Effects of the Combinations of Rhizobacteria, Mycorrhizae, and Seaweed, and Supplementary Irrigation on Growth and Yield in Wheat Cultivars
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33924128
PubMed Central
PMC8074330
DOI
10.3390/plants10040811
PII: plants10040811
Knihovny.cz E-zdroje
- Klíčová slova
- biofertilizers, drought stress, irrigation, mycorrhiza, wheat,
- Publikační typ
- časopisecké články MeSH
Wheat is a staple food consumed by the majority of people in the world and its production needs to be doubled to feed the growing population. On the other hand, global wheat productivity is greatly affected due to drought and low fertility of soil under arid and semi-arid regions. Application of supplementary irrigation and plant growth-promoting rhizobacteria (PGPR) has been suggested as sustainable measures to combat drought stress and to improve soil fertility and, hence, crop yield. This research was undertaken to study the effect of supplementary irrigation together with a combination of various PGPR on the growth and yield of two wheat cultivars, namely Sardari and Sirvan. The results of variance analysis (mean of squares) showed that the effect of irrigation, cultivar, and irrigation and biofertilizer and irrigation on height, spike length, seed/spike, and numbers of spikes/m2, 1000-seed weight, and grain yield were significant at 1% probability level. The effect of cultivar and irrigation interactions showed that the highest grain yield was obtained in a treatment with two additional irrigations in Sirvan cultivar (5015.0 kg/ha) and Sardari (4838.9 kg/ha) as compared to the 3598 kg/ha and 3598.3 kg/h grain yield in Sirvan and Sardari cultivars with similar treatment, but without irrigation, i.e., dryland farming. Drought conditions significantly affected the wheat grain yield while supplementary irrigation resulted in 39.38% and 34.48% higher yields in Sirvan and Sardari cultivars.
Department of Geology and Pedology Mendel University in Brno Zemedelska 1 613 00 Brno Czech Republic
Zobrazit více v PubMed
Ilyas N., Mumtaz K., Akhtar N., Yasmin H., Sayyed R.Z., Khan W., Hesham A., Enshasy E.L., Dailin D.J., Elsayed A., et al. Exopolysaccharides Producing Bacteria for the Amelioration of Drought Stress in Wheat. Sustainability. 2020;12:8876. doi: 10.3390/su12218876. DOI
Halim Q., Imam Y., Shakeri A. Evaluation of yield, yield components, and stress tolerance indices in bread wheat cultivars in conditions of cessation of irrigation after flowering. J. Prod. Proc. Crops Hort. 2017;7:121–134. doi: 10.29252/jcpp.7.4.121. DOI
Guzmán C., Autrique J.E., Mondal S., Singh R.P., Govindan V., Morales-Dorantes A., Peña R.J. Response to drought and heat stress on wheat quality, with special emphasis on bread-making quality, in durum wheat. Field Crops Res. 2016;186:157–165. doi: 10.1016/j.fcr.2015.12.002. DOI
Saadati Z., Delbari M., Amiri E., Panahi M., Rahimian M.H., Ghodsi M. Assessment of CERES-Wheat Model in the simulation of varieties of wheat yield under different irrigation treatments. J. Soil Water Res. Cons. 2016;5:73–85.
Sharma S., Sahu R., Navathe S., Mishra V.K., Chand R., Singh P.K., Joshi A.K., Pandey S.P. Natural variation in elicitation of defense-signaling associates to field resistance against the spot blotch disease in bread wheat (Triticum aestivum L.) Front. Plant Sci. 2018;9:636. doi: 10.3389/fpls.2018.00636. PubMed DOI PMC
Pouri K., Mardeh A.S., Sohrabi Y., Soltani A. Crop phenotyping for wheat yield and yield components against drought stress. Cereal Res. Comm. 2019;47:383–393. doi: 10.1556/0806.47.2019.05. DOI
Sardouei-Nasab S., Mohammadi-Nejad G.H., Nakhoda B. Yield stability in bread wheat germplasm across drought stress and non-stress conditions. Agron. J. 2019;111:175–181. doi: 10.2134/agronj2018.06.0381. DOI
Wu H.H., Zou Y.N., Rahman M.M., Ni Q.D., Wu Q.S. Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress. Sci. Rep. 2017;7:42389. doi: 10.1038/srep42389. PubMed DOI PMC
Abd-Alla M.H., Gabra F.A., Danial A.W., Abdel-Wahab A.M. Enhancement of biohydrogen production from sustainable orange peel wastes using Enterobacter species isolated from domestic wastewater. Int. J. Energy Res. 2019;43:391–404. doi: 10.1002/er.4273. DOI
Narimani H., Sayed S.R., Khalilzadeh R., Aminzadeh G.L. The effect of supplementary irrigation and iron nano oxide on chlorophyll content and grain filling components of wheat (Triticum aestivum L.) under rainfed conditions. Environ. Stresses Crop Sci. 2018;12:735–746. doi: 10.22077/ESCS.2019.1478.1327. DOI
Haghverdi A., Leib B., Washington-Allen R.C., Wright W., Ghodsi S., Grant T., Zheng M., Vanchiasong P. Studying crop yield response to Supplemental irrigation and the spatial Heterogeneity of soil Physical Attributes in a Humid Region. Agriculture. 2019;9:43. doi: 10.3390/agriculture9020043. DOI
Khan A., Sayyed R.Z., Seifi S. Rhizobacteria: Legendary Soil Guards in Abiotic Stress Management. Plant Growth Promoting Rhizobacteria for Sustainable Stress Management Vol 1 Abiotic Stress Management. Springer; Singapore: 2019. pp. 27–342.
Asadi S., Rezaei-chiyaneh E.R., Amirnia R. Effect of planting pattern and fertilizer source on agronomic characteristics of linseed (Linum usitatissimum L.) and chickpea (Cicer arietinum L.) in intercropping under rainfed conditions. Iran. J. Crop Sci. 2019;21:16–30.
Khan I., Awan S.A., Ikram R., Rizwan M., Akhtar N., Yasmin H., Sayyed R.Z., Shafaqat A., Ilyas N. 24-Epibrassinolide regulated antioxidants and osmolyte defense and endogenous hormones in two wheat varieties under drought stress. Physiologia Planta. 2020:1–11. doi: 10.1111/ppl.13237. PubMed DOI
Azarmi A.F., Hammami H., Yaghoubzadeh M. Effect of application of plant growth-promoting microorganisms and phosphate fertilizer on yield and yield components of wheat and water use efficiency in irrigation water levels. J. Crop Prod. 2019;12:1–24. doi: 10.22069/ejcp.2020.17166.2268. DOI
Patil A.S., Patil S.R., Sayyed R.Z. Interaction of Rhizobacteria With Soil Microorganisms: An Agro-Beneficiary Aspect. In: Sayyed R.Z., editor. Plant Growth Promoting Rhizobacteria for Sustainable Stress Management Vol II Biotic Stress Management. Springer; Singapore: 2019. pp. 241–260.
Shaikh S.S., Wani S.J., Sayyed R.Z. Impact of Interactions between Rhizosphere and Rhizobacteria: A Review. J. Bacteriol. Mycol. 2018;5:1058.
Shaikh S.S., Wani S.J., Sayyed R.Z., Thakur R., Gulati A. Production, purification and kinetics of chitinase of Stenotrophomonas maltophilia isolated from rhizospheric soil. Indian J. Exp. Biol. 2018;56:274–278.
Sayyed R.Z., Seifi. S., Patel P.R., Shaikh S.S., Jadhav H.P., El Enshasy H. Siderophore production in groundnut rhizosphere isolate, Achromobacter sp. RZS2 influenced by physicochemical factors and metal ions. Environ. Sustain. 2019;2:117–124. doi: 10.1007/s42398-019-00070-4. DOI
Reshma P., Naik M.K., Aiyaz M., Niranjana S.R., Chennappa G., Shaikh S.S., Sayyed R.Z. Induced systemic resistance by 2, 4-diacetylphloroglucinol positive fluorescent Pseudomonas strains against rice sheath blight. Indian J. Exp. Biol. 2018;56:207–212.
Sagar A., Riyazuddin R., Shukla P.K., Ramteke P.W., Sayyed R.Z. Heavy metal stress tolerance in Enterobacter sp. PR14 is mediated by plasmid. Indian J. Exp. Biol. 2020;58:115–121.
Sagar A., Sayyed R.Z., Ramteke P.W., Sharma S., Marraiki N., Elgorban A.M., Syed A. ACC deaminase and antioxidant enzymes producing halophilic Enterobacter sp. PR14 promotes the growth of rice and millets under salinity stress. Physiol. Mol. Biol. Plants. 2020;26:1847–1854. doi: 10.1007/s12298-020-00852-9. PubMed DOI PMC
Luh S.N., Ngurah S.D., Nazir N., Made S., Parwanayoni N., Agung K., Darmadi A., Andya D.D., Elgorban A.M. A Mixture of Piper Leaves Extracts and Rhizobacteria for Sustainable Plant Growth Promotion and Bio-Control of Blast Pathogen of Organic Bali Rice. Sustainability. 2020;12:8490. doi: 10.3390/su12208490. DOI
Chitarra W., Pagliarani C., Maserti B., Lumini E., Siciliano I., Cascone P. Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiol. 2016;171:1009–1023. doi: 10.1104/pp.16.00307. PubMed DOI PMC
Quiroga G., Erice G., Aroca R., Chaumont F., Ruiz-Lozano J.M. Enhanced. Drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought-tolerant cultivar. Front Plant Sci. 2017;8:1056. doi: 10.3389/fpls.2017.01056. PubMed DOI PMC
Yuanyuan Y., Wang X., Chen B., Zhang M., Ma J. Seaweed extract improved yields, leaf photosynthesis, Ripening Time, and net returns of romato (Solanum lycopersicum Mill.) ACS Omega. 2020;5:4242–4249. doi: 10.1021/acsomega.9b04155. PubMed DOI PMC
Rouphael Y., Franken P., Schneider C., Schwarz D., Giovannetti M., Agnolucci M., De Pascale S., Bonini P., Colla G. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci. Hortic. 2015;196:91–108. doi: 10.1016/j.scienta.2015.09.002. DOI
Gee G.W., Bauder J.W. Method of Soil Analysis: Part 1. Physical and Mineralogical Methods. Wiley; Hoboken, NJ, USA: 1986. Particle-size analysis.
Rhoades J.D. Soluble Salts. Methods of soil analysis. Part 2. Agronomy. 1982;9:167–l78.
Bhatti A.S., Loneragan J.F. Phosphorus Concentrations in Wheat Leaves in Relation to Phosphorus Toxicity 1. Agron. J. 1970;62:288–290. doi: 10.2134/agronj1970.00021962006200020033x. DOI
Knudsen D., Peterson G.A., Pratt P.F. Lithium, Sodium, and Potassium. Methods of Soil Analysis, Part 2. Agronomy. 1982;9:403–429.
Nelson D.W., Sommers L.E. Total carbon, organic carbon, and organic matter. Methods of Soil Analysis, Part 2. Agronomy. 1982;9:539–579. doi: 10.2134/agronmonogr9.2.2ed.c29. DOI
Shakori S., Sharifi P. Effect of phosphate biofertilizer and chemical phosphorus on growth and yield of Vicia faba L. Electron. J. Biol. 2016;12:47–52.
Hashem A., Alqarawi A.A., Radhakrishnan R., Al-Arjani A.B.F., Aldehaish H.A., Egamberdieva D., Abd_Allah E.F. Arbuscular mycorrhizal fungi regulate the oxidative system, hormones, and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi. J. Biol. Sci. 2018;25:1102–1114. doi: 10.1016/j.sjbs.2018.03.009. PubMed DOI PMC
Singh S., Singh M.K., Pal S.K., Perween S., Kumari J., Zodape S.T., Ghosh A. Seaweed sap as productivity booster of maize. Bioscan. 2015;10:1303–1305.
Alizadeh A., Kamali G.H. Plant Water Requirement in Iran. Astan Ghods Razavi Publication; Khorasan Razavi, Iran: 2008.
Mahdavi F., Esmaili M.A., Fallah A., Pirdashti H. Study of morphological characteristics of physiological yield indices and grain yield components in modified native rice cultivars. Iran. J. Crop Sci. 2005;7:280–298.
Fallah A. Effect of drought stress and zinc sulfate spraying on growth, yield and photosynthetic pigments in wheat cultivar Alvand. J. Plant Ecophysiol. 2020:217–228.
Jafari H., Heidari G.H., Khalesro S.H. Effects of Supplemental Irrigation and biofertilizers on Yield and Yield Components of Dryland wheat (Triticum aestivum L.) Agric. Knowl. Sustain. Prod. 2019;29:173–187.
AlipanahA S.A., Asgharipour M., Shahverdy M. The effect of biofertilizers and fertilizer and mycorrhizae parameters on yield and yield components of wheat under drought stress. J. Plant Ecophysiol. 2020;12:12–25. (In Farsi)
Amrayi B., Ardakani M.R., Rafiei M., Paknejad F., Rajali F. Investigation of the effect of mycorrhiza and Azotobacter biofertilizers on grain yield of different dryland wheat cultivars in Khorramabad region. Agric. Plant Bree. 2016;12:15–30.
Rostami A., Mohammadi K.H. The effect of nitrogen and nitrogen fertilizers on yield and efficiency of nitrogen application in Moroccan single cross corn. J. Plant Ecophysiol. 2020;12:200–210.
Fathi A., Tahmasebi A., Teymouri N. The effect of cultivation time and weed interference on qualitative and quantitative grain characteristics of some chickpea cultivars in rainfed conditions. Iranian Rainfed Agric. 2016;5:135–158.
Ghanbarzadeh M., Aminpanah H., Akhgari H. The effect of phosphorus, rhizobia, and nitrogen fertilizer on the growth and yield of beans (Phaseolus vulgaris L) J. Plant Ecophysiol. 2019;36:103–114.
Sibi M., Khazaie H.R., Nezamii A. Safflower (Carthamus tinctorius L.) root response to seaweed extract concentrations, time, and method of application. [(accessed on 21 March 2021)];Sci. J. Plant Ecophysiol. 2017 9:140–157. Available online: http://cpj.iauahvaz.ac.ir/article-1-632-en.html.
Elansary H.O., Skalicka-Wozniak K., King I.W. Enhancing stress growth traits as well as phytochemical and antioxidant contents of Spiraea and Pittosporum under seaweed extract treatments. Plant Physiol. Biochem. 2016;105:310–320. doi: 10.1016/j.plaphy.2016.05.024. PubMed DOI
Behboudi F., Tahmasebi Sarvestani Z., Mohamad Zaman K., Modares Sanavi M., Sorooshzadeh A. The effect of foliar and soil application of chitosan nanoparticles on chlorophyll, photosynthesis, yield and yield components of wheat (Triticum aestivum L.) under drought stress after pollination. Iran. Soc. Plant Physiol. 2019;8:271–285.
Tahir M., Khalid U., Ijaz M., Shah G.M., Naeem M.A., Shahid M., Kareem F. Combined application of bio-organic phosphate and phosphorus solubilizing bacteria (Bacillus strainMWT 14) improve the performance of bread wheat with low fertilizer input under an arid climate. Braz. J. Microbiol. 2018;49:15–24. doi: 10.1016/j.bjm.2017.11.005. PubMed DOI PMC
Golestani Zadeh J., Jami Moeini M., Marvi H. Master’s Thesis. Agriculture, Faculty of Agriculture, Islamic Azad University Sabzeva; Sabzevar, Iran: 2018. The Effect of Foliar Application of Seaweed Extract on Yield and Yield Components of Barley under Salinity Stress.
Bharath B., Nirmalraj S., Mahendrakumar M., Perinbam K. Biofertilizing efficiency of Sargassum polycystum extract on growth biochemical composition of Vigna radiata and Vigna mungo. Asian Pac. J. Reprod. 2018;7:27. doi: 10.4103/2305-0500.220982. DOI
Layek J., Das A., Idapuganti R.G., Sarkar D., Ghosh A., Zodape S.T., Meena R.S. Seaweed extract as organic bio-stimulant improves productivity and quality of rice in the eastern Himalayas. J. Appl. Phycol. 2018;30:547–558. doi: 10.1007/s10811-017-1225-0. DOI
Prakash P., Mitra A., Nag R., Sunkar S. Effect of seaweed liquid fertilizer and humic acid formulation on the growth and nutritional quality of Abelmoschus esculentus. Asian J. Crop Sci. 2018;10:48–52. doi: 10.3923/ajcs.2018.48.52. DOI
Gopalakrishnan V., Spencer C.N., Nezi L., Reuben A., Andrews M.C., Karpinets T.V., Prieto P.A., Vicente D., Hoffman K., Wei S.C., et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science. 2018;359:97–103. doi: 10.1126/science.aan4236. PubMed DOI PMC
Latef A.A.H.A., Srivastava A.K., Saber H., Alwaleed E.A., Tran L.S.P. Sargassummuticum and Jania rubens regulate amino acid metabolism to improve growth and alleviate salinity in chickpea. Sci. Rep. 2017;7:10537. doi: 10.1038/s41598-017-07692-w. PubMed DOI PMC
Basavaraja P.K., Yogendra N.D., Zodape S.T., Prakash R., Ghosh A. Effect of seaweed sap as foliar spray on growth and yield of hybrid maize. J. Plant Nutr. 2018;41:1851–1861. doi: 10.1080/01904167.2018.1463381. DOI
Shukla P.S., Shotton K., Norman E., Neily W., Critchley A.T., Prithiviraj B. Seaweed extract improve drought tolerance of soybean by regulating stress-response genes. AoB Plants. 2017;10 doi: 10.1093/aobpla/plx051. PubMed DOI PMC
Elansary H.O., Salem M.Z., Ashmawy N.A., Yessoufou K., El-Settawy A.A. In vitro antibacterial, antifungal and antioxidant activities of Eucalyptus spp. leaf extracts related to phenolic composition. Nat. Prod. Res. 2017;31:2927–2930. doi: 10.1080/14786419.2017.1303698. PubMed DOI
Kocira A., Swieca M., Kocira S., Złotek U., Jakubczyk A. Enhancement of yield, nutritional and nutraceutical properties of two common bean cultivars following the application of seaweed extract (Ecklonia maxima) Saudi J. Biol. Sci. 2018;25:563–571. doi: 10.1016/j.sjbs.2016.01.039. PubMed DOI PMC
Abd El-Samad E.H., Glala Abd El Baset A.A., Nadia A., Omar M. Improving the establishment, growth, and yield of tomato seedlings transplanted during the summer season by using natural plant growth bio-stimulants. Middle East J. Agric. Res. 2019;8:311–329.
Karthikeyan K., Shanmugam M. Investigation on potassium-rich biostimulant from seaweed on yield and quality of some tropical and sub-tropical varieties banana grown under field condition in semi-arid zone. J. Nat. Prod. Plant Res. 2016;6:6–12.
Kasim W.A., Hamada E.A., El-Din N.G.S., Eskander S. Influence of seaweed extracts on the growth, some metabolic activities, and yield of wheat grown under drought stress. Int. J. Agron. Agric. Res. 2015;7:173–189.
Fathi A., Farnia A., Maleki A. The effect of biological fertilizers of nitrogen and phosphorus on vegetative characteristics, dry matter, and yield of corn. J. Agric. 2016;29:1–7.
Jokar F., Masoumi Asl A., Karimizadeh A. Evaluation of morphophysiological traits and drought tolerance indices in a number of advanced durum wheat lines under supplementary and non-irrigated irrigation. Ecophysiol. J. 2020;12:162–173.
Mahato S., Kafle A. Comparative study of Azotobacter with or without other fertilizers on growth and yield of wheat in Western hills of Nepal. Ann. Agric. Sci. 2018;16:250–256. doi: 10.1016/j.aasci.2018.04.004. DOI
Jiriaei M., Fateh A., Aynehband A. Evaluation of morphophysiological changes of wheat cultivars under mycorrhiza and Azospirillum application conditions. Iran. J. Crop Res. 2014;12:841–851.
Safari D. Effects of plant growth-promoting rhizobacteria (PGPRs) applying on yield and yield components of Almute wheat under drought stress condition. J. Wheat Res. 2018;1:13–22. doi: 10.22034/AEJ.2019.664906. DOI
Miraz Karami N., Mirzaei Heidari M., Rostaminia M. The effect of different fertilization systems (chemical, biological, and integrated) on different characteristics of autumn barley. J. Plant Ecophysiol. 2019;11:103–117.
Ghaffarizadeh A., Seyed N.S.M., Gilani A. Effect of leaf spray of aqueous extract of brown algae (Nizamuddinia zanardinii) at different levels of nitrogen on some physiological, biochemical and wheat yield traits. J. Plant Environ. Physiol. 2016;13:13–25.
Naseri R., Barary M., Zare M.J., Khavazi K., Tahmasebi Z. Effect of phosphate solubilizing bacteria and mycorrhizal fungi on shoot accumulation of micronutrient elements in Keras Sabalan and Saji wheat cultivars under dryland conditions. Appl. Res. Field Crops. 2018;32:50–80. doi: 10.22092/aj.2019.116898.1233. DOI
Alipour H., Bihamta M.R., Mohammadi M., Peyghmbari S.A. Evaluation of genetic variability of agronomic traits in Iranian wheat landraces and cultivars. J. Crop Breed. 2017;9:168–177. doi: 10.29252/jcb.9.22.168. DOI
Rahimi Y., Bi Hemta M.R., Talei A.R., Alipour H. Genetic variability assessment of Iranian wheat landraces in term of some agronomic attributes under normal irrigation and rain-fed conditions. Iranian J. Field Crop Sci. 2019;50:1–16. doi: 10.22059/ijfcs.2018.258294.654471. DOI
Hagh Bahari M., Seyed Sharifi R. The effect of seed inoculation with growth-enhancing bacteria (PGPR) growth on yield, speed, and duration of wheat grain filling at different levels of soil salinity. J. Environ. Stress Sci. Agric. 2013;6:65–75.
Sayyahfar M., Mirshekari B., Yarnia M., Farahvash F., Esmaeilzadeh Moghaddam M. Effect of mycorrhiza inoculation and methanol spraying on some photosynthetic characteristics and yield in wheat cultivars under end-season drought stress. Appl. Ecol. Environ. Res. 2018;16:3783–3803. doi: 10.15666/aeer/1604_37833803. DOI
Cabral C., Ravnskov S., Tringovska I., Wollenweber B. Arbuscular mycorrhizal fungi modify nutrient allocation and composition in wheat (Triticum aestivum L.) subjected to heat-stress. Plant Soil. 2016;408:385–399. doi: 10.1007/s11104-016-2942-x. DOI
Tavakoli M., Jalali A.H. Effect of Different Biofertilizers and Nitrogen Fertilizer Levels on Yield and Yield Components of Wheat. J. Crop Prod. Proc. 2016;6:33–45. doi: 10.18869/acadpub.jcpp.6.21.34. DOI
Salim B.B.M., Abdel-Rassoul M. Effect of foliar applications of seaweed extract, potassium nitrate, and potassium silicate on growth, yield, and some biochemical constituents of wheat plants under salt stress. J. Biol. Chem. Environ. Sci. 2016;11:371–391.
Vahamidis P., Karamanos A.J., Garyfalia E. Grain number determination in durum wheat as affected by drought stress: An analysis at spike and spikelet level. Ann. App. Bot. 2019;174:190–208. doi: 10.1111/aab.12487. DOI
Rezaei C.A., Rasouli Y., Jalilian J., Ghodsi M. Evaluation of quantitative and qualitative yield of chickpea (Cicer arietinum L.) and barley (Hordeum vulgare L.) in intercropping affected by biological and chemical fertilizers in supplemental irrigation condition. Agric. Ecol. 2019;11:69–85. doi: 10.22067/jag.v11i1.71201. DOI
Hou J., Huang X., Sun W., Du C., Wang C., Xie Y., Ma D. Accumulation of water-soluble carbohydrates and gene expression in wheat stems correlates with drought resistance. J. Plant Physiol. 2018;231:182–191. doi: 10.1016/j.jplph.2018.09.017. PubMed DOI
Azarmehr A.R., Baghi M. Zyani, N.M. Application of seaweed extract and sulfated sulfur fertilizer on yield and some yield components of autumn rapeseed (Brassica Napus L.) cultivar Natali. Desert Res. 2017;14:155–165.
Ahmadi M., Zare M.J., Emam Y. Study of quantitative and qualitative traits of bread wheat by using of Cycocel, Zinc sulfate, and bio-fertilizer application under dryland farming. Sci. J. Plant Ecophysiol. 2019;11:148–161. (In Farsi)
Yaghini F., Seyed S.R., Narimani H. Effects of Supplemental Irrigation and Biofertilizers on Yield, Chlorophyll Content, Rate and Period of Grain Filling of Rainfed Wheat. J. Field Crops Res. 2020;18:101–109. doi: 10.22067/gsc.v18i1.81264. DOI
Zhang S., Lehmann A., Zheng W., You Z., Rillig M.C. Arbuscular mycorrhizal fungi increase grain yields: A meta-analysis. New Phytol. 2019;222:543–555. doi: 10.1111/nph.15570. PubMed DOI
Ma Y., Rajkumar M., Oliveira R.S., Zhang C., Freitas H. Potential of plant beneficial bacteria and arbuscular mycorrhizal fungi in phytoremediation of metal-contaminated saline soils. J. Hazard. Mater. 2019;379:120813. doi: 10.1016/j.jhazmat.2019.120813. PubMed DOI
Pathan S.I., Větrovský T., Giagnoni L., Datta R., Baldrian P., Nannipieri P., Renella G. Microbial expression profiles in the rhizosphere of two maize lines differing in N use efficiency. Plant Soil. 2018;433:401–413. doi: 10.1007/s11104-018-3852-x. DOI
Zafar-ul-Hye M., Naeem M., Danish S., Khan M.J., Fahad S., Datta R., Brtnicky M., Kintl A., Hussain G.S., El-Esawi M.A. Effect of Cadmium-Tolerant Rhizobacteria on Growth Attributes and Chlorophyll Contents of Bitter Gourd under Cadmium Toxicity. Plants. 2020;9:1386. doi: 10.3390/plants9101386. PubMed DOI PMC
Zafar-ul-Hye M., Tahzeeb-ul-Hassan M., Abid M., Fahad S., Brtnicky M., Dokulilova T., Datta R., Danish S. Potential role of compost mixed biochar with rhizobacteria in mitigating lead toxicity in spinach. Sci. Rep. 2020;10:1–12. doi: 10.1038/s41598-020-69183-9. PubMed DOI PMC
Zafar-ul-Hye M., Naeem M., Danish S., Fahad S., Datta R., Abbas M., Rahi A.A., Brtnicky M., Holátko J., Tarar Z.H., et al. Alleviation of Cadmium Adverse Effects by Improving Nutrients Uptake in Bitter Gourd through Cadmium Tolerant Rhizobacteria. Environments. 2020;7:54.
Adnan M., Fahad S., Zamin M., Shah S., Mian I.A., Danish S., Zafar-ul-Hye M., Battaglia M.L., Naz R.M.M., Saeed B. Coupling phosphate-solubilizing bacteria with phosphorus supplements improve maize phosphorus acquisition and growth under lime induced salinity stress. Plants. 2020;9:900. doi: 10.3390/plants9070900. PubMed DOI PMC
Danish S., Zafar-ul-Hye M., Fahad S., Saud S., Brtnicky M., Hammerschmiedt T., Datta R. Drought Stress Alleviation by ACC Deaminase Producing Achromobacter xylosoxidans and Enterobacter cloacae, with and without Timber Waste Biochar in Maize. Sustainability. 2020;12:6286.
Hamidi H., Marashi S.K. Effect of Mycorrhizal Fungus and Phosphorus Fertilizers on Growth Traits and Wheat Seed (Triticum aestivum L.) Plant Sci. 2018;8:13–22.