller R. Effects of the 5-HT2A Agonist Psilocybin on Mismatch Negativity Generation and AX-Continuous Performance Task: Implications for the Neuropharmacology of Cognitive Deficits in Schizophrenia. Neuropsychopharmacology. 2003;28:170–181. doi: 10.1038/sj.npp.1300005. PubMed DOI
Kometer M., Schmidt A., Bachmann R., Studerus E., Seifritz E., Vollenweider F.X. Psilocybin biases facial recognition, goal-directed behavior, and mood state toward positive relative to negative emotions through different serotonergic subreceptors. Biol Psychiatry. 2012;72:898–906. doi: 10.1016/j.biopsych.2012.04.005. PubMed DOI
Vejmola Č., Tylš F., Piorecká V., Koudelka V., Kadeřábek L., Novák T., Páleníček T. Psilocin, LSD, mescaline, and DOB all induce broadband desynchronization of EEG and disconnection in rats with robust translational validity. Transl. Psychiatry. 2021;11:1–8. doi: 10.1038/s41398-021-01603-4. PubMed DOI PMC
Başar E. A review of gamma oscillations in healthy subjects and in cognitive impairment. Int. J. Psychophysiol. 2013;90:99–117. doi: 10.1016/j.ijpsycho.2013.07.005. PubMed DOI
Isomura S., Onitsuka T., Tsuchimoto R., Nakamura I., Hirano S., Oda Y., Oribe N., Hirano Y., Ueno T., Kanba S. Differentiation between major depressive disorder and bipolar disorder by auditory steady-state responses. J. Affect. Disord. 2016;190:800–806. doi: 10.1016/j.jad.2015.11.034. PubMed DOI
Light G.A., Hsu J.L., Hsieh M.H., Meyer-Gomes K., Sprock J., Swerdlow N.R., Braff D.L. Gamma Band Oscillations Reveal Neural Network Cortical Coherence Dysfunction in Schizophrenia Patients. Biol. Psychiatry. 2006;60:1231–1240. doi: 10.1016/j.biopsych.2006.03.055. PubMed DOI
Parker D.A., Hamm J.P., McDowell J.E., Keedy S.K., Gershon E.S., Ivleva E.I., Pearlson G.D., Keshavan M.S., Tamminga C.A., Sweeney J.A., et al. Auditory steady-state EEG response across the schizo-bipolar spectrum. Schizophr. Res. 2019;209:218–226. doi: 10.1016/j.schres.2019.04.014. PubMed DOI PMC
Spencer K.M., Salisbury D.F., Shenton M.E., McCarley R.W. γ-Band Auditory Steady-State Responses Are Impaired in First Episode Psychosis. Biol. Psychiatry. 2008;64:369–375. doi: 10.1016/j.biopsych.2008.02.021. PubMed DOI PMC
Thuné H., Recasens M., Uhlhaas P.J. The 40-Hz Auditory Steady-State Response in Patients With Schizophrenia. JAMA Psychiatry. 2016;73:1145. doi: 10.1001/jamapsychiatry.2016.2619. PubMed DOI
Ahmed S., Lepock J.R., Mizrahi R., Bagby R.M., Gerritsen C.J., Korostil M., Light G.A., Kiang M. Decreased Gamma Auditory Steady-State Response Is Associated With Impaired Real-World Functioning in Unmedicated Patients at Clinical High Risk for Psychosis. Clin. EEG Neurosci. 2020;52:400–405. doi: 10.1177/1550059420982706. PubMed DOI
Tada M., Nagai T., Kirihara K., Koike S., Suga M., Araki T., Kobayashi T., Kasai K. Differential Alterations of Auditory Gamma Oscillatory Responses between Pre-Onset High-Risk Individuals and First-Episode Schizophrenia. Cereb. Cortex. 2016;26:1027–1035. doi: 10.1093/cercor/bhu278. PubMed DOI
Parciauskaite V., Bjekic J., Griskova-Bulanova I. Gamma-Range Auditory Steady-State Responses and Cognitive Performance: A Systematic Review. Brain Sci. 2021;11:217. doi: 10.3390/brainsci11020217. PubMed DOI PMC
Gao M., Rejaei D., Liu H. Ketamine use in current clinical practice. Acta Pharmacol. Sin. 2016;37:865–872. doi: 10.1038/aps.2016.5. PubMed DOI PMC
Plourde G., Baribeau J., Bonhomme V. Ketamine increases the amplitude of the 40-Hz auditory steady-state response in humans. Br. J. Anaesth. 1997;78:524–529. doi: 10.1093/bja/78.5.524. PubMed DOI
Sivarao D.V., Chen P., Senapati A., Yang Y., Fernandes A., Benitex Y., Whiterock V., Li Y.-W., Ahlijanian M.K. 40 Hz Auditory Steady-State Response Is a Pharmacodynamic Biomarker for Cortical NMDA Receptors. Neuropsychopharmacology. 2016;41:2232–2240. doi: 10.1038/npp.2016.17. PubMed DOI PMC
Geyer M.A., Vollenweider F.X. Serotonin research: Contributions to understanding psychoses. Trends Pharmacol. Sci. 2008;29:445–453. doi: 10.1016/j.tips.2008.06.006. PubMed DOI
Kantrowitz J.T. Targeting Serotonin 5-HT2A Receptors to Better Treat Schizophrenia: Rationale and Current Approaches. CNS Drugs. 2020;34:947–959. doi: 10.1007/s40263-020-00752-2. PubMed DOI
Stahl S.M. Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: Dopamine, serotonin, and glutamate. CNS Spectr. 2018;23:187–191. doi: 10.1017/S1092852918001013. PubMed DOI
Švob Štrac D., Pivac N., Mück-Šeler D. The serotonergic system and cognitive function. Transl. Neurosci. 2016;7:35–49. doi: 10.1515/tnsci-2016-0007. PubMed DOI PMC
Butcher J.N., Graham J.R., Fowler R.D. Special Series: The Mmpi-2*. J. Pers. Assess. 1991;57:203–204. doi: 10.1207/s15327752jpa5702_1. PubMed DOI
Sheehan D.V., Lecrubier Y., Sheehan K.H., Amorim P., Janavs J., Weiller E., Hergueta T., Baker R., Dunbar G.C. The Mini-International Neuropsychiatric Interview (M.I.N.I): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry. 1998;59((Suppl. S20)):22–33. PubMed
Johnson M., Richards W., Griffiths R. Human hallucinogen research: Guidelines for safety. J. Psychopharmacol. 2008;22:603–620. doi: 10.1177/0269881108093587. PubMed DOI PMC
Nichols D.E. Psychedelics. Pharmacol. Rev. 2016;68:264–355. doi: 10.1124/pr.115.011478. PubMed DOI PMC
Tylš F., Páleníček T., Kaderábek L., Lipski M., Kubešová A., Horácek J. Sex differences and serotonergic mechanisms in the behavioural effects of psilocin. Behav. Pharmacol. 2016;27:309–320. doi: 10.1097/FBP.0000000000000198. PubMed DOI
Overall J.E., Hollister L.E., Pichot P. Major Psychiatric Disorders: A Four-Dimensional Model. Arch. Gen. Psychiatry. 1967;16:146–151. doi: 10.1001/archpsyc.1967.01730200014003. PubMed DOI
Strassman R.J., Qualls C.R., Uhlenhuth E.H., Kellner R. Dose-Response Study of N,N-Dimethyltryptamine in Humans: II. Subjective Effects and Preliminary Results of a New Rating Scale. Arch. Gen. Psychiatry. 1994;51:98–108. doi: 10.1001/archpsyc.1994.03950020022002. PubMed DOI
Studerus E., Gamma A., Vollenweider F.X. Psychometric Evaluation of the Altered States of Consciousness Rating Scale (OAV) PLoS ONE. 2010;5:e12412. doi: 10.1371/journal.pone.0012412. PubMed DOI PMC
Dittrich A. The standardized psychometric assessment of altered states of consciousness (ASCs) in humans. Pharmacopsychiatry. 1998;31((Suppl. S2)):80–84. doi: 10.1055/s-2007-979351. PubMed DOI
Tylš F., Páleníček T., Horáček J. Psilocybin–Summary of knowledge and new perspectives. Eur. Neuropsychopharmacol. 2014;24:342–356. doi: 10.1016/j.euroneuro.2013.12.006. PubMed DOI
Perrin F., Pernier J., Bertrand O., Echallier J. Spherical splines for scalp potential and current density mapping. Electroencephalogr. Clin. Neurophysiol. 1989;72:184–187. doi: 10.1016/0013-4694(89)90180-6. PubMed DOI
Górska U., Binder M. Low and medium frequency auditory steady-state responses decrease during NREM sleep. Int. J. Psychophysiol. 2019;135:44–54. doi: 10.1016/j.ijpsycho.2018.11.003. PubMed DOI
Griskova I., Morup M., Parnas J., Ruksenas O., Arnfred S.M. The amplitude and phase precision of 40 Hz auditory steady-state response depend on the level of arousal. Exp. Brain Res. 2007;183:133–138. doi: 10.1007/s00221-007-1111-0. PubMed DOI
Iber C., Ancoli-Israel S., Chesson A., Quan S. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. Am. Acad. Sleep Med. 2007;176:16–30.
Mørup M., Hansen L.K., Arnfred S.M. ERPWAVELAB: A toolbox for multi-channel analysis of time–frequency transformed event related potentials. J. Neurosci. Methods. 2007;161:361–368. doi: 10.1016/j.jneumeth.2006.11.008. PubMed DOI
Makeig S. Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalogr. Clin. Neurophysiol. 1993;86:283–293. doi: 10.1016/0013-4694(93)90110-H. PubMed DOI
Griskova-Bulanova I., Hubl D., van Swam C., Dierks T., Koenig T. Early- and late-latency gamma auditory steady-state response in schizophrenia during closed eyes: Does hallucination status matter? Clin. Neurophysiol. 2016;127:2214–2221. doi: 10.1016/j.clinph.2016.02.009. PubMed DOI
Griskova-Bulanova I., Dapsys K., Melynyte S., Voicikas A., Maciulis V., Andruskevicius S., Korostenskaja M. 40 Hz auditory steady-state response in schizophrenia: Sensitivity to stimulation type (clicks versus flutter amplitude-modulated tones) Neurosci. Lett. 2018;662:152–157. doi: 10.1016/j.neulet.2017.10.025. PubMed DOI
Tada M., Kirihara K., Koshiyama D., Fujioka M., Usui K., Uka T., Komatsu M., Kunii N., Araki T., Kasai K. Gamma-Band Auditory Steady-State Response as a Neurophysiological Marker for Excitation and Inhibition Balance: A Review for Understanding Schizophrenia and Other Neuropsychiatric Disorders. Clin. EEG Neurosci. 2019;51:234–243. doi: 10.1177/1550059419868872. PubMed DOI
Love J., Selker R., Verhagen J., Marsman M., Gronau Q.F., Jamil T., Smira M., Epskamp S., Wild A., Ly A., et al. Software to Sharpen Your Stats. APS Obs. 2015;28:27–29.
Parciauskaite V., Voicikas A., Jurkuvenas V., Tarailis P., Kraulaidis M., Pipinis E., Griskova-Bulanova I. 40-Hz auditory steady-state responses and the complex information processing: An exploratory study in healthy young males. PLoS ONE. 2019;14:e0223127. doi: 10.1371/journal.pone.0223127. PubMed DOI PMC
Voicikas A., Niciute I., Ruksenas O., Griskova-Bulanova I. Effect of attention on 40 Hz auditory steady-state response depends on the stimulation type: Flutter amplitude modulated tones versus clicks. Neurosci. Lett. 2016;629:215–220. doi: 10.1016/j.neulet.2016.07.019. PubMed DOI
O’Donnell B.F., Vohs J.L., Krishnan G.P., Rass O., Hetrick W.P., Morzorati S.L. Chapter 6-The auditory steady-state response (ASSR): A translational biomarker for schizophrenia. In: Başar E., Başar-Eroĝlu C., Özerdem A., Rossini P.M., Yener G.G., editors. Supplements to Clinical Neurophysiology. Volume 62. Elsevier; Amsterdam, The Netherlands: 2013. pp. 101–112. PubMed PMC
Kozono N., Honda S., Tada M., Kirihara K., Zhao Z., Jinde S., Uka T., Yamada H., Matsumoto M., Kasai K., et al. Auditory Steady State Response; nature and utility as a translational science tool. Sci. Rep. 2019;9:1–10. doi: 10.1038/s41598-019-44936-3. PubMed DOI PMC
Vohs J.L., Chambers R.A., Krishnan G.P., O’Donnell B.F., Berg S., Morzorati S.L. GABAergic modulation of the 40 Hz auditory steady-state response in a rat model of schizophrenia. Int. J. Neuropsychopharmacol. 2010;13:487–497. doi: 10.1017/S1461145709990307. PubMed DOI PMC
Vohs J.L., Chambers R.A., O’Donnell B.F., Krishnan G.P., Morzorati S.L. Auditory steady state responses in a schizophrenia rat model probed by excitatory/inhibitory receptor manipulation. Int. J. Psychophysiol. 2012;86:136–142. doi: 10.1016/j.ijpsycho.2012.04.002. PubMed DOI PMC
Puig M.V., Watakabe A., Ushimaru M., Yamamori T., Kawaguchi Y. Serotonin Modulates Fast-Spiking Interneuron and Synchronous Activity in the Rat Prefrontal Cortex through 5-HT1A and 5-HT2A Receptors. J. Neurosci. 2010;30:2211–2222. doi: 10.1523/JNEUROSCI.3335-09.2010. PubMed DOI PMC
Akhmetshina D., Zakharov A., Vinokurova D., Nasretdinov A., Valeeva G., Khazipov R. The serotonin reuptake inhibitor citalopram suppresses activity in the neonatal rat barrel cortex in vivo. Brain Res. Bull. 2016;124:48–54. doi: 10.1016/j.brainresbull.2016.03.011. PubMed DOI
Méndez P., Pazienti A., Szabó G., Bacci A. Direct Alteration of a Specific Inhibitory Circuit of the Hippocampus by Antidepressants. J. Neurosci. 2012;32:16616–16628. doi: 10.1523/JNEUROSCI.1720-12.2012. PubMed DOI PMC
Cortes-Briones J., Skosnik P.D., Mathalon D., Cahill J., Pittman B., Williams A., Sewell R.A., Ranganathan M., Roach B., Ford J., et al. Δ9-THC Disrupts Gamma (γ)-Band Neural Oscillations in Humans. Neuropsychopharmacology. 2015;40:2124–2134. doi: 10.1038/npp.2015.53. PubMed DOI PMC
Albrecht M.A., Price G., Lee J., Iyyalol R., Martin-Iverson M.T. Dexamphetamine selectively increases 40 Hz auditory steady state response power to target and nontarget stimuli in healthy humans. J. Psychiatry Neurosci. 2013;38:24–32. doi: 10.1503/jpn.110145. PubMed DOI PMC
Carhart-Harris R.L., Erritzoe D., Williams T., Stone J.M., Reed L.J., Colasanti A., Tyacke R.J., Leech R., Malizia A.L., Murphy K., et al. Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proc. Natl. Acad. Sci. USA. 2012;109:2138–2143. doi: 10.1073/pnas.1119598109. PubMed DOI PMC
Koshiyama D., Miyakoshi M., Joshi Y.B., Nakanishi M., Tanaka-Koshiyama K., Sprock J., Light G.A. Source decomposition of the frontocentral auditory steady-state gamma band response in schizophrenia patients and healthy subjects. Psychiatry Clin. Neurosci. 2021;75:172–179. doi: 10.1111/pcn.13201. PubMed DOI
Euston D.R., Gruber A.J., McNaughton B.L. The Role of Medial Prefrontal Cortex in Memory and Decision Making. Neuron. 2012;76:1057–1070. doi: 10.1016/j.neuron.2012.12.002. PubMed DOI PMC
Carhart-Harris R.L. The entropic brain-revisited. Neuropharmacology. 2018;142:167–178. doi: 10.1016/j.neuropharm.2018.03.010. PubMed DOI
Molina J.L., Thomas M.L., Joshi Y.B., Hochberger W.C., Koshiyama D., Nungaray J.A., Cardoso L., Sprock J., Braff D.L., Swerdlow N.R., et al. Gamma oscillations predict pro-cognitive and clinical response to auditory-based cognitive training in schizophrenia. Transl. Psychiatry. 2020;10:405. doi: 10.1038/s41398-020-01089-6. PubMed DOI PMC
Cromheeke S., Mueller S.C. Probing emotional influences on cognitive control: An ALE meta-analysis of cognition emotion interactions. Brain Struct. Funct. 2014;219:995–1008. doi: 10.1007/s00429-013-0549-z. PubMed DOI
Carhart-Harris R., Nutt D. Serotonin and brain function: A tale of two receptors. J. Psychopharmacol. 2017;31:1091–1120. doi: 10.1177/0269881117725915. PubMed DOI PMC
Carhart-Harris R.L., Leech R., Hellyer P.J., Shanahan M., Feilding A., Tagliazucchi E., Chialvo D.R., Nutt D. The entropic brain: A theory of conscious states informed by neuroimaging research with psychedelic drugs. Front. Hum. Neurosci. 2014;8:20. doi: 10.3389/fnhum.2014.00020. PubMed DOI PMC
Hirano Y., Oribe N., Onitsuka T., Kanba S., Nestor P.G., Hosokawa T., Levin M., Shenton M.E., McCarley R.W., Spencer K.M. Auditory Cortex Volume and Gamma Oscillation Abnormalities in Schizophrenia. Clin. EEG Neurosci. 2020;51:244–251. doi: 10.1177/1550059420914201. PubMed DOI
Roach B.J., D’Souza D.C., Ford J.M., Mathalon D.H. Test-retest reliability of time-frequency measures of auditory steady-state responses in patients with schizophrenia and healthy controls. NeuroImage Clin. 2019;23:101878. doi: 10.1016/j.nicl.2019.101878. PubMed DOI PMC
McFadden K.L., Steinmetz S.E., Carroll A.M., Simon S.T., Wallace A., Rojas D.C. Test-Retest Reliability of the 40 Hz EEG Auditory Steady-State Response. PLoS ONE. 2014;9:e85748. doi: 10.1371/journal.pone.0085748. PubMed DOI PMC
Tan H.R.M., Gross J., Uhlhaas P.J. MEG—measured auditory steady-state oscillations show high test–retest reliability: A sensor and source-space analysis. NeuroImage. 2015;122:417–426. doi: 10.1016/j.neuroimage.2015.07.055. PubMed DOI
Kamata T., Nishikawa M., Katagi M., Tsuchihashi H. Optimized glucuronide hydrolysis for the detection of psilocin in human urine samples. J. Chromat. B. 2003;796:421–427. doi: 10.1016/j.jchromb.2003.08.030. PubMed DOI
Martin R., Schürenkamp J., Pfeiffer H., Lehr M., Köhler H. Synthesis, hydrolysis and stability of psilocin glucuronide. Forens. Sci. Intern. 2014;237:1–6. doi: 10.1016/j.forsciint.2014.01.006. PubMed DOI