Compost mixed fruits and vegetable waste biochar with ACC deaminase rhizobacteria can minimize lead stress in mint plants
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
33758248
PubMed Central
PMC7988167
DOI
10.1038/s41598-021-86082-9
PII: 10.1038/s41598-021-86082-9
Knihovny.cz E-zdroje
- MeSH
- Alcaligenes faecalis enzymologie metabolismus MeSH
- aminohydrolasy metabolismus MeSH
- Bacillus amyloliquefaciens enzymologie metabolismus MeSH
- bakteriální proteiny metabolismus MeSH
- biodegradace MeSH
- dřevěné a živočišné uhlí metabolismus MeSH
- fyziologický stres MeSH
- kompostování metody MeSH
- látky znečišťující půdu metabolismus toxicita MeSH
- máta účinky léků mikrobiologie MeSH
- olovo metabolismus toxicita MeSH
- ovoce chemie MeSH
- rhizosféra * MeSH
- zelenina chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminohydrolasy MeSH
- bakteriální proteiny MeSH
- biochar MeSH Prohlížeč
- dřevěné a živočišné uhlí MeSH
- látky znečišťující půdu MeSH
- olovo MeSH
High lead (Pb) concentration in soils is becoming a severe threat to human health. It also deteriorates plants, growth, yield and quality of food. Although the use of plant growth-promoting rhizobacteria (PGPR), biochar and compost can be effective environment-friendly amendments for decreasing Pb stress in crop plants, the impacts of their simultaneous co-application has not been well documented. Thus current study was carried, was conducted to investigate the role of rhizobacteria and compost mixed biochar (CB) under Pb stress on selected soil properties and agronomic parameters in mint (Mentha piperita L.) plants. To this end, six treatments were studied: Alcaligenes faecalis, Bacillus amyloliquefaciens, CB, PGPR1 + CB, PGPR2 + CB and control. Results showed that the application A. faecalis + CB significantly decreased soil pH and EC over control. However, OM, nitrogen, phosphorus and potassium concentration were significantly improved in the soil where A. faecalis + CB was applied over control. The A. faecalis + CB treatment significantly improved mint plant root dry weight (58%), leaves dry weight (32%), chlorophyll (37%), and N (46%), P (39%) and K (63%) leave concentration, while also decreasing the leaves Pb uptake by 13.5% when compared to the unamended control. In conclusion, A. faecalis + CB has a greater potential to improve overall soil quality, fertility and mint plant productivity under high Pb soil concentration compared to the sole application of CB and A. faecalis.
Department of Agronomy The University of Haripur Haripur Khyber Pakhtunkhwa 22620 Pakistan
Department of Animal Sciences Cornell University Ithaca USA
Department of Environmental Sciences Bahauddin Zakariya University Multan Punjab 60800 Pakistan
Department of Technical Services Fatima Agri Sales and Services Bahawalpur Punjab Pakistan
Zobrazit více v PubMed
Adrees M, et al. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol. Environ. Saf. 2015;119:186–197. doi: 10.1016/j.ecoenv.2015.05.011. PubMed DOI
Keller C, et al. Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 µM Cu. Planta. 2015;241:847–860. doi: 10.1007/s00425-014-2220-1. PubMed DOI
Khan AZ, et al. Popular wood and sugarcane bagasse biochars reduced uptake of chromium and lead by lettuce from mine-contaminated soil. Environ. Pollut. 2020;263:114446. doi: 10.1016/j.envpol.2020.114446. PubMed DOI PMC
Zafar-Ul-hye M, et al. Alleviation of cadmium adverse effects by improving nutrients uptake in bitter gourd through cadmium tolerant rhizobacteria. Environ. MDPI. 2020;7:54.
Danish S, et al. Effect of foliar application of Fe and banana peel waste biochar on growth, chlorophyll content and accessory pigments synthesis in spinach under chromium (IV) toxicity. Open Agric. 2019;4:381–390. doi: 10.1515/opag-2019-0034. DOI
Zafar-ul-hye M, et al. Effect of cadmium-tolerant rhizobacteria on growth attributes and chlorophyll contents of bitter gourd under cadmium toxicity. Plants. 2020;9:1386. doi: 10.3390/plants9101386. PubMed DOI PMC
Adriano. Trace elements in terrestrial environments. Biogeochemistry, bioavailability and risks of metals. in Springer-Verlag, New York vol. 32 374 (2001).
Wang G, et al. Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China. Environ. Pollut. 2006;144:127–135. doi: 10.1016/j.envpol.2005.12.023. PubMed DOI
Sheng XF, Xia JJ, Jiang CY, He LY, Qian M. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ. Pollut. 2008;156:1164–1170. doi: 10.1016/j.envpol.2008.04.007. PubMed DOI
Xia Y, et al. Efficient immobilization of toxic heavy metals in multi-contaminated agricultural soils by amino-functionalized hydrochar: Performance, plant responses and immobilization mechanisms. Environ. Pollut. 2020;261:114217. doi: 10.1016/j.envpol.2020.114217. PubMed DOI
Huang H, et al. Comparative efficacy of organic and inorganic silicon fertilizers on antioxidant response, Cd/Pb accumulation and health risk assessment in wheat (Triticum aestivum L.) Environ. Pollut. 2019;255:113146. doi: 10.1016/j.envpol.2019.113146. PubMed DOI
Wierzbicka MH, et al. Comparison of the toxicity and distribution of cadmium and lead in plant cells. Protoplasma. 2007;231:99. doi: 10.1007/s00709-006-0227-6. PubMed DOI
Seregin IV, Kozhevnikova AD. Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium. Russ. J. Plant Physiol. 2008;55:1–22. doi: 10.1134/S1021443708010019. DOI
Hockmann K, Tandy S, Studer B, Evangelou MWH, Schulin R. Plant uptake and availability of antimony, lead, copper and zinc in oxic and reduced shooting range soil. Environ. Pollut. 2018;238:255–262. doi: 10.1016/j.envpol.2018.03.014. PubMed DOI
Lamhamdi M, Bakrim A, Aarab A, Lafont R, Sayah F. Lead phytotoxicity on wheat (Triticum aestivum L.) seed germination and seedlings growth. Comptes Rendus Biol. 2011;334:118–126. doi: 10.1016/j.crvi.2010.12.006. PubMed DOI
Uslu OS, Babur E, Alma MH, Solaiman ZM. Walnut shell biochar increases seed germination and early growth of seedlings of fodder crops. Agric. 2020;10:1–13. doi: 10.37478/agr.v10i1.75. DOI
Sharma P, Dubey RS. Lead toxicity in plants. Braz. J. Plant Physiol. 2005;17:35–52. doi: 10.1590/S1677-04202005000100004. DOI
Hall JL. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 2002;53:1–11. doi: 10.1093/jexbot/53.366.1. PubMed DOI
Saleem M, Asghar HN, Zahir ZA, Shahid M. Impact of lead tolerant plant growth promoting rhizobacteria on growth, physiology, antioxidant activities, yield and lead content in sunflower in lead contaminated soil. Chemosphere. 2018;195:606–614. doi: 10.1016/j.chemosphere.2017.12.117. PubMed DOI
Ehsan N, et al. Use of ornamental plant, ‘Vinca’ (Vinca rosea L.) for remediation of lead-contaminated soil. J. Biodivers. Environ. Sci. 2016;8:46–54.
Ahmad M, et al. Lead and copper immobilization in a shooting range soil using soybean stover- and pine needle-derived biochars: chemical, microbial and spectroscopic assessments. J. Hazard. Mater. 2016;301:179–186. doi: 10.1016/j.jhazmat.2015.08.029. PubMed DOI
Diatta AA, Fike JH, Battaglia ML, Galbraith JM, Baig MB. Effects of biochar on soil fertility and crop productivity in arid regions: a review. Arab. J. Geosci. 2020;13:595. doi: 10.1007/s12517-020-05586-2. DOI
Rizwan M, et al. Mechanisms of biochar-mediated alleviation of toxicity oftrace elements in plants: a critical review. Environ. Sci. Pollut. Res. 2016;23:2230–2248. doi: 10.1007/s11356-015-5697-7. PubMed DOI
Ok YS, Chang SX, Gao B, Chung HJ. SMART biochar technology-A shifting paradigm towards advanced materials and healthcare research. Environ. Technol. Innov. 2015;4:206–209. doi: 10.1016/j.eti.2015.08.003. DOI
Younis U, Danish S, Shah MHR, Malik SA. Nutrient shifts modeling in Spinacea oleracea L. and Trigonella corniculata L. in contaminated soil amended with biochar. Int. J. Biosci. 2014;5:89–98.
Qayyum MF, Abid M, Danish S, Saeed MK, Ali MA. Effects of various biochars on seed germination and carbon mineralization in an alkaline soil. Pakistan J. Agric. Sci. 2014;51:977–982.
Younis U, et al. Growth, survival, and heavy metal (Cd and Ni) uptake of spinach (Spinacia oleracea) and fenugreek (Trigonella corniculata) in a biochar-amended sewage-irrigated contaminated soil. J. Plant Nutr. Soil Sci. 2015;178:209–217. doi: 10.1002/jpln.201400325. DOI
Hashmi S, Younis U, Danish S, Munir TM. Pongamia pinnata L. leaves biochar increased growth and pigments syntheses in Pisum sativum L. exposed to nutritional stress. Agric. 2019;9:153.
Danish S, Younis U, Nasreen S, Akhtar N, Iqbal MT. Biochar consequences on cations and anions of sandy soil. J. Biodivers. Environ. Sci. 2015;6:121–131.
Jiang J, Xu R, Jiang T, Li Z. Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J. Hazard. Mater. 2012;229–230:145–150. doi: 10.1016/j.jhazmat.2012.05.086. PubMed DOI
Izhar Shafi M, et al. Application of single superphosphate with humic acid improves the growth, yield and phosphorus uptake of wheat (Triticum aestivum L.) in calcareous soil. Agronomy. 2020;10:1224. doi: 10.3390/agronomy10091224. DOI
Wahid F, et al. Sustainable management with mycorrhizae and phosphate solubilizing bacteria for enhanced phosphorus uptake in calcareous soils. Agriculture. 2020;10:334. doi: 10.3390/agriculture10080334. DOI
Schulz H, Dunst G, Glaser B. No effect level of Co-composted biochar on plant growth and soil properties in a greenhouse experiment. Agronomy. 2014;4:34–51. doi: 10.3390/agronomy4010034. DOI
Doan TT, et al. Influence of buffalo manure, compost, vermicompost and biochar amendments on bacterial and viral communities in soil and adjacent aquatic systems. Appl. Soil Ecol. 2014;73:78–86. doi: 10.1016/j.apsoil.2013.08.016. DOI
Babur E, Dindaroğlu T, Solaiman ZM, Battaglia ML. Microbial respiration, microbial biomass and activity are highly sensitive to forest tree species and seasonal patterns in the Eastern Mediterranean Karst Ecosystems. Sci. Total Environ. 2021;775:145868. doi: 10.1016/j.scitotenv.2021.145868. DOI
Tariq M, et al. Effect of micronutrients foliar supplementation on the production and eminence of plum (Prunus domestica L.) Qual. Assur. Saf. Crop. Foods. 2020;12:32–40. doi: 10.15586/qas.v12iSP1.793. DOI
Rafiullah MJK, et al. Phosphorus nutrient management through synchronization of application methods and rates in wheat and maize crops. Plants. 2020;9:1389. doi: 10.3390/plants9101389. PubMed DOI PMC
Rafiullah, et al. Effect of micronutrients foliar supplementation on the production and eminence of plum. Qual. Assur. Saf. Crop. Foods. 2020;12:32–40. doi: 10.15586/qas.v12iSP1.793. DOI
Danish S, et al. Phosphorus solubilizing bacteria and rice straw biochar consequence on maize pigments synthesis. Int. J. Biosci. 2015;5:31–39.
Danish S, Zafar-ul-Hye M, Hussain M, Shaaban M, Núñez-delgado A. Rhizobacteria with ACC-deaminase activity improve nutrient uptake, chlorophyll contents and early seedling growth of wheat under PEG-induced osmotic stress. Int. J. Agric. Biol. 2019;21:1212–1220.
Zafar-ul-Hye M, Shahjahan A, Danish S, Abid M, Qayyum MF. Mitigation of cadmium toxicity induced stress in wheat by ACC-deaminase containing PGPR isolated from cadmium polluted wheat rhizosphere. Pakistan J. Bot. 2018;50:1727–1734.
Danish S, Zafar-ul-Hye M. Co-application of ACC-deaminase producing PGPR and timber-waste biochar improves pigments formation, growth and yield of wheat under drought stress. Sci. Rep. 2019;9:5999. doi: 10.1038/s41598-019-42374-9. PubMed DOI PMC
Zafar-ul-Hye M, Danish S, Abbas M, Ahmad M, Munir TM. ACC deaminase producing PGPR Bacillus amyloliquefaciens and agrobacterium fabrum along with biochar improve wheat productivity under drought stress. Agronomy. 2019;9:343. doi: 10.3390/agronomy9070343. DOI
Zafar-ul-Hye M, Zahra MB, Danish S, Abbas M. Multi-strain inoculation with PGPR producing ACC deaminase is more effective than single-strain inoculation to improve wheat (Triticum aestivum) growth and yield. Phyton-Int. J. Exp. Bot. 2020;89:405–413.
Danish S, Zafar-ul-Hye M. Combined role of ACC deaminase producing bacteria and biochar on cereals productivity under drought. Phyton (B. Aires) 2020;89:217–227. doi: 10.32604/phyton.2020.08523. DOI
Van Loon LC. Plant responses to plant growth-promoting rhizobacteria. Eur. J. Plant Pathol. 2007;119:243–254. doi: 10.1007/s10658-007-9165-1. DOI
Bakker PAHM, Pieterse CMJ, Van Loon LC. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology. 2007;97:239–243. doi: 10.1094/PHYTO-97-2-0239. PubMed DOI
Danish S, et al. Drought stress alleviation by ACC deaminase producing Achromobacter xylosoxidans and Enterobacter cloacae, with and without timber waste biochar in maize. Sustainability. 2020;12:6286. doi: 10.3390/su12156286. DOI
Liu W, Du L, Yang Q. Biogas slurry added amino acids decreased nitrate concentrations of lettuce in sand culture. Acta Agric. Scand. Sect. B Soil Plant Sci. 2009;59:260–264.
Figueiredo MVB, Martinez CR, Burity HA, Chanway CP. Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.) World J. Microbiol. Biotechnol. 2008;24:1187–1193. doi: 10.1007/s11274-007-9591-4. DOI
Shah AA, et al. Synergistic effect of bacillus thuringiensis iags 199 and putrescine on alleviating cadmium-induced phytotoxicity in capsicum annum. Plants. 2020;9:151. doi: 10.3390/plants9111512. PubMed DOI PMC
Abbas M, et al. Gibberellic acid induced changes on growth, yield, superoxide dismutase, catalase and peroxidase in fruits of bitter gourd (Momordica charantia L.) Horticulturae. 2020;6:72. doi: 10.3390/horticulturae6040072. DOI
Adnan M, et al. Coupling phosphate-solubilizing bacteria with phosphorus supplements improve maize phosphorus acquisition and growth under lime induced salinity stress. Plants. 2020;9:900. doi: 10.3390/plants9070900. PubMed DOI PMC
Ullah A, et al. Impact of seed dressing and soil application of potassium humate on cotton plants productivity and fiber quality. Plants. 2020;9:1444. doi: 10.3390/plants9111444. PubMed DOI PMC
Zafar-ul-Hye M, et al. Potential role of compost mixed biochar with rhizobacteria in mitigating lead toxicity in spinach. Sci. Rep. 2020;10:69183. PubMed PMC
Kaymak HC, Yarali F, Guvenc I, Figen Donmez M. The effect of inoculation with plant growth rhizobacteria (PGPR) on root formation of mint (Mentha piperita L.) cuttings. Afr. J. Biotechnol. 2008;7:4479–4483.
Lawrence A, et al. The UKIRT infrared deep sky survey (UKIDSS) Mon. Not. R. Astron. Soc. 2007;379:1599–1617. doi: 10.1111/j.1365-2966.2007.12040.x. DOI
EXCELLING THE NORTH AMERICAN MINT INDUSTRY. Mint Industry Research Councilhttps://www.usmintindustry.com/ (2010).
Zheljazkov VD, Cantrell CL, Astatkie T, WayneEbelhar M. Productivity, oil content, and composition of two spearmint species in Mississippi. Agron. J. 2010;102:129–133. doi: 10.2134/agronj2009.0258. DOI
Ward NI, Savage JM. Metal dispersion and transportational activities using food crops as biomonitors. Sci. Total Environ. 1994;146–147:309–319. doi: 10.1016/0048-9697(94)90251-8. PubMed DOI
Waseem A, et al. Pollution status of Pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables. Biomed Res. Int. 2014;2014:813206. doi: 10.1155/2014/813206. PubMed DOI PMC
Thies, J. & Rillig, M. C. Characteristics of biochar: Biological properties. In Biochar for Environmental Management: Science and Technology. (2009).
Novak JM, et al. Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult. Geoderma. 2010;154:281–288. doi: 10.1016/j.geoderma.2009.10.014. DOI
Cheng CH, Lehmann J, Thies JE, Burton SD, Engelhard MH. Oxidation of black carbon by biotic and abiotic processes. Org. Geochem. 2006;37:1477–1488. doi: 10.1016/j.orggeochem.2006.06.022. DOI
Cheng CH, Lehmann J, Engelhard MH. Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochim. Cosmochim. Acta. 2008;72:1598–1610. doi: 10.1016/j.gca.2008.01.010. DOI
Etesami, H. & Adl, S. M. Plant Growth-Promoting Rhizobacteria (PGPR) and Their Action Mechanisms in Availability of Nutrients to Plants. In Phyto-Microbiome in Stress Regulation (eds. Kumar, M., Kumar, V. & Prasad, R.) 147–203 (Springer, 2020). 10.1007/978-981-15-2576-6_9.
Nardi, S., Carletti, P., Pizzeghello, D. & Muscolo, A. Biological activities of humic substances, in biophysicochemical processes involving natural nonliving organic matter in environmental systems. In Fundamentals and Impact of Mineral-Organic-Biota Interactions on the Formation, Transformation, Turnover, and Storage of Natural Nonliving Organic Matter (NOM) (eds. Senesi, N. et al.) (Wiley, 2009).
Li M, et al. Population characteristics and influential factors of nitrogen cycling functional genes in heavy metal contaminated soil remediated by biochar and compost. Sci. Total Environ. 2019;651:2166–2174. doi: 10.1016/j.scitotenv.2018.10.152. PubMed DOI
Zhang J, et al. Ammonia-oxidizing bacterial communities and shaping factors with different: Phanerochaete chrysosporium inoculation regimes during agricultural waste composting. RSC Adv. 2016;6:61473–61481. doi: 10.1039/C6RA04817J. DOI
Laird D, Fleming P, Wang B, Horton R, Karlen D. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma. 2010;158:436–442. doi: 10.1016/j.geoderma.2010.05.012. DOI
Brodowski S, Amelung W, Haumaier L, Abetz C, Zech W. Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Geoderma. 2005;128:116–129. doi: 10.1016/j.geoderma.2004.12.019. DOI
Egamberdieva D, Davranov K, Wirth S, Hashem A, AbdAllah EF. Impact of soil salinity on the plant-growth—promoting and biological control abilities of root associated bacteria. Saudi J. Biol. Sci. 2017;24:1601–1608. doi: 10.1016/j.sjbs.2017.07.004. PubMed DOI PMC
Spokas KA, Koskinen WC, Baker JM, Reicosky DC. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere. 2009;77:574–581. doi: 10.1016/j.chemosphere.2009.06.053. PubMed DOI
Cao X, Ma L, Gao B, Harris W. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ. Sci. Technol. 2009;43:3285–3291. doi: 10.1021/es803092k. PubMed DOI
Zhang A, et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric. Ecosyst. Environ. 2010;139:469–475. doi: 10.1016/j.agee.2010.09.003. DOI
O’Neill B, et al. Bacterial community composition in Brazilian Anthrosols and adjacent soils characterized using culturing and molecular identification. Microb. Ecol. 2009;58:23–35. doi: 10.1007/s00248-009-9515-y. PubMed DOI
Joseph S, et al. Effects of enriched biochars containing magnetic iron nanoparticles on mycorrhizal colonisation, plant growth, nutrient uptake and soil quality improvement. Pedosphere. 2015;25:749–760. doi: 10.1016/S1002-0160(15)30056-4. DOI
Musadji NY, et al. Spectral characteristics of soil dissolved organic matter: long-term effects of exogenous organic matter on soil organic matter and spatial-temporal changes. Chemosphere. 2020;240:124808. doi: 10.1016/j.chemosphere.2019.124808. PubMed DOI
El-Naggar AH, et al. Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar. Chemosphere. 2015;138:67–73. doi: 10.1016/j.chemosphere.2015.05.052. PubMed DOI
Ippolito JA, Laird DA, Busscher WJ. Environmental benefits of biochar. J. Environ. Qual. 2012;41:967–972. doi: 10.2134/jeq2012.0151. PubMed DOI
Liang B, et al. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 2006;70:1719–1730. doi: 10.2136/sssaj2005.0383. DOI
Prakash, J., Ram, V. & Meena, S. Potassium-solubilizing bacteria and their application in agriculture. In Potassium Solubilizing Microorganisms for Sustainable Agriculture 293–313 (Springer, 2016). 10.1007/978-81-322-2776-2.
Ahmad M, Zahir ZA, Asghar HN, Arshad M. The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (Vigna radiata L.) under salt-stressed conditions. Ann. Microbiol. 2012;62:1321–1330. doi: 10.1007/s13213-011-0380-9. DOI
Yermiyahu U, et al. Nitrogen, phosphorus, and potassium uptake by wheat and their distribution in soil following successive, annual compost applications. J. Environ. Qual. 2004;33:1855–1865. doi: 10.2134/jeq2004.1855. PubMed DOI
Zhang Z, Dong X, Wang S, Pu X. Benefits of organic manure combined with biochar amendments to cotton root growth and yield under continuous cropping systems in Xinjiang, China. Sci. Rep. 2020;10:4718. doi: 10.1038/s41598-020-61118-8. PubMed DOI PMC
Xie H, Pasternak JJ, Glick BR. Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Curr. Microbiol. 1996;32:67–71. doi: 10.1007/s002849900012. DOI
Mohite B. Isolation and characterization of indole acetic acid ( IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J. Sci. Plant Nutr. 2013;13:638–649.
Gupta A, Meyer JM, Goel R. Development of heavy metal-resistant mutants of phosphate solubilizing Pseudomonas sp. NBRI 4014 and their characterization. Curr. Microbiol. 2002;45:323–327. doi: 10.1007/s00284-002-3762-1. PubMed DOI
Younis, U. et al. Agric. Environ. Sci. Pollut. Res.23, 21385–21394 (2016). PubMed
Burd GI, Dixon DG, Glick BR. A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl. Environ. Microbiol. 1998;64:3663–3668. doi: 10.1128/AEM.64.10.3663-3668.1998. PubMed DOI PMC
Glick BR. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 1995;41:109–117. doi: 10.1139/m95-015. DOI
Haritash AK, Kaushik CP. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J. Hazard. Mater. 2009;169:1–15. doi: 10.1016/j.jhazmat.2009.03.137. PubMed DOI
Song QJ, Greenway GM. A study of the elemental leachability and retention capability of compost. J. Environ. Monit. 2004;6:31–37. doi: 10.1039/b310840f. PubMed DOI
Yuan JH, Xu RK, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 2011;102:3488–3497. doi: 10.1016/j.biortech.2010.11.018. PubMed DOI
Artelle LYHW, Odgers JAER. Immobilization of heavy metal ions (Cu II, Cd II, Ni II, and Pb II) by Broiler Litter-derived biochars in water and soil. J. Agric. Food Chem. 2010;58:5538–5544. doi: 10.1021/jf9044217. PubMed DOI
Ahmad M, et al. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere. 2014;99:19–33. doi: 10.1016/j.chemosphere.2013.10.071. PubMed DOI
McGrath SP, Zhao FJ, Lombi E. Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil. 2001;232:207–214. doi: 10.1023/A:1010358708525. DOI
Lasat MM. Phytoextraction of toxic metals: a review of biological mechanisms. J. Environ. Qual. 2002;31:109–120. PubMed
Dworkin M, Foster JW. Experiments with some microorganisms which utilize ethane and hydrogen. J. Bacteriol. 1958;75:592–603. doi: 10.1128/JB.75.5.592-603.1958. PubMed DOI PMC
Awashthi, S. K. Prevention of Food Adultration. (Ashoka Law House, 2000).
Moodie CD, Smith HW, Creery RAM. Laboratory Manual for Soil Fertility. Dept. of Agron; 1959.
Walkley A, Black IA. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934;37:29–38. doi: 10.1097/00010694-193401000-00003. DOI
Watanabe FS, Olsen SR. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from Soil1. Soil Sci. Soc. Am. J. 1965;29:677. doi: 10.2136/sssaj1965.03615995002900060025x. DOI
Nadeem F, et al. Qualitative and chemical analysis of rice kernel to time of application of phosphorus in combination with zinc under anaerobic conditions. Asian J. Agric. Biol. 2013;1:67–75.
Arnon DI. Copper enzymes in isolated chloroplasts. polyphenoloxidase in beta vulgaris. Plant Physiol. 1949;24:1–15. doi: 10.1104/pp.24.1.1. PubMed DOI PMC
Jones, J. B., WolfH, B. & Mills, H. A. Plant Analysis Handbook: A Practical Sampling, Preparation, Analysis, and Interpretation Guide. (Micro-Macro Publishing Inc., 1991).
Chapman HD, Pratt PF. Methods of analysis for soils, plants and water. University of California; 1961.
Steel, R. G., Torrie, J. H. & Dickey, D. A. Principles and Procedures of Statistics: A Biometrical Approach. (McGraw Hill Book International Co., 1997).