Effect of Cadmium-Tolerant Rhizobacteria on Growth Attributes and Chlorophyll Contents of Bitter Gourd under Cadmium Toxicity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Institutional support MZE-RO1720
Ministry of Agriculture of the Czech Republic
PubMed
33080896
PubMed Central
PMC7603194
DOI
10.3390/plants9101386
PII: plants9101386
Knihovny.cz E-zdroje
- Klíčová slova
- Momordica charantia, PGPR, heavy metal, mineral fertilizers, pigments, productivity,
- Publikační typ
- časopisecké články MeSH
Cadmium (Cd) is one of the heavy metals that negatively affects the growth of plants. High solubilization in water leads Cd to enter into plants quite easily, thus decreasing seed germination, photosynthesis, and transpiration. It also shows an antagonistic effect with many of the plants' nutrients like Mn, Ca, K, Mg and Fe. Nowadays, inoculation of plants with ACC deaminase (ACCD) rhizobacteria to mitigate Cd's adverse effects has drawn the attention of environmental microbiologists. The rhizobacteria secrete organic compounds that can immobilize Cd in soil. Therefore, this study was accomplished to investigate the effect of ACCD plant growth promoting rhizobacteria (PGPR) on the bitter gourd under Cd stress. There were six treatments consisting of two ACCD PGPR (Stenotrophomonas maltophilia and Agrobacterium fabrum) strains and inorganic fertilizers at two levels of Cd, i.e., 2 (Cd2) and 5 mg kg-1 soil (Cd5). The results showed A. fabrum with the recommended NPK fertilizer (RNPKF) significantly increased the vine length (48 and 55%), fresh weight (24 and 22%), and contents of chlorophyll a (79 and 50%), chlorophyll b (30 and 33%) and total chlorophyll (61 and 36%), over control at the two Cd levels i.e., Cd2 and Cd5, respectively. In conclusion, the recommended NPK fertilizer + A. fabrum combination is a very effective treatment with which to immobilize Cd in soil for the improvement of bitter gourd growth.
Agricultural Research Ltd 664 41 Troubsko Czech Republic
Botany Department Faculty of Science Tanta University Tanta 31527 Egypt
Department of Agronomy The University of Haripur Haripur 22620 Pakistan
Department of Soil and Environmental Sciences Gomal University Dera Ismail Khan 29220 Pakistan
Department of Technical Services Fatima Agri Sales and Services Multan 60800 Pakistan
Zobrazit více v PubMed
Miniraj N., Prasanna K.P., Peter K.V. Bitter gourd Momordica spp. In: Kalloo G., Bergh B.O., editors. Genetic Improvement of Vegetable Plants. Elsevier Ltd.; Amsterdam, The Netherlands: 1993. pp. 239–246.
Liu X.R., Deng Z.Y., Fan Y.W., Li J., Liu Z.H. Mineral elements analysis of momordica charantiap seeds by ICP-AES and fatty acid profile identification of seed oil by GC-MS. Spectrosc. Spectr. Anal. 2010;30:2265–2268. PubMed
Cao H., Sethumadhavan K., Grimm C.C., Ullah A.H.J. Characterization of a soluble phosphatidic acid phosphatase in bitter melon (Momordica charantia) PLoS ONE. 2014;9:e106403. doi: 10.1371/journal.pone.0106403. PubMed DOI PMC
GOP . Fruits, Vegetables and Condiments: Statistics of Pakistan. Ministry of National Food Security and Research; Islamabad, Pakistan: 2016.
Fang E.F., Ng T.B. Essential Oils in Food Preservation, Flavor and Safety. Elsevier BV; Amsterdam, The Netherlands: 2016. Bitter Gourd (Momordica charantia) Oils; pp. 253–257.
Ahmad I., Akhtar M.J., Zahir Z.A., Naveed M., Mitter B., Sessitsch A. Cadmium-tolerant bacteria induce metal stress tolerance in cereals. Environ. Sci. Pollut. Res. 2014;21:11054–11065. doi: 10.1007/s11356-014-3010-9. PubMed DOI
Meena R.S., Kumar S., Datta R., Lal R., Vijayakumar V., Brtnicky M., Sharma M.P., Yadav G.S., Jhariya M.K., Jangir C.K., et al. Impact of Agrochemicals on Soil Microbiota and Management: A Review. Land. 2020;9:34. doi: 10.3390/land9020034. DOI
Brtnicky M., Dokulilova T., Holatko J., Pecina V., Kintl A., Latal O., Vyhnanek T., Prichystalova J., Datta R. Long-Term Effects of Biochar-Based Organic Amendments on Soil Microbial Parameters. AGRONOMY-BASEL. 2019;9:747. doi: 10.3390/agronomy9110747. DOI
Molaei A., Lakzian A., Datta R., Haghnia G., Astaraei A., Rasouli-Sadaghiani M., Ceccherini M.T. Impact of chlortetracycline and sulfapyridine antibiotics on soil enzyme activities. Int. Agrophysics. 2017;31 doi: 10.1515/intag-2016-0084. DOI
Molaei A., Lakzian A., Haghnia G., Astaraei A., Rasouli-Sadaghiani M., Ceccherini M.T., Datta R. Assessment of some cultural experimental methods to study the effects of antibiotics on microbial activities in a soil: An incubation study. PLoS ONE. 2017;12 doi: 10.1371/journal.pone.0180663. PubMed DOI PMC
Lazar V., Cernat R., Balotescu C., Cotar A., Coipan E., Cojocaru C. Correlation between multiple antibiotic resistance and heavy-metal tolerance among some E.coli strains isolated from polluted waters. Bacteriol. Virusol. Parazitol. Epidemiol. 2002;47:155–160. PubMed
Zafar-ul-Hye M., Shahjahan A., Danish S., Abid M., Qayyum M.F. Mitigation of cadmium toxicity induced stress in wheat by ACC-deaminase containing PGPR isolated from cadmium polluted wheat rhizosphere. Pakistan J. Bot. 2018;50:1727–1734.
Zafar-Ul-Hye M., Naeem M., Danish S., Fahad S., Datta R., Abbas M., Rahi A.A., Brtnický M., Holatko J., Tarar Z.H., et al. Alleviation of Cadmium Adverse Effects by Improving Nutrients Uptake in Bitter Gourd through Cadmium Tolerant Rhizobacteria. Environments. 2020;7:54. doi: 10.3390/environments7080054. DOI
Lamoreaux R.J., Chaney W.R. The Effect of Cadmium on Net Photosynthesis, Transpiration, and Dark Respiration of Excised Silver Maple Leaves. Issue Physiol. Plant. Addit. Inf. 1978;43:231–236. doi: 10.1111/j.1399-3054.1978.tb02569.x. DOI
Larbi A., Morales F., Abadia A., Gogorcena Y., Lucena J.J., Abadia J. Effects of Cd and Pb in sugar beet plants grown in nutrient solution: Induced Fe deficiency and growth inhibition. Funct. Plant Biol. 2002;29:1453–1464. doi: 10.1071/FP02090. PubMed DOI
Huang C.-Y., Bazzaz F.A., Vanderhoef L.N. The inhibition of soybean metabolism by cadmium and lead. J. Plant Physiol. 1974;54:122–124. doi: 10.1104/pp.54.1.122. PubMed DOI PMC
Wallace A., Wallace G.A., Cha J.W. Some modifications in trace metal toxicities and deficiencies in plants resulting from interactions with other elements and chelating agents--the special case of iron. J. Plant Nutr. 1992;15:1589–1598. doi: 10.1080/01904169209364424. DOI
Abid M., Danish S., Zafar-ul-Hye M., Shaaban M., Iqbal M.M., Rehim A., Qayyum M.F., Naqqash M.N. Biochar increased photosynthetic and accessory pigments in tomato (Solanum lycopersicum L.) plants by reducing cadmium concentration under various irrigation waters. Environ. Sci. Pollut. Res. 2017;24:22111–22118. doi: 10.1007/s11356-017-9866-8. PubMed DOI
Greger M., Brammer E., Lindberg S., Larsson G., Idestam-Almquist J. Uptake and Physiological Effects of Cadmium in Sugar Beet (Beta vulgaris) Related to Mineral Provision. J. Exp. Bot. 1991;42:729–737. doi: 10.1093/jxb/42.6.729. DOI
Dong J., Wu F., Zhang G. Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum) Chemosphere. 2006;64:1659–1666. doi: 10.1016/j.chemosphere.2006.01.030. PubMed DOI
Danish S., Kiran S., Fahad S., Ahmad N., Ali M.A., Tahir F.A., Rasheed M.K., Shahzad K., Li X., Wang D., et al. Alleviation of chromium toxicity in maize by Fe fortification and chromium tolerant ACC deaminase producing plant growth promoting rhizobacteria. Ecotoxicol. Environ. Saf. 2019;185:109706. doi: 10.1016/j.ecoenv.2019.109706. PubMed DOI
Pandey S., Ghosh P.K., Ghosh S., De T.K., Maiti T.K. Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. J. Microbiol. 2013;51:11–17. doi: 10.1007/s12275-013-2330-7. PubMed DOI
Khan A.L., Lee I.-J. Endophytic Penicillium funiculosum LHL06 secretes gibberellin that reprograms Glycine max L. growth during copper stress. BMC Plant Biol. 2013;13:86–100. doi: 10.1186/1471-2229-13-86. PubMed DOI PMC
Glick B., Penrose D., Li J. A Model For the Lowering of Plant Ethylene Concentrations by Plant Growth-promoting Bacteria. J. Theor. Biol. 1998;190:63–68. doi: 10.1006/jtbi.1997.0532. PubMed DOI
Skirycz A., Claeys H., de Bodt S., Oikawa A., Shinoda S., Andriankaja M., Maleux K., Eloy N.B., Coppens F., Yoo S.D., et al. Pause-and-stop: The effects of osmotic stress on cell proliferation during early leaf development in Arabidopsis and a role for ethylene signaling in cell cycle arrest. Plant Cell. 2011;23:1876–1888. doi: 10.1105/tpc.111.084160. PubMed DOI PMC
He C.J., Morgan P.W., Drew M.C. Transduction of an ethylene signal is required for cell death and lysis in the root cortex of maize during aerenchyma formation induced by hypoxia. Plant Physiol. 1996;112:463–472. doi: 10.1104/pp.112.2.463. PubMed DOI PMC
Garnier L., Simon-Plas F., Thuleau P., Agnel J.P., Blein J.P., Ranjeva R., Montillet J.L. Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ. 2006;29:1956–1969. doi: 10.1111/j.1365-3040.2006.01571.x. PubMed DOI
Das K., Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014;2:53. doi: 10.3389/fenvs.2014.00053. DOI
Zafar-ul-Hye M., Tahzeeb-ul-Hassan M., Abid M., Fahad S., Brtnicky M., Dokulilova T., Datta R., Danish S. Potential role of compost mixed biochar with rhizobacteria in mitigating lead toxicity in spinach. Sci. Rep. 2020;10:1–12. doi: 10.1038/s41598-020-69183-9. PubMed DOI PMC
Kochar M., Upadhyay A., Srivastava S. Indole-3-acetic acid biosynthesis in the biocontrol strain Pseudomonas fluorescens Psd and plant growth regulation by hormone overexpression. Res. Microbiol. 2011;162:426–435. doi: 10.1016/j.resmic.2011.03.006. PubMed DOI
Parewa H.P., Meena V.S., Jain L.K., Choudhary A. Role of Rhizospheric Microbes in Soil: Stress Management and Agricultural Sustainability. Vol. 1. Springer; Singapore: 2018. Sustainable crop production and soil health management through plant growth-promoting rhizobacteria; pp. 299–329.
Adnan M., Fahad S., Zamin M., Shah S., Mian I.A., Danish S., Zafar-ul-Hye M., Battaglia M.L., Naz R.M.M., Saeed B. Coupling phosphate-solubilizing bacteria with phosphorus supplements improve maize phosphorus acquisition and growth under lime induced salinity stress. Plants. 2020;9:900. doi: 10.3390/plants9070900. PubMed DOI PMC
Wahid F., Fahad S., Danish S., Adnan M., Yue Z., Saud S., Siddiqui M.H., Brtnicky M., Hammerschmiedt T., Datta R. Sustainable Management with Mycorrhizae and Phosphate Solubilizing Bacteria for Enhanced Phosphorus Uptake in Calcareous Soils. Agriculture. 2020;10:334. doi: 10.3390/agriculture10080334. DOI
Danish S., Zafar-ul-Hye M. Co-application of ACC-deaminase producing PGPR and timber-waste biochar improves pigments formation, growth and yield of wheat under drought stress. Sci. Rep. 2019;9 doi: 10.1038/s41598-019-42374-9. PubMed DOI PMC
Zafar-ul-Hye M., Danish S., Abbas M., Ahmad M., Munir T.M. ACC deaminase producing PGPR Bacillus amyloliquefaciens and agrobacterium fabrum along with biochar improve wheat productivity under drought stress. Agronomy. 2019;9:343. doi: 10.3390/agronomy9070343. DOI
Danish S., Zafar-Ul-Hye M., Hussain S., Riaz M., Qayyum M.F. Mitigation of drought stress in maize through inoculation with drought tolerant ACC deaminase containing PGPR under axenic conditions. Pakistan J. Bot. 2020;52:49–60. doi: 10.30848/PJB2020-1(7). DOI
Danish S., Zafar-ul-Hye M., Fahad S., Saud S., Brtnicky M., Hammerschmiedt T., Datta R. Drought Stress Alleviation by ACC Deaminase Producing Achromobacter xylosoxidans and Enterobacter cloacae, with and without Timber Waste Biochar in Maize. Sustainability. 2020;12:6286. doi: 10.3390/su12156286. DOI
Zafar-Ul-hye M., Farooq U., Danish S., Hussain S., Shaaban M., Qayyum M.F., Rehim A. Bacillus amyloliquefaciens and alcaligenes faecalis with biogas slurry improved maize growth and yield in saline-sodic field. Pakistan J. Bot. 2020;52:1839–1847. doi: 10.30848/PJB2020-5(20). DOI
Sanita di Toppi L., Gabbrielli R. Response to cadmium in higher plants. Environ. Exp. Bot. 1999;41:105–130. doi: 10.1016/S0098-8472(98)00058-6. DOI
Glick B.R., Patten C.L., Holguin G., Penrose D.M. Biochemical and Genetic Mechanisms Used by Plant Growth Promoting Bacteria. Imperial College Press; Singapore: 1999. DOI
Ouzounidou G., Ciamporova M., Moustakas M., Karataglis S. Responses of Maize (Zea-Mays L) Plants to Copper Stress.1. Growth, Mineral-Content and Ultrastructure of Roots. Environ. Exp. Bot. 1995;35:167–176. doi: 10.1016/0098-8472(94)00049-B. DOI
De Filippis L.F., Hampp R., Ziegler H. The effects of sublethal concentrations of zinc, cadmium and mercury on Euglena. Arch. Microbiol. 1981;128:407–411. doi: 10.1007/BF00405922. DOI
Matile P., Schellenberg M., Vicentini F. Planta Localization of chlorophyllase in the chloroplast envelope. Planta. 1997;201:96–99. doi: 10.1007/BF01258685. DOI
Danish S., Zafar-ul-Hye M., Hussain M., Shaaban M., Núñez-delgado A. Rhizobacteria with ACC-Deaminase Activity Improve Nutrient Uptake, Chlorophyll Contents and Early Seedling Growth of Wheat under PEG- Induced Osmotic Stress. Int. J. Agric. Biol. 2019;21:1212–1220. doi: 10.17957/IJAB/15.1013. DOI
Ahmed N., Ahsen S., Ali M.A., Hussain M.B., Hussain S.B., Rasheed M.K., Butt B., Irshad I., Danish S. Rhizobacteria and silicon synergy modulates the growth, nutrition and yield of mungbean under saline soil. Pakistan J. Bot. 2020;52:9–15. doi: 10.30848/PJB2020-1(16). DOI
Danish S., Zafar-ul-Hye M. Combined role of ACC deaminase producing bacteria and biochar on cereals productivity under drought. Phyton (B. Aires) 2020;89:217–227. doi: 10.32604/phyton.2020.08523. DOI
Danish S., Zafar-ul-Hye M., Mohsin F., Hussain M. ACC-deaminase producing plant growth promoting rhizobacteria and biochar mitigate adverse effects of drought stress on maize growth. PLoS ONE. 2020;15:e0230615. doi: 10.1371/journal.pone.0230615. PubMed DOI PMC
Tripathi M., Munot H.P., Shouche Y., Meyer J.M., Goel R. Isolation and functional characterization of siderophore-producing lead- and cadmium-resistant Pseudomonas putida KNP9. Curr. Microbiol. 2005;50:233–237. doi: 10.1007/s00284-004-4459-4. PubMed DOI
Burd G.I., Dixon D.G., Glick B.R. A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl. Environ. Microbiol. 1998;64:3663–3668. doi: 10.1128/AEM.64.10.3663-3668.1998. PubMed DOI PMC
Fuhrer J. Ethylene Biosynthesis and Cadmium Toxicity in Leaf Tissue of Beans (Phaseolus vulgaris L.) Plant Physiol. 1982;70:162–167. doi: 10.1104/pp.70.1.162. PubMed DOI PMC
Gilani M., Danish S., Ahmed N., Rahi A.A., Akrem A., Younis U., Irshad I., Iqbal R.K. Mitigation of drought stress in spinach using individual and combined applications of salicylic acid and potassium. Pakistan J. Bot. 2020;52:1505–1513. doi: 10.30848/PJB2020-5(18). DOI
Baude J., Vial L., Villard C., Campillo T., Lavire C., Nesme X., Hommais F. Coordinated regulation of species-specific hydroxycinnamic acid degradation and siderophore biosynthesis pathways in Agrobacterium fabrum. Appl. Environ. Microbiol. 2016;82:3515–3524. doi: 10.1128/AEM.00419-16. PubMed DOI PMC
Gopi K., Jinal H.N., Prittesh P., Kartik V.P., Amaresan N. Effect of copper-resistant Stenotrophomonas maltophilia on maize (Zea mays) growth, physiological properties, and copper accumulation: Potential for phytoremediation into biofortification. Int. J. Phytoremediation. 2020;22:662–668. doi: 10.1080/15226514.2019.1707161. PubMed DOI
Rajkumar M., Sandhya S., Prasad M.N.V., Freitas H. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol. Adv. 2012;30:1562–1574. doi: 10.1016/j.biotechadv.2012.04.011. PubMed DOI
Wu C.H., Wood T.K., Mulchandani A., Chen W. Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl. Environ. Microbiol. 2006;72:1129–1134. doi: 10.1128/AEM.72.2.1129-1134.2006. PubMed DOI PMC
Safronova V.I., Stepanok V.V., Engqvist G.L., Alekseyev Y.V., Belimov A.A. Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol. Fertil. Soils. 2006;42:267–272. doi: 10.1007/s00374-005-0024-y. DOI
Belimov A.A., Safronova V.I., Sergeyeva T.A., Egorova T.N., Matveyeva V.A., Tsyganov V.E., Borisov A.Y., Tikhonovich I.A., Kluge C., Preisfeld A., et al. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can. J. Microbiol. 2001;652:642–652. doi: 10.1139/w01-062. PubMed DOI
Ardakani M.R., Khorshidi Y.R., Ramezanpour M.R., Khavazi K., Zargari K. Response of Yield and Yield Components of Rice (Oryza sativa L.) to Pseudomonas flouresence and Azospirillum lipoferum under Different Nitrogen Levels. Am. J. Agric. Environ. Sci. 2011;10:387–395.
Sadiq A., Ali B. Growth and yield enhancement of Triticum aestivum L. by rhizobacteria isolated from agronomic plants. Aust. J. Crop Sci. 2013;7:1544–1550.
Chapman H.D., Pratt P.F. Methods of Analysis for Soils, Plants and Water. University of California, Division of Agricultural Sciences; Berkeley, CA, USA: 1961.
Steel R.G., Torrie J.H., Dickey D.A. Principles and Procedures of Statistics: A Biometrical Approach. 3rd ed. McGraw Hill Book International Co.; Singapore: 1997.