Comparative efficacy of phosphorous supplements with phosphate solubilizing bacteria for optimizing wheat yield in calcareous soils
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35835850
PubMed Central
PMC9283399
DOI
10.1038/s41598-022-16035-3
PII: 10.1038/s41598-022-16035-3
Knihovny.cz E-zdroje
- MeSH
- Bacteria MeSH
- fosfáty analýza MeSH
- fosfor MeSH
- hnůj MeSH
- průmyslová hnojiva * analýza MeSH
- pšenice MeSH
- půda * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfáty MeSH
- fosfor MeSH
- hnůj MeSH
- průmyslová hnojiva * MeSH
- půda * MeSH
Phosphorus (P) deficiency is the main hurdle in achieving sustainable crop production ps especially in calcareous soils. Using bio-fertilizers like phosphate solubilizing bacteria (PSB) could be a useful approach for sustainable P management as they improve P availability in soil via dissolution, desorption and mineralization reactions. In addition, application of organic amendments with PSB could further ameliorate soil conditions for sustainable management of immobilized nutrients in calcarious soils. Therefore, we performed pot experiment to study the role of PSB in nullifying antagonistic effects of liming (4.78, 10, 15 and 20%) on P availability from poultry manure (PM), farm yard manure (FYM), single super phosphate (SSP) and rock phosphate (RP) in alkaline soils. PSB inoculation improved wheat growth, P availability and stimulated soil acidification over control regardless of P sources and lime levels. Soil calcification adversely affected plant growth, P nutrition, induced soil salinity and alkalinity, however, PSB and manures application potentially nullified such harmful effects over mentioned traits. Individually, organic sources were superior than mineral sources however, the performance of mineral fertilizers with PSB was at par to sole application of manures. Furthermore, application of RP with PSB proved as effective as sole SSP. Therefore, using PSB as bio-fertilizer has huge potential for improving P availability in calcareous soils.
College of Life Science Linyi University Linyi 276000 Shandong China
College of Plant Science and Technology Huazhong Agricultural University Wuhan 430070 China
Department of Agriculture Bacha Khan University Charsadda Pakistan
Department of Agriculture The University of Swabi Swabi 23561 Pakistan
Department of Agronomy The University of Agriculture Peshawar Pakistan
Department of Agronomy The University of Haripur Haripur 22620 Pakistan
Department of Botany University of Chitral Chitral Pakistan
Department of Plant Sciences Quaid 1 Azam University Islamabad 45320 Pakistan
Department of Soil and Environmental Sciences The University of Agriculture Peshawar Pakistan
Tasmanian Institute of Agriculture University of Tasmania Burnie TAS 7250 Australia
Zobrazit více v PubMed
United Nations . Transforming Our World: The 2030 Agenda for Sustainable Development. United Nations; 2015.
Salimpour S, Khavazi K, Nadian H, Besharati H, Miransari M. Enhancing phosphorous availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Plant Biol. 2010;6:629–642.
Ezawa T, Smith SE, Smith FA. P metabolism and transport in AM fungi. Plant Soil. 2002;244:221–230. doi: 10.1023/A:1020258325010. DOI
Halajnia A, Haghnia GH, Fotovat A, Khorasani R. Phosphorus fractions in calcareous soils amended with P fertilizer and cattle manure. Geoderma. 2009;150:209–213. doi: 10.1016/j.geoderma.2009.02.010. DOI
Adnan M, Fahad S, Zamin M, Shah S, Mian IA, Danish S, et al. Coupling phosphate-solubilizing bacteria with phosphorus supplements improve maize phosphorus acquisition and growth under lime induced salinity stress. Plants. 2020;9:900. doi: 10.3390/plants9070900. PubMed DOI PMC
Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M. Phosphorus solubilizing bacteria, occurrence, mechanisms and their role in crop production. J. Agric. Biol. Sci. 2009;1:48–58.
Torrent J, Barron V, Schwertmann U. Phosphate adsorption and desorption by goethites differing in crystal morphology. Soil Sci. Soc. Am. J. 1990;54:1007–1012. doi: 10.2136/sssaj1990.03615995005400040012x. DOI
Rehim A. Band-application of phosphorus with farm manure improves phosphorus use efficiency, productivity, and net returns of wheat on sandy clay loam soil. Turk. J. Agric. For. 2016;40:319–326. doi: 10.3906/tar-1505-133. DOI
Bieleski RL. Phosphate pools, phosphate transport and phosphate availability. Annu. Rev. Plant Physiol. 1973;24:225–252. doi: 10.1146/annurev.pp.24.060173.001301. DOI
Goldstein AH. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biol. Agric. Hortic. 1995;12:185–193. doi: 10.1080/01448765.1995.9754736. DOI
Lopez-Bucio J, Vega OM, Guevara-Garcıa A, Herrera-Estrella L. Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nat. Biotechnol. 2000;18:450–453. doi: 10.1038/74531. PubMed DOI
Tilman D, Fargione J, Wol BD, Antonio C, Dobson A, Howarth R, Schindler WH, Schlesinger D, Simberlof D, Wackhamer D. Forecasting agriculturally driven global environmental change. Science. 2001;292:281–284. doi: 10.1126/science.1057544. PubMed DOI
Sato S, Solomon D, Hyl C, Ketterings QM, Lehmann J. Phosphorus speciation in manure and manure-amended soils using XANES spectroscopy. Environ. Sci. Technol. 2000;39:7485–74919. doi: 10.1021/es0503130. PubMed DOI
Brady NC, Weil RR, Weil RR. The Nature and Properties of Soils. Prentice Hall; 2008. pp. 662–710.
Adnan M, Shah F, Zamin M, Shah S, Mian IA, Danish S, Zafar-ul-Hye M, Battaglia ML, Naz RMM, Saeed B, Saud S, Ahmad I, Yue Z, Brtnicky M, Holatko J, Datta R. Coupling phosphate solubilizing bacteria with Phosphorus supplements improve maize phosphorus acquisition and growth under lime induced salinity stress. Plants. 2020;9:900. doi: 10.3390/plants9070900. PubMed DOI PMC
Caravaca F, Alguacil MM, Azcon R, Diaz G, Roldan A. Comparing the effectiveness of mycorrhizal inoculum and amendment with sugar beet, rock phosphate and Aspergillus niger to enhance field performance of the leguminous shrub Dorycnium pentaphyllum L. Appl. Soil Ecol. 2004;25:169–180. doi: 10.1016/j.apsoil.2003.08.002. DOI
Zaidi A, Khan M, Ahemad MS, Oves M, Wani PA. Recent advances in plant growth promotion by phosphate-solubilizing microbes. In: Khan MS, Zaidi A, Musarrat J, editors. Microbial Strategies for Crop Improvement. Springer; 2009. pp. 23–50.
Illmer P, Barbato A, Schinner F. Solubilization of hardly-soluble AlPO4 with P-solubilizing microorganism. Soil Biol. Biochem. 1995;27:265–270. doi: 10.1016/0038-0717(94)00205-F. DOI
Ryan PR, Delhaize E, Jones DL. Function and mechanism of organic anion exudation from plant roots. Annu. Rev. Plant Biol. 2001;52:527–560. doi: 10.1146/annurev.arplant.52.1.527. PubMed DOI
Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 2006;34:33–41. doi: 10.1016/j.apsoil.2005.12.002. DOI
Adnan M, Fahad S, Khan IA, Saeed M, Saud S, Ihsan MZ, Raiz M, Wang D, Wu C. Integration of poultry manure and phosphate solubilizing bacteria improved availability of Ca bound P in calcareous soils. 3 Biotech. 2019;9:368. doi: 10.1007/s13205-019-1894-2. PubMed DOI PMC
He Z, Zhu J. Microbial utilization and transformation of phosphate adsorbed by variable charged minerals. Soil Biol. Biochem. 1988;30:917–923. doi: 10.1016/S0038-0717(97)00188-0. DOI
Kucey RMN. Effect of Penicillium bilajion the solubility and uptake of P and micronutrients from soil by wheat. Can. J. Soil Sci. 1988;68:261–270. doi: 10.4141/cjss88-026. DOI
Bünemann EK, Bossio DA, Smithson PC, Frossard E, Oberson A. Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization. Soil Biol. Biochem. 2004;36:889–901. doi: 10.1016/j.soilbio.2004.02.002. DOI
McGill WB, Cole CV. Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma. 1981;26:267–268. doi: 10.1016/0016-7061(81)90024-0. DOI
Chaiharn M, Lumyong S. Screening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growth. Curr. Microbiol. 2011;62:173–181. doi: 10.1007/s00284-010-9674-6. PubMed DOI
Kucey RMN, Janzen HH, Legett ME. Microbially mediated increases in plant-available phosphorus. Adv. Agron. 1989;42:198–228.
Rodriguez H, Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 1999;17:319–339. doi: 10.1016/S0734-9750(99)00014-2. PubMed DOI
Xiao Y, Wang X, Chen W, Huang Q. Isolation and identification of three potassium-solubilizing bacteria from rape rhizospheric soil and their effects on ryegrass. Geomicrobiol. J. 2017;34:873–880. doi: 10.1080/01490451.2017.1286416. DOI
Sugihara S, Funakawa S, Kilasara M, Kosaki T. Dynamics of microbial biomass nitrogen in relation to plant nitrogen uptake during the crop growth period in a dry tropical cropland in Tanzania. Soil Sci. Plant Nutr. 2010;56:105–114. doi: 10.1111/j.1747-0765.2009.00428.x. DOI
Jalili F, Khavazi K, Pazira E, Nejati A, Rahmani AH, Rasuli SH, Miransari M. Isolation and characterization of ACC deaminase producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J. Plant Physiol. 2009;166:667–674. doi: 10.1016/j.jplph.2008.08.004. PubMed DOI
Tiwari VN, Lehri LK, Pathak AN. Effect of inoculating crops with phospho-microbes. Exp. Agric. 1989;25:47–50. doi: 10.1017/S0014479700016434. DOI
Pal SS. Interaction of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil. 1999;213:221–230. doi: 10.1023/A:1004539502221. DOI
Afzal A, Ashraf M, Asad SA, Faroog M. Effect of phosphate solubilizing microorganism on phosphorus uptake, yield and yield traits of wheat (Triticum aestivum L.) in rainfed area. Int. J. Agric. Biol. 2005;7:207–209.
Bolan NS, Naidu R, Mahimairajaand S, Baskaran S. Influence of low-molecular-weight organic acids on the solubilization of phosphates. Biol. Fertil. Soils. 1994;18:311–319. doi: 10.1007/BF00570634. DOI
Mihoub A, Amin AEEAZ, Motaghian HR, Saeed MF, Naeem A. Citric acid (CA)–modified biochar improved available phosphorus concentration and its half-life in a P-fertilized calcareous sandy soil. J. Soil Sci. Plant Nutr. 2022;22(1):465–474. doi: 10.1007/s42729-021-00662-2. DOI
Adnan M, Shah Z, Sharif M, Rahman H. Liming induces carbon dioxide (CO2) emission in PSB inoculated alkaline soil supplemented with different phosphorus sources. Environ. Sci. Pollut. Res. 2018;25(10):9501–9509. doi: 10.1007/s11356-018-1255-4. PubMed DOI
Amin AEEAZ, Mihoub A. Effect of sulfur-enriched biochar in combination with sulfur-oxidizing bacterium (Thiobacillus spp.) on release and distribution of phosphorus in high calcareous p-fixing soils. J. Soil Sci. Plant Nutr. 2021;21(3):2041–2047. doi: 10.1007/s42729-021-00500-5. DOI
Tawaraya K, Hirose R, Wagatsuma T. Inoculation of arbuscularmycorrhizal fungi can substantially reduce phosphate fertilizer application to Alliumfis-tulosum L. and achieve marketable yield underfield condition. Biol. Fertil. Soils. 2012;48:839–843. doi: 10.1007/s00374-012-0669-2. DOI
Islam MT, Hossain MM. Plant probiotics in phosphorus nutrition in crops, with special reference to rice. In: Maheshwari DK, editor. Bacteria in Agrobiology, Plant Probiotics. Springer; 2012. pp. 325–363.
Amruthesh, K. N., Raj, S. N., Kiran, B., Shetty, H. S. & Reddy, M. S. Growth promotion by plant growth-promoting rhizobacteria in some economically important crop plants. In Sixth International PGPR Workshop, 5–10 October, Calicut, India, 97–103 (2003).
Kumar S, Lai L, Kumar P, Feliciano YMV, Battaglia ML, Hong CO, Owens VN, Fike J, Farris R, Galbraith J. Impacts of nitrogen rate and landscape position on soils and switchgrass root growth parameters. Agron. J. 2019;111:1046–1059. doi: 10.2134/agronj2018.08.0483. DOI
Mihoub A, Boukhalfa-Deraoui N. Performance of different phosphorus fertilizer types on wheat grown in calcareous sandy soil of El-Menia, Southern Algeria. Asian J. Crop Sci. 2014;6:383–391. doi: 10.3923/ajcs.2014.383.391. DOI
Piccini D, Azcon R. Effect of phosphate solubilizing bacteria and vesicular-arbuscular mycorrhizal fungi on the utilization of Bayovar rock phosphate by alfalfa plants using a sand-vermiculite medium. Plant Soil. 1987;50:45–50. doi: 10.1007/BF02371029. DOI
Dwivedi BS, Singh VK, Dwivedi V. Application of phosphate rock, with or without Aspergillus awamori inoculation, to meet phosphorus demands of rice–wheat systems in the Indo Gangetic plains of India. Aus. J. Exp. Agric. 2004;44:1041–1050. doi: 10.1071/EA03208. DOI
Saad OAO, Hammad AMM. Fertilizing wheat plants with rock phosphate combined with phosphate dissolving bacteria and V.A mycorrhiza as alternate for ca–superphosphate. Ann. Agric. Sci. Cairo. 1998;43:445–460.
Chabot R, Antoun H. Growth promotion of maize and lettuce by phosphate solubilizing Rhizobium leguminosarum. Plant Soil. 1996;184:311–321. doi: 10.1007/BF00010460. DOI
Kundu BS, Gaur AC. Rice response to inoculation with N2 fixing and P solubilizing microorganisms. Plant Soil. 1984;79:227–234. doi: 10.1007/BF02182344. DOI
Sharma GD, Thakur R, Raj S, Kauraw DL, Kulhare PS. Impact of integrated nutrient management on yield, nutrient uptake, protein content of wheat (Triticum aestivum) and soil fertility in a typic Haplustert. Bioscan. 2013;8:1159–1164.
Afzal A, Asghari B. Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum) Int. J. Agric. Biol. 2008;10:85–88.
Jalili G, Akram A, Ali RM, Hafeez FY, Shamsi IH, Chaudhry AN, Chaudhry AG. Enhancing crop growth, nutrients availability, economics and beneficial rhizosphere micro flora through organic and bio fertilizers. Ann. Microbiol. 2007;57(2):177–183. doi: 10.1007/BF03175204. DOI
Sharma SN, Prasad R. Yield and P uptake by rice and wheat grown in a sequence as influenced by phosphate fertilization with diammonium phosphate and Mussoorie rock phosphate with or without crop residues and phosphate solubilizing bacteria. J. Agric. Sci. 2003;141:359–369. doi: 10.1017/S0021859603003678. DOI
Vyas P, Gulati A. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol. 2009;9:174. doi: 10.1186/1471-2180-9-174. PubMed DOI PMC
Mukherjee PK, Rai RK. Sensitivity of P uptake to change in root growth and soil volume as influenced by VAM, PSB and P levels in wheat and chickpeas. Ann. Agric. Res. 1999;20:528–530.
Egamberdiyeva, D. Proc. Inst. Microbiol. Tashkent, Uzekistan (2004).
Mihoub A, Daddi Bouhoun M, Naeem A, Saker ML. Low-molecular weight organic acids improve plant availability of phosphorus in different textured calcareous soils. Arch. Agron. Soil Sci. 2017;63:1023–1034. doi: 10.1080/03650340.2016.1249477. DOI
Thakuria D, Talukdar NC, Goswami C, Hazarika S, Boro RC, Khan MR. Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Curr. Sci. 2004;86:978–985.
Mamta P, Praveen G, Vijaylata S, Arving KB, Bikram T, Ravinder R. Stimulatory effect of phosphate solubilizing bacteria on plant growth, stevioside and rebaudioside-A content of Stevia rebaudiana Bertoni. Appl. Soil Ecol. 2010;46:222–229. doi: 10.1016/j.apsoil.2010.08.008. DOI
Banik SBK. Solubilization of inorganic phosphate and production of organic acids by micro-organisms isolated in sucrose tricalcium phosphate agar plate. Zentralblat. Bakterol. Parasilenkl. Infektionskr. Hyg. 1981;136:478–486.
Stevenson FJ. Cycles of Soil: Carbon, Nitrogen, Phosphorus, Sulfur, Micro-nutrients. Wiley; 2005.
Ekin Z. Performance of phosphorus solubilizing bacteria for improving growth and yield of sun flower (Helianthus annuus L.) in the presence of phosphorus fertilizer. Afr. J. Biotechnol. 2010;9:3794–3800.
Zabihi HR, Savaghebi GR, Khavazi K, Ganjali A, Miransari M. Pseudomonas bacteria and phosphorus fertilization, affecting wheat (Triticum aestivum L.) yield and P uptake under green house and field conditions. Acta Physiol. Plant. 2010;33:145–152. doi: 10.1007/s11738-010-0531-9. DOI
Gulati A, Rahi P, Vyas P. Characterization of phosphate-solubilizing fluorescent Pseudomonas from the rhizosphere of seabuckthorn growing in the cold deserts of Himalayas. Curr. Microbiol. 2007;56:73–79. doi: 10.1007/s00284-007-9042-3. PubMed DOI
Kloepper JW, Lifshitz R, Zablotowicz RM. Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol. 1989;7:39–44. doi: 10.1016/0167-7799(89)90057-7. DOI
Satchell JE. Ecology and environment in the United Arab Emirates. J. Arid. Environ. 1978;1:201–226. doi: 10.1016/S0140-1963(18)31724-5. DOI
Biswas DR. Nutrient recycling potential of rock phosphate and waste mica enriched compost on crop productivity and changes in soil fertility under potato–soybean cropping sequence in an Inceptisol of Indo-Gangetic Plains of India. Nutr. Cycl. Agroecosyst. 2011;89:15–30. doi: 10.1007/s10705-010-9372-6. DOI
Mitra S, Roy A, Saha AR, Maitra DN, Sinha MK, Mahapatra BS, Saha S. Effect of integrated nutrient management on fiber yield, nutrient uptake and soil fertility in jute (Corchorus olitorius) Indian J. Anim. Sci. 2010;80(9):801–804.
Laxminarayana K. Effect of integrated use of inorganic and organic manures on soil properties, yield and nutrient uptake of rice in Ultisols of Mizoram. J. Indian Soc. Soil Sci. 2006;54:120–123.
Sanyal SK, De Datta SK. Chemistry of phosphorus transformations in soil. Adv. Soil Sci. 1991;16:1–120.
Briedis C, Sá JCM, Caires EF, Navarro JF, Inagaki TM, Boer A, Neto CQ, Ferreira AO, Canalli LB, Santos JB. Soil organic matter pools and carbon-protection mechanisms in aggregate classes influenced by surface liming in a no-till system. Geoderma. 2012;170:80–88. doi: 10.1016/j.geoderma.2011.10.011. DOI
Bronick CJ, Lal R. Soil structure and management: A review. Geoderma. 2005;124:3–22. doi: 10.1016/j.geoderma.2004.03.005. DOI
Krieg NR, Holt JG. Bergey’s Manual of Systemetic Bacteriology. Williams & Wilkin; 1984. p. 984.
Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST, editors. Bergey’s Manual of Determinative Bacteriology. 9. The Williams & Wilkin; 1994. p. 787.
Gordon RE, Haynes WC, Pang CN. The Genus Bacillus. Agricultural Handbook. No. 427. Department of Agriculture; 1973. p. 283.
Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 1999;170(1):265–270. doi: 10.1111/j.1574-6968.1999.tb13383.x. PubMed DOI
Nelson DW, Sommers LE. Total carbon, organic carbon, and organic matter. In: Page AL, editor. Methods of Soil Analysis, Part 2. 2. Wiley; 1996. pp. 961–1010.
Eivazi F, Tabatabai M. Phosphatases in soils. Soil Biol. Biochem. 1977;9:167–172. doi: 10.1016/0038-0717(77)90070-0. DOI
Alexander DB, Zuberer DA. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils. 1991;12:39–45. doi: 10.1007/BF00369386. DOI
Vincet JMA. Manual for the Practical Study of the Root-Nodule Bacteria; IBPH and Book No. 15. Blackwell Scientific Publication; 1970.
Alagawadi AR, Gaur AC. Associative effect of Rhizobium and phosphate solubilizing bacteria on the yield and nutrient uptake of chickpea. Plant Soil. 1988;105:241–246. doi: 10.1007/BF02376788. DOI
Satyaprakash M, Nikitha T, Reddi EUB, Sadhana B, Vani SS. Phosphorous and phosphate solubilising bacteria and their role in plant nutrition. Int. J. Curr. Microbiol. Appl. Sci. 2017;6:2133–2144. doi: 10.20546/ijcmas.2017.604.251. DOI
Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial. Geoderma. 2005;125:155–166. doi: 10.1016/j.geoderma.2004.07.003. DOI
Thomas GW. Soil pH and soil acidity. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME, editors. Methods of Soil Analysis, Part 3, Chemical Methods. Wiley; 1996. pp. 475–490.
Rhoades JD. Salinity, electrical conductivity and total dissolved solids. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME, editors. Methods of Soil Analysis, Part 3, Chemical Methods. Soil Science Society of America; 1996. pp. 417–435.
Bremner JM, Breitenbeck GA. A simple method for determination of ammonium in semi-micro Kjeldahl analysis of soil and plant material using a block digestor. Commun. Soil Sci. Plant Anal. 1983;14:905–913. doi: 10.1080/00103628309367418. DOI
Ryan J, Estefan G, Rashid A. Soil and Plant Analysis Laboratory Manual. 2. The National Agricultural Research Center (NARC); 2001. p. 172.
Olsen SR, Cole CV, Watanabe FS, Dean LA. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate (No. 939) Department of Agriculture Circular; 1954.
Loeppert RH, Suarez DL. Carbonate and gypsum. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME, editors. Methods of Soil Analysis, Part 3, Chemical Methods. Soil Science Society of America; 1996. pp. 181–197.
Bahadur L, Tiwari DD, Mishra J, Gupta BR. Effect of integrated nutrient management on yield, microbial population and changes in soil properties under rice-wheat cropping system in sodic soil. J. Indian Soc. Soil Sci. 2012;60(4):326–329.
Nelson DW, Sommers LE, et al. Total carbon, organic carbon, and organic matter. In: Sparks DL, et al., editors. Methods of Soil Analysis, Part 2. 2. Soil Science Society of America; 1996. pp. 961–1010.
Richards LA. Diagnosis and improvement of saline and alkali soils. LWW. 1954;78(2):154.
Steel RGD, Torrie JH. Principles and Procedures of Statistics, a Biometrical Approach. McGraw Hill; 1996. pp. 195–233.