Coupling Phosphate-Solubilizing Bacteria with Phosphorus Supplements Improve Maize Phosphorus Acquisition and Growth under Lime Induced Salinity Stress

. 2020 Jul 16 ; 9 (7) : . [epub] 20200716

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32708749

Global warming promotes soil calcification and salinization processes. As a result, soil phosphorus (P) is becoming deficient in arid and semiarid areas throughout the world. In this pot study, we evaluated the potential of phosphate-solubilizing bacteria (PSB) for enhancing the growth and P uptake in maize under varying levels of lime (4.8%, 10%, 15% and 20%) and additional P supplements (farmyard manure, poultry manure, single super phosphate and rock phosphate) added at the rate of 45 mg P2O5 kg-1. Inoculation and application of P as organic manures (Poultry and farm yard manures) improved maize growth and P uptake compared to the control and soils with P applied from mineral sources. Liming adversely affected crop growth, but the use of PSB and organic manure significantly neutralized this harmful effect. Mineral P sources combined with PSB were as effective as the organic sources alone. Furthermore, while single supper phosphate showed better results than Rock phosphate, the latter performed comparably upon PSB inoculation. Thus, PSB plus P application as organic manures is an eco-friendly option to improve crop growth and P nutrition in a calcareous soil under changing climate.

Zobrazit více v PubMed

Varallyay G. The impact of climate change on soils and on their water management. Agron. Res. 2010;8:385–386.

Wixon D.L., Balser T.C. Complexity, climate change and soil carbon, A systems approach to microbial temperature response. Syst. Res. Behav. Sci. 2009;26:601–620. doi: 10.1002/sres.995. DOI

Lal R. Soil management in the developing countries. Soil Sci. 2000;165:57–72. doi: 10.1097/00010694-200001000-00008. DOI

Salimpour S., Khavazi K., Nadian H., Besharati H., Miransari M. Enhancing phosphorous availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Plant Biol. 2010;6:629–642.

Ezawa T., Smith S.E., Smith F.A. P metabolism and transport in AM fungi. Plant Soil. 2002;244:221–230. doi: 10.1023/A:1020258325010. DOI

Von-Uexkull H.R., Mutert E. Global extent, development and economic impact of acid soils. Plant Soil. 1995;171:1–15. doi: 10.1007/BF00009558. DOI

Halajnia A., Haghnia G.H., Fotovat A., Khorasani R. Phosphorus fractions in calcareous soils amended with P fertilizer and cattle manure. Geoderma. 2009;150:209–213. doi: 10.1016/j.geoderma.2009.02.010. DOI

Yadav H., Fatima R., Sharma A., Mathur S. Enhancement of applicability of rock phosphate in alkaline soils by organic compost. Appl. Soil Ecol. 2017;113:80–85. doi: 10.1016/j.apsoil.2017.02.004. DOI

Torrent J., Barron V., Schwertmann U. Phosphate adsorption and desorption by goethites differing in crystal morphology. Soil Sci. Soc. Am. J. 1990;54:1007–1012. doi: 10.2136/sssaj1990.03615995005400040012x. DOI

Chen Z., Ma S., Liu L.L. Studies on phosphorus solubilizing activity of a strain of phosphobacteria isolated from chestnut type soil in China. Bioresour. Technol. 2008;99:6702–6707. doi: 10.1016/j.biortech.2007.03.064. PubMed DOI

Bieleski R.L. Phosphate pools, phosphate transport and phosphate availability. Annu. Rev. Plant Physiol. 1973;24:225–252. doi: 10.1146/annurev.pp.24.060173.001301. DOI

Battaglia M., Fike J., Fike W., Sadeghpour A., Diatta A. Miscanthus ×giganteus biomass yield and quality in the Virginia Piedmont. Grassl. Sci. 2019;65:233–240. doi: 10.1111/grs.12237. DOI

Kumar S., Lai L., Kumar P., Feliciano Y.M.V., Battaglia M.L., Hong C.O., Owens V.N., Fike J., Farris R., Galbraith J. Impacts of nitrogen rate and landscape position on soils and switchgrass root growth parameters. Agron. J. 2019;111:1046–1059. doi: 10.2134/agronj2018.08.0483. DOI

Kumar P., Lai L., Battaglia M.L., Kumar S., Owens V., Fike J., Galbraith J., Hong C.O., Faris R., Crawford R., et al. Impacts of nitrogen fertilization rate and landscape position on select soil properties in switchgrass field at four sites in the USA. Catena. 2019;180:183–193. doi: 10.1016/j.catena.2019.04.028. DOI

Battaglia M.L., Groover G., Thomason W.E. Harvesting and Nutrient Replacement Costs Associated with Corn Stover Removal in Virginia. Virginia Cooperative Extension Publication CSES-229NP. [(accessed on 5 May 2020)];2018 Available online: https://pubs.ext.vt.edu/content/dam/pubs_ext_vt_edu/CSES/cses-229/CSES-229.pdf.

Goldstein A.H. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biol. Agric. Hortic. 1995;12:185–193. doi: 10.1080/01448765.1995.9754736. DOI

Isherwood K.F. Mineral Fertilizer Use and the Environment. International Fertilizer Industry Association/United Nations Environment Programme; Paris, France: 2000.

Gyaneshwar P., Naresh K.G., Poole P.S.P. Role of soil microorganisms in improving P nutrition of plants. Plant Soil. 2002;245:83–93. doi: 10.1023/A:1020663916259. DOI

Tilman D., Fargione J., Wolff B.D., Antonio C., Dobson A., Howarth R., Schindler W.H., Schlesinger D., Simberlof D., Wackhamer D. Forecasting agriculturally driven global environmental change. Science. 2001;292:281–284. doi: 10.1126/science.1057544. PubMed DOI

Ketterings Q., Czymmek K. Removal of Phosphorus by Field Crops. Agronomy Fact Sheet Series. [(accessed on 5 May 2020)];Fact Sheet #28. Nutrient Management Spear Program. Cornell University Cooperative Extension. 2007 Available online: http://nmsp.cals.cornell.edu/publications/factsheets/factsheet28.pdf.

Czymmek K., Ketterings Q., Ros M., Battaglia M., Cela S., Crittenden S., Gates D., Walter T., Latessa S., Klaiber L., et al. The New York Phosphorus Index 2.0. Agronomy Fact Sheet Series. [(accessed on 5 May 2020)];Fact Sheet #110. Nutrient Management Spear Program. Cornell University Cooperative Extension. 2020 Available online: http://nmsp.cals.cornell.edu/publications/factsheets/factsheet110.pdf.

Zaidi A., Khan M., Ahemad M.S., Oves M., Wani P.A. Recent Advances in Plant Growth Promotion by Phosphate-Solubilizing Microbes. In: Khan M.S., Zaidi A., Musarrat J., editors. Microbial Strategies for Crop Improvement. Springer; Berlin/Heidelberg, Germany: 2009. pp. 23–50.

Brtnicky M., Dokulilova T., Holatko J., Pecina V., Kintl A., Latal O., Vyhnanek T., Prichystalova J., Datta R. Long-term effects of biochar-based organic amendments on soil microbial parameters. Agronomy. 2019;9:747. doi: 10.3390/agronomy9110747. DOI

Molaei A., Lakzian A., Haghnia G., Astaraei A., Rasouli-Sadaghiani M., Ceccherini M.T., Datta R. Assessment of some cultural experimental methods to study the effects of antibiotics on microbial activities in a soil: An incubation study. PLoS ONE. 2017;12:e0180663. doi: 10.1371/journal.pone.0180663. PubMed DOI PMC

Molaei A., Lakzian A., Datta R., Haghnia G., Astaraei A., Rasouli-Sadaghiani M., Ceccherini M.T. Impact of chlortetracycline and sulfapyridine antibiotics on soil enzyme activities. Int. Agrophys. 2017;31:499–505. doi: 10.1515/intag-2016-0084. DOI

Meena R.S., Kumar S., Datta R., Lal R., Vijayakumar V., Brtnicky M., Sharma M.P., Yadav G.S., Jhariya M.K., Jangir C.K. Impact of Agrochemicals on Soil Microbiota and Management: A Review. Land. 2020;9:34. doi: 10.3390/land9020034. DOI

Khan A.A., Jilani G., Akhtar M.S., Naqvi S.M.S., Rasheed M. Phosphorus solubilizing bacteria, occurrence, mechanisms and their role in crop production. J. Agric. Biol. Sci. 2009;1:48–58.

Illmer P., Barbato A., Schinner F. Solubilization of hardly-soluble AlPO4 with P-solubilizing microorganism. Soil Biol. Biochem. 1995;27:265–270. doi: 10.1016/0038-0717(94)00205-F. DOI

Ryan P.R., Delhaize E., Jones D.L. Function and mechanism of organic anion exudation from plant roots. Annu. Rev. Plant Biol. 2001;52:527–560. doi: 10.1146/annurev.arplant.52.1.527. PubMed DOI

Chen Y.P., Rekha P.D., Arun A.B., Shen F.T., Lai W.A., Young C.C. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 2006;34:33–41. doi: 10.1016/j.apsoil.2005.12.002. DOI

He Z., Zhu J. Microbial utilization and transformation of phosphate adsorbed by variable charged minerals. Soil Biol. Biochem. 1988;30:917–923. doi: 10.1016/S0038-0717(97)00188-0. DOI

Jones D.L. Organic acids in the rhizosphere a critical review. Plant Soil. 1998;205:25–44. doi: 10.1023/A:1004356007312. DOI

Kucey R.M.N. Effect of Penicillium bilajion the solubility and uptake of P and micronutrients from soil by wheat. Can. J. Soil Sci. 1988;68:261–270. doi: 10.4141/cjss88-026. DOI

Chaiharn M., Lumyong S. Screening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growth. Curr. Microbiol. 2011;62:173–181. doi: 10.1007/s00284-010-9674-6. PubMed DOI

Pathan S.I., Vetrovsky T., Giagnoni L., Datta R., Baldrian P., Nannipieri P., Renella G. Microbial expression profiles in the rhizosphere of two maize lines differing in N use efficiency. Plant Soil. 2018;433:401–413. doi: 10.1007/s11104-018-3852-x. DOI

Kucey R.M.N., Janzen H.H., Legett M.E. Microbially mediated increases in plant-available phosphorus. Adv. Agron. 1989;42:198–228.

Rodriguez H., Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 1999;17:319–339. doi: 10.1016/S0734-9750(99)00014-2. PubMed DOI

Xiao Y., Wang X., Chen W., Huang Q. Isolation and identification of three potassium-solubilizing bacteria from rape rhizospheric soil and their effects on ryegrass. Geomicrobiol. J. 2017;34:873–880. doi: 10.1080/01490451.2017.1286416. DOI

Sugihara S., Funakawa S., Kilasara M., Kosaki T. Dynamics of microbial biomass nitrogen in relation to plant nitrogen uptake during the crop growth period in a dry tropical cropland in Tanzania. Soil Sci. Plant Nutr. 2010;56:105–114. doi: 10.1111/j.1747-0765.2009.00428.x. DOI

Tiwari V.N., Lehri L.K., Pathak A.N. Effect of inoculating crops with phospho-microbes. Exp. Agric. 1989;25:47–50. doi: 10.1017/S0014479700016434. DOI

Pal S.S. Interaction of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil. 1999;213:221–230.

Afzal A., Ashraf M., Asad S.A., Faroog M. Effect of phosphate solubilizing microorganism on phosphorus uptake, yield and yield traits of wheat (Triticum aestivum L.) in rainfed area. Int. J. Agric. Biol. 2005;7:207–209.

Krishnaraj P.U., Dahale S. Mineral phosphate solubilization, concepts and prospects in sustainable agriculture. Proc. Ind. Natl. Sci. Acad. 2014;80:389–405. doi: 10.16943/ptinsa/2014/v80i2/55116. DOI

FAO High-level conference on world food security, the challenges of climate change and bioenergy; Proceedings of the Soaring Food Prices, Facts, Perspectives, Impacts and Actions Required; Rome, Italy. 3–5 June 2008.

Krieg N.R., Holt J.G. Bergey’s Manual of Systemetic Bacteriology. Volume 1. Williams & Wilkin; Baltimore, MD, USA: 1984. p. 984.

Danso Marfo T., Datta R., Vranová V., Ekielski A. Ecotone Dynamics and Stability from Soil Perspective: Forest-Agriculture Land Transition. Agriculture. 2019;9:228. doi: 10.3390/agriculture9100228. DOI

Marfo T.D., Datta R., Pathan S.I., Vranová V. Ecotone Dynamics and Stability from Soil Scientific Point of View. Diversity. 2019;11:53. doi: 10.3390/d11040053. DOI

Yadav G., Datta R., Imran Pathan S., Lal R., Meena R., Babu S., Das A., Bhowmik S., Datta M., Saha P. Effects of Conservation Tillage and Nutrient Management Practices on Soil Fertility and Productivity of Rice (Oryza sativa L.)–Rice System in North Eastern Region of India. Sustainability. 2017;9:1816. doi: 10.3390/su9101816. DOI

Gordon R.E., Haynes W.C., Pang C.N. The Genus Bacillus. Agricultural Handbook. No. 427. Department of Agriculture; Washington, DC, USA: 1973. 283p

Nautiyal C.S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 1999;170:265–270. doi: 10.1111/j.1574-6968.1999.tb13383.x. PubMed DOI

Eivazi F., Tabatabai M. Phosphatases in soils. Soil Biol. Biochem. 1977;9:167–172. doi: 10.1016/0038-0717(77)90070-0. DOI

Alexander D.B., Zuberer D.A. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils. 1991;12:39–45. doi: 10.1007/BF00369386. DOI

Vincet J.M.A. Manual for the Practical Study of the Root-Nodule Bacteria. Blackwell Scientific Publication; Oxford, UK: 1970. IBPH and Book No. 15.

Alagawadi A.R., Gaur A.C. Associative effect of Rhizobium and phosphate solubilizing bacteria on the yield and nutrient uptake of chickpea. Plant Soil. 1988;105:241–246. doi: 10.1007/BF02376788. DOI

Holt J.G., Krieg N.R., Sneath P.H.A., Staley J.T., Williams S.T., editors. Bergey’s Manual of Determinative Bacteriology. 9th ed. The Williams & Wilkin; Baltimore, MD, USA: 1994. 787p

Rhoades J.D. Salinity, electrical conductivity and total dissolved solids. In: Sparks D.L., Page A.L., Helmke P.A., Loeppert R.H., Soltanpour P.N., Tabatabai M.A., Johnston C.T., Sumner M.E., editors. Methods of Soil Analysis, Part 3, Chemical Methods. Volume 5. Soil Science Society of America; Madison, WI, USA: 1996. pp. 417–435.

Thomas G.W. Methods of Soil Analysis, Part 3, Chemical Methods. Volume 5. John Wiley & Sons; Madison, WI, USA: 1996. Soil pH and soil acidity; pp. 475–490.

Bremner J.M., Breitenbeck G.A. A simple method for determination of ammonium in semi-micro Kjeldahl analysis of soil and plant material using a block digestor. Commun. Soil Sci. Plant Anal. 1983;14:905–913. doi: 10.1080/00103628309367418. DOI

Ryan J., Estefan G., Rashid A. Soil and Plant Analysis Laboratory Manual. 2nd ed. The International Center for Agricultural Research in the Dry Areas (ICARDA); Aleppo, Syria: The National Agricultural Research Center (NARC); Islamabad, Pakistan: 2001. 172p

Loeppert R.H., Suarez D.L. Carbonate and gypsum. In: Sparks D.L., Page A.L., Helmke P.A., Loeppert R.H., Soltanpour P.N., Tabatabai M.A., Johnston C.T., Sumner M.E., editors. Methods of Soil Analysis, Part 3, Chemical Methods. Volume 9. Soil Science Society of America; Madison, WI, USA: 1996. pp. 181–197.

Nelson D.W., Sommers L.E. Total carbon, organic carbon, and organic matter. In: Page A.L., editor. Methods of Soil Analysis, Part 2. 2nd ed. Volume 14. John Wiley & Sons; Madison, WI, USA: 1996. pp. 961–1010.

Gee G.W., Bauder J.W. Particle-size analysis. In: Klute A., editor. Methods of Soil Analysis. Part 1. 2nd ed. Volume 5. Soil Science Society of America; Madison, WI, USA: 1986. pp. 255–293. Agronomy Monographs.

Olsen S.R., Cole C.V., Watanabe F.S., Dean L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate (No. 939) Department of Agriculture Circular; Washington, DC, USA: 1954.

Richards L.A. Diagnosis and Improvement of Saline and Alkali Soils. USDA US Printing Office; Washington, DC, USA: 1954. Agriculture Handbook 60.

Steel R.G.D., Torrie J.H. Principles and Procedures of Statistics, A Biometrical Approach. McGraw Hill; New York, NY, USA: 1996. pp. 195–233.

Han H.S., Lee K.D. Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of egg plant. Res. J. Agric. Biol. Sci. 2005;1:176–180.

Amer M.A., Abou El Seoud I.I.A., Rasmy M.R., Manar M. Biological control of Sclerotinia sclerotiorum, the casual agent of white basal rot disease of beans (Phaseolus vulgaris L.) Alex. Sci. Exch. J. 2010;30:334–339.

Minaxi N.L., Yadav R.C., Saxena J. Characterization of multifaceted Bacillus sp. RM-2 for its use as plant growth promoting bio-inoculants for crops grown in semi-arid deserts. Appl. Soil Ecol. 2012;59:124–135. doi: 10.1016/j.apsoil.2011.08.001. DOI

Sharma G.D., Thakur R., Raj S., Kauraw D.L., Kulhare P.S. Impact of integrated nutrient management on yield, nutrient uptake, protein content of wheat (Triticum aestivum) and soil fertility in a typic Haplustert. Bioscan. 2013;8:1159–1164.

Bashan Y., Kamnev A.A., de-Bashan L.E. Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth, a proposal for an alternative procedure. Biol. Fertil. Soils. 2013;37:1–15. doi: 10.1007/s00374-012-0756-4. DOI

Satyaprakash M., Nikitha T., Reddi E.U.B., Sadhana B., Vani S.S. Phosphorous and Phosphate Solubilising Bacteria and their Role in Plant Nutrition. Int. J. Curr. Microbiol. Appl. Sci. 2017;6:2133–2144.

Jalili F., Khavazi K., Pazira E., Nejati A., Rahmani A.H., Rasuli S.H., Miransari M. Isolation and characterization of ACC deaminase producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J. Plant Physiol. 2009;166:667–674. doi: 10.1016/j.jplph.2008.08.004. PubMed DOI

Islam M.T., Hossain M.M. Plant Probiotics in Phosphorus Nutrition in Crops, with Special Reference to Rice. In: Maheshwari D.K., editor. Bacteria in Agrobiology, Plant Probiotics. Springer; Berlin/Heidelberg, Germany: 2012. pp. 325–363.

Thakuria D., Talukdar N.C., Goswami C., Hazarika S., Boro R.C., Khan M.R. Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Curr. Sci. 2004;86:978–985.

Takano Y., Mori H., Kaneko T., Ishikawa Y., Marumo K., Kobayashi K. Phosphatase and microbial activity with biochemical indicators in semi-permafrost active layer sediments over the past 10,000 years. Appl. Geochem. 2006;21:48–57. doi: 10.1016/j.apgeochem.2005.08.003. DOI

Marschner A., Crowley D.B., Rengel Z. Interactions between rhizosphere microorganisms and plants governing iron and phosphorus availability; Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World; Brisbane, Australia. 1–6 August 2010.

Leyval C., Berthelin J. Interactions between Laccacia laccata, Agrobacterium radiobacter and beech roots, influence on P, K, Mg, and Fe mobilization from minerals and plant growth. Plant Soil. 1989;117:103–110. doi: 10.1007/BF02206262. DOI

Zayed G. Can the encapsulation system protect the useful bacteria against their bacteriophages? Plant Soil. 1989;197:1–7. doi: 10.1023/A:1004250221549. DOI

Ibrahim H.I.M., Zaglol M.M.A., Hammad A.M.M. Response of Balady guava trees cultivated in sandy calcareous soil to biofertilization with phosphate dissolving bacteria and/or VAM fungi. J. Am. Sci. 2010;6:399–404.

Wani P.A., Khan M.S., Zaidi A. Synergistic effects of the inoculation with nitrogen-fixing and phosphate-solubilizing rhizo-bacteria on the performance of field-grown chickpea. J. Plant Nutr. Soil Sci. 2007;170:283–287. doi: 10.1002/jpln.200620602. DOI

Marschner P. The role of rhizosphere microorganisms in relation to P uptake by plants. In: Plant Ecophysio SeriesWhite P.J., Hammond J.P., editors. The Ecophysiology of Plant–Phosphorus Interactions. Springer; Berlin/Heidelberg, Germany: 2009. pp. 165–176.

Alexander M. Introduction to Soil Microbiology. 2nd ed. John Wiley & Sons Inc.; New York, NY, USA: 1997.

Saghir K.M., Zaidi A., Wani P.A. Role of phosphate-solubilizing microorganisms in sustainable agriculture, a review. Agron. Sustain. Dev. 2007;27:29–43.

Zhang B., Fang F., Guo J., Chen Y., Li Z., Guo S. Phosphorus fractions and phosphate sorption-release characteristics relevant to the soil composition of water-level-fluctuating zone of three Gorges reservoir. Ecol. Eng. 2012;40:153–159. doi: 10.1016/j.ecoleng.2011.12.024. DOI

Stevenson F.J. Humus Chemistry Genesis, Composition, Reactions. Willey Interscience; New York, NY, USA: 1982.

Hadgu F., Gebrekidan H., Kibret K., Yitaferu U. Study of phosphorus adsorption and its relationship with soil properties, analyzed with Langmuir and Freundlich models. Agric. For. Fish. 2014;3:40–51. doi: 10.11648/j.aff.20140301.18. DOI

Messiga A.J., Ziadi N., Morel C., Grant C., Tremblay G., Lamarre G., Parent L.E. Long term impact of tillage practices and biennial P and N fertilization on maize and soybean yields and soil P status. Field Crops Res. 2012;133:10–22. doi: 10.1016/j.fcr.2012.03.009. DOI

Fageria N.K. Response of rice cultivars to liming in Certado Soil. Pesq. Agropec. Bras. Brasilia. 1984;19:883–889.

Adesemoye A.O., Kloepper J.W. Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl. Microbiol. Biotechnol. 2009;85:1–12. doi: 10.1007/s00253-009-2196-0. PubMed DOI

Datta R., Kelkar A., Baraniya D., Molaei A., Moulick A., Meena R.S., Formanek P. Enzymatic degradation of lignin in soil: A review. Sustainability. 2017;9:1163. doi: 10.3390/su9071163. DOI

Datta R., Anand S., Moulick A., Baraniya D., Pathan S.I., Rejsek K., Vranova V., Sharma M., Sharma D., Kelkar A. How enzymes are adsorbed on soil solid phase and factors limiting its activity: A Review. International agrophysics. 2017;31:287. doi: 10.1515/intag-2016-0049. DOI

Singh H., Reddy S. Improvement of wheat and maize crops by inoculating Aspergillus spp. in alkaline soil fertilized with rock phosphate. Arch. Agron. Soil Sci. 2012;58:535–546. doi: 10.1080/03650340.2010.532125. DOI

Badr M.A., Shafei A.M., Sharaf El-Deen S.H. The dissolution of K and P-bearing minerals by silicate dissolving bacteria and their effect on sorghum growth. Res. J. Agric. Biol. Sci. 2006;2:5–11.

Han H.S., Supanjani E., Lee K.D. Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ. 2006;52:130–136. doi: 10.17221/3356-PSE. DOI

Sundara B., Natarajan V., Hari K. Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Res. 2002;77:43–49. doi: 10.1016/S0378-4290(02)00048-5. DOI

Illmer P., Schinner. F. Solubilization of inorganic phosphate by microorganisms isolated from forest soil. Soil Biol. Biochem. 1992;24:389–395. doi: 10.1016/0038-0717(92)90199-8. DOI

Azam F., Memon G.H. Soil organisms. In: Bashir E., Bantel R., editors. Soil Science. National Book Foundation; Islamabad, Pakistan: 1996. pp. 200–232.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Macronutrients-availing microbiomes: biodiversity, mechanisms, and biotechnological applications for agricultural sustainability

. 2024 Nov 27 ; () : . [epub] 20241127

Comparative efficacy of phosphorous supplements with phosphate solubilizing bacteria for optimizing wheat yield in calcareous soils

. 2022 Jul 14 ; 12 (1) : 11997. [epub] 20220714

Maize productivity and soil nutrients variations by the application of vermicompost and biochar

. 2022 ; 17 (5) : e0267483. [epub] 20220511

Biochar and urease inhibitor mitigate NH3 and N2O emissions and improve wheat yield in a urea fertilized alkaline soil

. 2021 Aug 31 ; 11 (1) : 17413. [epub] 20210831

Optimizing nutrient use efficiency, productivity, energetics, and economics of red cabbage following mineral fertilization and biopriming with compatible rhizosphere microbes

. 2021 Aug 03 ; 11 (1) : 15680. [epub] 20210803

Evaluation of Jatropha curcas L. leaves mulching on wheat growth and biochemical attributes under water stress

. 2021 Jun 29 ; 21 (1) : 303. [epub] 20210629

Effects of the Combinations of Rhizobacteria, Mycorrhizae, and Seaweed, and Supplementary Irrigation on Growth and Yield in Wheat Cultivars

. 2021 Apr 20 ; 10 (4) : . [epub] 20210420

Compost mixed fruits and vegetable waste biochar with ACC deaminase rhizobacteria can minimize lead stress in mint plants

. 2021 Mar 23 ; 11 (1) : 6606. [epub] 20210323

Synergistic Effect of Bacillus thuringiensis IAGS 199 and Putrescine on Alleviating Cadmium-Induced Phytotoxicity in Capsicum annum

. 2020 Nov 08 ; 9 (11) : . [epub] 20201108

Phosphorus Nutrient Management through Synchronization of Application Methods and Rates in Wheat and Maize Crops

. 2020 Oct 19 ; 9 (10) : . [epub] 20201019

Effect of Cadmium-Tolerant Rhizobacteria on Growth Attributes and Chlorophyll Contents of Bitter Gourd under Cadmium Toxicity

. 2020 Oct 17 ; 9 (10) : . [epub] 20201017

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...