Fourier Transform Infrared Spectroscopy vibrational bands study of Spinacia oleracea and Trigonella corniculata under biochar amendment in naturally contaminated soil
Status odvoláno Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem, odvolaná publikace
PubMed
34191839
PubMed Central
PMC8244852
DOI
10.1371/journal.pone.0253390
PII: PONE-D-21-02513
Knihovny.cz E-zdroje
- MeSH
- chlorofyl analýza chemie metabolismus MeSH
- dřevěné a živočišné uhlí chemie MeSH
- fyzikální absorpce MeSH
- látky znečišťující půdu chemie MeSH
- listy rostlin chemie MeSH
- molekulární struktura MeSH
- půda chemie MeSH
- spektroskopie infračervená s Fourierovou transformací metody MeSH
- Spinacia oleracea chemie MeSH
- těžké kovy chemie MeSH
- Trigonella chemie MeSH
- vibrace MeSH
- znečištění životního prostředí škodlivé účinky prevence a kontrola MeSH
- Publikační typ
- časopisecké články MeSH
- odvolaná publikace MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biochar MeSH Prohlížeč
- chlorofyl MeSH
- dřevěné a živočišné uhlí MeSH
- látky znečišťující půdu MeSH
- půda MeSH
- těžké kovy MeSH
Fourier transform infrared spectroscopy (FTIR) spectroscopy detects functional groups such as vibrational bands like N-H, O-H, C-H, C = O (ester, amine, ketone, aldehyde), C = C, C = N (vibrational modes of a tetrapyrrole ring) and simply C = N. The FTIR of these bands is fundamental to the investigation of the effect of biochar (BC) treatment on structural changes in the chlorophyll molecules of both plants that were tested. For this, dried leaf of Spinacia oleracia (spinach) and Trigonella corniculata (fenugreek) were selected for FTIR spectral study of chlorophyll associated functional groups. The study's primary goal was to investigate the silent features of infrared (IR) spectra of dried leave samples. The data obtained from the current study also shows that leaf chlorophyll can mask or suppress other molecules' FITR bands, including proteins. In addition, the C = O bands with Mg and the C9 ketonic group of chlorophyll are observed as peaks at1600 (0%BC), 1650 (3%BC) and 1640, or near to1700 (5%BC) in spinach samples. In fenugreek, additional effects are observed in the FTIR spectra of chlorophyll at the major groups of C = C, C = O and C9 of the ketonic groups, and the vibrational bands are more evident at C-H and N-H of the tetrapyrrole ring. It is concluded that C-N bands are more visible in 5% BC treated spinach and fenugreek than in all other treatments. These types of spectra are useful in detecting changes or visibility of functional groups, which are very helpful in supporting biochemical data such as an increase in protein can be detected by more visibility of C-N bands in FTIR spectra.
Department of Agronomy Faculty of Agriculture Kafrelsheikh University Kafr El Shaikh Egypt
Department of Agronomy The University of Haripur Haripur Pakistan
Department of Biology College of Science Taif University Taif Saudi Arabia
Department of Biology University of Waterloo Waterloo ON Canada
Department of Botany University of Central Punjab Punjab Pakistan
Laboratory of Tropical and Mediterranean Symbioses CIRAD Mintpellier France
Zobrazit více v PubMed
Zafar-Ul-hye M, Naeem M, Danish S, Fahad S, Datta R, Abbas M, et al.. Alleviation of cadmium adverse effects by improving nutrients uptake in bitter gourd through cadmium tolerant rhizobacteria. Environ—MDPI. 2020;7: 54. doi: 10.3390/environments7080054 DOI
Danish S, Younis U, Nasreen S, Akhtar N, Iqbal MT. Biochar consequences on cations and anions of sandy soil. J Biodivers Environ Sci. 2015;6: 121–131.
Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut Barking Essex 1987. 2011;159: 3269–82. doi: 10.1016/j.envpol.2011.07.023 PubMed DOI
Pickin J, Randell P. Australian National Waste Report 2016. Aust Gov Dep Environ Energy. 2017.
Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. The effects of cadmium toxicity. International Journal of Environmental Research and Public Health. 2020. p. 3782. doi: 10.3390/ijerph17113782 PubMed DOI PMC
Younis U, Qayyum MF, Shah MHR, Danish S, Shahzad AN, Malik SA, et al.. Growth, survival, and heavy metal (Cd and Ni) uptake of spinach (Spinacia oleracea) and fenugreek (Trigonella corniculata) in a biochar-amended sewage-irrigated contaminated soil. J Plant Nutr Soil Sci. 2015;178: 209–217. doi: 10.1002/jpln.201400325 DOI
Fiaz K, Danish S, Younis U, Malik SA, Raza Shah MH, Niaz S. Drought impact on Pb/Cd toxicity remediated by biochar in Brassica campestris. J Soil Sci Plant Nutr. 2014;14: 845–854. doi: 10.4067/S0718-95162014005000067 DOI
Zafar‐ul‐hye M, Naeem M, Danish S, Khan MJ, Fahad S, Datta R, et al.. Effect of cadmium‐tolerant rhizobacteria on growth attributes and chlorophyll contents of bitter gourd under cadmium toxicity. Plants. 2020;9. doi: 10.3390/plants9101386 PubMed DOI PMC
Zafar-ul-Hye M, Tahzeeb-ul-Hassan M, Abid M, Fahad S, Brtnicky M, Dokulilova T, et al.. Potential role of compost mixed biochar with rhizobacteria in mitigating lead toxicity in spinach. Sci Rep. 2020;10: 69183. doi: 10.1038/s41598-020-69183-9 PubMed DOI PMC
Hashmi S, Younis U, Danish S, Munir TM. Pongamia pinnata L. leaves biochar increased growth and pigments syntheses in Pisum sativum L. exposed to nutritional stress. Agric Switz. 2019;9: 153. doi: 10.3390/agriculture9070153 DOI
Gitelson A a, Gritz Y, Merzlyak MN. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J Plant Physiol. 2003;160: 271–282. doi: 10.1078/0176-1617-00887 PubMed DOI
Abideen Z, Koyro HW, Huchzermeyer B, Ansari R, Zulfiqar F, Gul B. Ameliorating effects of biochar on photosynthetic efficiency and antioxidant defence of Phragmites karka under drought stress. Plant Biol. 2020;22: 259–266. doi: 10.1111/plb.13054 PubMed DOI
Agegnehu G, Nelson PN, Bird MI. Crop yield, plant nutrient uptake and soil physicochemical properties under organic soil amendments and nitrogen fertilization on Nitisols. Soil Tillage Res. 2016;160: 1–13. doi: 10.1016/j.still.2016.02.003 DOI
Artelle LYHW Odgers JAER. Immobilization of Heavy Metal Ions (Cu II, Cd II, Ni II, and Pb II) by Broiler Litter-Derived Biochars in Water and Soil. J Agric Food Chem. 2010;58: 5538–5544. doi: 10.1021/jf9044217 PubMed DOI
Deenik JL, Cooney MJ. The potential benefits and limitations of corn cob and sewage sludge biochars in an infertile Oxisol. Sustain Switz. 2016;8. doi: 10.3390/su8020131 DOI
Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS. Role of assisted natural remediation in environmental cleanup. Geoderma. 2004;122: 121–142. doi: 10.1016/j.geoderma.2004.01.003 DOI
Younis U, Danish S, Shah MHR, Malik SA. Nutrient shifts modeling in Spinacea oleracea L. and Trigonella corniculata L. in contaminated soil amended with biochar. Int J Biosci. 2014;5: 89–98. doi: 10.12692/ijb/5.9.89–98 DOI
Danish S, Tahir FA, Rasheed MK, Ahmad N, Ali MA, Kiran S, et al.. Effect of foliar application of Fe and banana peel waste biochar on growth, chlorophyll content and accessory pigments synthesis in spinach under chromium (IV) toxicity. Open Agric. 2019;4. doi: 10.1515/opag-2019-0034 DOI
Shahbaz AK, Adnan Ramzani PM, Saeed R, Turan V, Iqbal M, Lewińska K, et al.. Effects of biochar and zeolite soil amendments with foliar proline spray on nickel immobilization, nutritional quality and nickel concentrations in wheat. Ecotoxicol Environ Saf. 2019;173: 182–191. doi: 10.1016/j.ecoenv.2019.02.025 PubMed DOI
Turan V. Confident performance of chitosan and pistachio shell biochar on reducing Ni bioavailability in soil and plant plus improved the soil enzymatic activities, antioxidant defense system and nutritional quality of lettuce. Ecotoxicol Environ Saf. 2019;183: 109594. doi: 10.1016/j.ecoenv.2019.109594 PubMed DOI
Turan V. Potential of pistachio shell biochar and dicalcium phosphate combination to reduce Pb speciation in spinach, improved soil enzymatic activities, plant nutritional quality, and antioxidant defense system. Chemosphere. 2020;245: 125611. doi: 10.1016/j.chemosphere.2019.125611 PubMed DOI
Zubair M, Adnan Ramzani PM, Rasool B, Khan MA, Ur-Rahman M, Akhtar I, et al.. Efficacy of chitosan-coated textile waste biochar applied to Cd-polluted soil for reducing Cd mobility in soil and its distribution in moringa (Moringa oleifera L.). J Environ Manage. 2021;284: 112047. doi: 10.1016/j.jenvman.2021.112047 PubMed DOI
Arif M, Ali K, Jan MT, Shah Z, Jones DL, Quilliam RS. Integration of biochar with animal manure and nitrogen for improving maize yields and soil properties in calcareous semi-arid agroecosystems. Field Crops Res. 2016;195: 28–35. doi: 10.1016/j.fcr.2016.05.011 DOI
Ali H, Khan E, Sajad MA. Phytoremediation of heavy metals-Concepts and applications. Chemosphere. 2013. pp. 869–881. doi: 10.1016/j.chemosphere.2013.01.075 PubMed DOI
Danish S, Zafar-ul-Hye M. Combined role of ACC deaminase producing bacteria and biochar on cereals productivity under drought. Phyton. 2020;89: 217–227. doi: 10.32604/phyton.2020.08523 DOI
Khan MA, Mahmood-ur-Rahman, Ramzani PMA, Zubair M, Rasool B, Khan MK, et al.. Associative effects of lignin-derived biochar and arbuscular mycorrhizal fungi applied to soil polluted from Pb-acid batteries effluents on barley grain safety. Sci Total Environ. 2020;710: 136294. doi: 10.1016/j.scitotenv.2019.136294 PubMed DOI
Naeem I, Masood N, Turan V, Iqbal M. Prospective usage of magnesium potassium phosphate cement combined with Bougainvillea alba derived biochar to reduce Pb bioavailability in soil and its uptake by Spinacia oleracea L. Ecotoxicol Environ Saf. 2021;208: 111723. doi: 10.1016/j.ecoenv.2020.111723 PubMed DOI
Younis U, Athar M, Malik SA, Bokhari TZ. Biochemical characterization of cotton stalks biochar suggests its role in soil as amendment and decontamination. Adv Environ Res. 2017;6: pages 127–137. doi: 10.12989/aer.2017.6.2.127 DOI
B.I. Spectrometric identification of organic compounds, 3rd edition. J Mol Struct. 1976;30. doi: 10.1016/0022-2860(76)87024-x DOI
Chapman OL. Spectrometric Identification of Organic Compounds. J Am Chem Soc. 1963. doi: 10.1021/ja00903a077 DOI
Ali S, Noureen S, Shakoor MB, Haroon MY, Rizwan M, Jilani A, et al.. Comparative evaluation of wheat straw and press mud biochars for Cr(VI) elimination from contaminated aqueous solution. Environ Technol Innov. 2020;19: 101017. doi: 10.1016/j.eti.2020.101017 DOI
Silverstein RM, Webster FX, Kiemle DJ. Spectrometric identification of organic compounds 7ed 2005—Silverstein, Webster & Kiemle.pdf. Microchemical Journal. 2005.
Thumanu K, Sompong M, Phansak P, Nontapot K, Buensanteai N. Use of infrared microspectroscopy to determine leaf biochemical composition of cassava in response to Bacillus subtilis CaSUT007. J Plant Interact. 2015;10. doi: 10.1080/17429145.2015.1059957 DOI
Sravan Kumar S, Manoj P, Giridhar P. Fourier transform infrared spectroscopy (FTIR) analysis, chlorophyll content and antioxidant properties of native and defatted foliage of green leafy vegetables. J Food Sci Technol. 2015;52. doi: 10.1007/s13197-015-1959-0 PubMed DOI PMC
Willows RD, Li Y, Scheer H, Chen M. Structure of chlorophyll f. Org Lett. 2013. doi: 10.1021/ol400327j PubMed DOI
Zamzam N, Rakowski R, Kaucikas M, Dorlhiac G, Viola S, Nürnberg DJ, et al.. Femtosecond visible transient absorption spectroscopy of chlorophyll-f-containing photosystem II. Proc Natl Acad Sci U S A. 2020;117. doi: 10.1073/pnas.2006016117 PubMed DOI PMC
Hastings G, Wang R. Vibrational mode frequency calculations of chlorophyll-d for assessing (P740+-P740) FTIR difference spectra obtained using photosystem I particles from Acaryochloris marina. Photosynth Res. 2008. doi: 10.1007/s11120-007-9228-3 PubMed DOI
Ségui JA, Maire V, Gabashvili IS, Fragata M. Oxygen evolution loss and structural transitions in photosystem II induced by low intensity UV-B radiation of 280 nm wavelength. J Photochem Photobiol B. 2000. doi: 10.1016/s1011-1344(00)00057-9 PubMed DOI
Rasquain A, Houssier C, Sironval C. The dimerization of protochlorophyll pigments in non-polar solvents. BBA—Bioenerg. 1977. doi: 10.1016/0005-2728(77)90106-2 PubMed DOI
WHO/FAO. Report of the Thirty Eight Session of the Codex Committee on Food Hygiene. Houston, United States of America; 2007.
European Union. Commission regulation (EC) setting maximum levels for certain contaminants in foodstuffs. 2000.
Awashthi SK. Prevention of Food Adulteration Act no 37 of 1954. Ashoka Law House, New Delhi; 2000.
Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, et al.. Couplings Between Changes in the Climate System and Biogeochemistry—AR4 WGI. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, et al.., editors. Climate Change 2007: Working Group I: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. United Kingdom and New York, NY, USA: Cambridge University Press; 2007.
Davies BH. Chemistry and biochemistry of plant pigments. Chemistry and Biochemistry of Plant Pigments. 1976.
Siegelman HW. Chemistry and Biochemistry of Plant Pigments. T. W. Goodwin. Q Rev Biol. 1977;52. doi: 10.1086/409775 DOI
Katz JJ, Ballschmiter K, Garcia-Morin M, Strain HH, Uphaus RA. Electron paramagnetic resonance of chlorophyll-water aggregates. Proc Natl Acad Sci U S A. 1968;60. doi: 10.1073/pnas.60.1.100 PubMed DOI PMC
Boucher LJ, Strain HH, Katz JJ. The Far-Infrared Spectra of Monomeric and Aggregated Chlorophylls a and b1. J Am Chem Soc. 1966;88. doi: 10.1021/ja00959a001 DOI
Silverstein RW, Bassler GC. Spectrometric identification of organic compounds. J Chem Educ. 1962;39. doi: 10.1021/ed039p546 DOI
Metal Oxide Nanoparticles: Review of Synthesis, Characterization and Biological Effects