Metal Oxide Nanoparticles: Review of Synthesis, Characterization and Biological Effects
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
36547533
PubMed Central
PMC9780975
DOI
10.3390/jfb13040274
PII: jfb13040274
Knihovny.cz E-zdroje
- Klíčová slova
- antimicrobial activity, cancer therapy, metal oxide nanoparticles, nanotechnology, nanotoxicity, pro-regenerative potential,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In the last few years, the progress made in the field of nanotechnology has allowed researchers to develop and synthesize nanosized materials with unique physicochemical characteristics, suitable for various biomedical applications. Amongst these nanomaterials, metal oxide nanoparticles (MONPs) have gained increasing interest due to their excellent properties, which to a great extent differ from their bulk counterpart. However, despite such positive advantages, a substantial body of literature reports on their cytotoxic effects, which are directly correlated to the nanoparticles' physicochemical properties, therefore, better control over the synthetic parameters will not only lead to favorable surface characteristics but may also increase biocompatibility and consequently lower cytotoxicity. Taking into consideration the enormous biomedical potential of MONPs, the present review will discuss the most recent developments in this field referring mainly to synthesis methods, physical and chemical characterization and biological effects, including the pro-regenerative and antitumor potentials as well as antibacterial activity. Moreover, the last section of the review will tackle the pressing issue of the toxic effects of MONPs on various tissues/organs and cell lines.
Advanced Institute for Materials Research Sendai 980 8577 Japan
Chemistry Department King Abdulaziz University Jeddah 80203 Saudi Arabia
Department of Materials Science WW4 LKO Friedrich Alexander University 91058 Erlangen Germany
Zobrazit více v PubMed
Chaudhury K., Kandasamy J., Kumar H.S.V., RoyChoudhury S. Regenerative nanomedicine: Current perspectives and future directions. Int. J. Nanomed. 2014;9:4153–4167. doi: 10.2147/IJN.S45332. PubMed DOI PMC
Chung E.J., Rinaldi C., Leon L., editors. Nanoparticles for Biomedical Applications. Elsevier; Amsterdam, The Netherlands: 2020.
Rizvi S.A.A., Saleh A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J. 2018;26:64–70. doi: 10.1016/j.jsps.2017.10.012. PubMed DOI PMC
Sánchez-Moreno P., Ortega-Vinuesa J.L., Peula-García J.M., Marchal J.A., Boulaiz H. Smart Drug-Delivery Systems for Cancer Nanotherapy. Curr. Drug Targets. 2018;19:339–359. doi: 10.2174/1389450117666160527142544. PubMed DOI
Rostami M., Nasab A.S., Fasihi-Ramandi M., Badiei A., Rahimi-Nasrabadi M., Ahmadi F. The ZnFe 2 O 4 @mZnO–N/RGO nano-composite as a carrier and an intelligent releaser drug with dual pH- and ultrasound-triggered control. New J. Chem. 2021;45:4280–4291. doi: 10.1039/D0NJ04758A. DOI
Biswas S., Bellare J. Metal Oxides for Biomedical and Biosensor Applications. Elsevier; Amsterdam, The Netherlands: 2022. Bioactivity, Biocompatibility, and Toxicity of Metal Oxides; pp. 3–33.
Augustine R., Hasan A. Emerging applications of biocompatible phytosynthesized metal/metal oxide nanoparticles in healthcare. J. Drug Deliv. Sci. Technol. 2020;56:101516. doi: 10.1016/j.jddst.2020.101516. DOI
Mirzaei H., Darroudi M. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram. Int. 2017;43:907–914. doi: 10.1016/j.ceramint.2016.10.051. DOI
Shen C., James S.A., de Jonge M.D., Turney T.W., Wright P.F.A., Feltis B.N. Relating Cytotoxicity, Zinc Ions, and Reactive Oxygen in ZnO Nanoparticle–Exposed Human Immune Cells. Toxicol. Sci. 2013;136:120–130. doi: 10.1093/toxsci/kft187. PubMed DOI
Vinardell M.P., Mitjans M. Antitumor Activities of Metal Oxide Nanoparticles. Nanomaterials. 2015;5:1004–1021. doi: 10.3390/nano5021004. PubMed DOI PMC
Elshama S.S., Abdallah M.E., Abdel-Karim R.I. Zinc Oxide Nanoparticles: Therapeutic Benefits and Toxicological Hazards. Open Nanomed. J. 2018;5:16–22. doi: 10.2174/1875933501805010016. DOI
Korsvik C., Patil S., Seal S., Self W.T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 2007;10:1056–1058. doi: 10.1039/b615134e. PubMed DOI
Deshpande S., Patil S., Kuchibhatla S.V., Seal S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys. Lett. 2005;87:133113. doi: 10.1063/1.2061873. DOI
Asati A., Santra S., Kaittanis C., Nath S., Perez J.M. Oxidase-Like Activity of Polymer-Coated Cerium Oxide Nanoparticles. Angew. Chem. Int. Ed. 2009;48:2308–2312. doi: 10.1002/anie.200805279. PubMed DOI PMC
Karakoti A.S., Tsigkou O., Yue S., Lee P.D., Stevens M.M., Jones J.R., Seal S. Rare earth oxides as nanoadditives in 3-D nanocomposite scaffolds for bone regeneration. J. Mater. Chem. 2010;20:8912–8919. doi: 10.1039/c0jm01072c. DOI
Yokel R.A., Hussain S., Garantziotis S., Demokritou P., Castranova V., Cassee F.R. The yin: An adverse health perspective of nanoceria: Uptake, distribution, accumulation, and mechanisms of its toxicity. Environ. Sci. Nano. 2014;1:406–428. doi: 10.1039/C4EN00039K. PubMed DOI PMC
Haugen H.J., Monjo M., Rubert M., Verket A., Lyngstadaas S.P., Ellingsen J.E., Rønold H.J., Wohlfahrt J.C. Porous ceramic titanium dioxide scaffolds promote bone formation in rabbit peri-implant cortical defect model. Acta Biomater. 2013;9:5390–5399. doi: 10.1016/j.actbio.2012.09.009. PubMed DOI
Martin P., Leibovich S.J. Inflammatory cells during wound repair: The good, the bad and the ugly. Trends Cell Biol. 2005;15:599–607. doi: 10.1016/j.tcb.2005.09.002. PubMed DOI
Fu G., Vary P.S., Lin C.-T. Anatase TiO 2 Nanocomposites for Antimicrobial Coatings. J. Phys. Chem. B. 2005;109:8889–8898. doi: 10.1021/jp0502196. PubMed DOI
Kaviyarasu K., Geetha N., Kanimozhi K., Magdalane C.M., Sivaranjani S., Ayeshamariam A., Kennedy J., Maaza M. In vitro cytotoxicity effect and antibacterial performance of human lung epithelial cells A549 activity of Zinc oxide doped TiO 2 nanocrystals: Investigation of bio-medical application by chemical method. Mater. Sci. Eng. C. 2017;74:325–333. doi: 10.1016/j.msec.2016.12.024. PubMed DOI
Hu C., Lan Y., Qu J., Hu X., Wang A. Ag/AgBr/TiO2 Visible Light Photocatalyst for Destruction of Azodyes and Bacteria. J. Phys. Chem. B. 2006;110:4066–4072. doi: 10.1021/jp0564400. PubMed DOI
Battin T.J., von der Kammer F., Weilhartner A., Ottofuelling S., Hofmann T. Nanostructured TiO2: Transport Behavior and Effects on Aquatic Microbial Communities under Environmental Conditions. Environ. Sci. Technol. 2009;43:8098–8104. doi: 10.1021/es9017046. PubMed DOI
Jafari S., Mahyad B., Hashemzadeh H., Janfaza S., Gholikhani T., Tayebi L. Biomedical Applications of TiO2 Nanostructures: Recent Advances. Int. J. Nanomed. 2020;15:3447–3470. doi: 10.2147/IJN.S249441. PubMed DOI PMC
Friedrich R.P., Cicha I., Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. Nanomaterials. 2021;11:2337. doi: 10.3390/nano11092337. PubMed DOI PMC
Kumar A., Jena P.K., Behera S., Lockey R.F., Mohapatra S., Mohapatra S. Multifunctional magnetic nanoparticles for targeted delivery. Nanomed. Nanotechnol. Biol. Med. 2010;6:64–69. doi: 10.1016/j.nano.2009.04.002. PubMed DOI PMC
Cicha I., Alexiou C. Cardiovascular applications of magnetic particles. J. Magn. Magn. Mater. 2021;518:167428. doi: 10.1016/j.jmmm.2020.167428. DOI
Mathiasen A.B., Hansen L., Friis T., Thomsen C., Bhakoo K., Kastrup J. Optimal Labeling Dose, Labeling Time, and Magnetic Resonance Imaging Detection Limits of Ultrasmall Superparamagnetic Iron-Oxide Nanoparticle Labeled Mesenchymal Stromal Cells. Stem Cells Int. 2013;2013:353105. doi: 10.1155/2013/353105. PubMed DOI PMC
Parashurama N., Ahn B.-C., Ziv K., Ito K., Paulmurugan R., Willmann J.K., Chung J., Ikeno F., Swanson J.C., Merk D.R., et al. Multimodality Molecular Imaging of Cardiac Cell Transplantation: Part II. In Vivo Imaging of Bone Marrow Stromal Cells in Swine with PET/CT and MR Imaging. Radiology. 2016;280:826–836. doi: 10.1148/radiol.2016151150. PubMed DOI PMC
Nejati M., Rostami M., Mirzaei H., Rahimi-Nasrabadi M., Vosoughifar M., Nasab A.S., Ganjali M.R. Green methods for the preparation of MgO nanomaterials and their drug delivery, anti-cancer and anti-bacterial potentials: A review. Inorg. Chem. Commun. 2022;136:109107. doi: 10.1016/j.inoche.2021.109107. DOI
Narender S.S., Varma V.V.S., Srikar C.S., Ruchitha J., Varma P.A., Praveen B.V.S. Nickel Oxide Nanoparticles: A Brief Review of Their Synthesis, Characterization, and Applications. Chem. Eng. Technol. 2022;45:397–409. doi: 10.1002/ceat.202100442. DOI
Alsharari S.S., Alenezi M.A., Al Tami M.S., Soliman M. Recent advances in the Biosynthesis of Zirconium Oxide Nanoparticles and their Biological Applications. Baghdad Sci. J. 2022:41–57. doi: 10.21123/bsj.2022.7055. DOI
Skheel A.Z., Jaduaa M.H., Abd A.N. Green synthesis of cadmium oxide nanoparticles for biomedical applications (antibacterial, and anticancer activities) Mater. Today Proc. 2021;45:5793–5799. doi: 10.1016/j.matpr.2021.03.168. DOI
Gowri S., Gopinath K., Arumugam A. Experimental and computational assessment of mycosynthesized CdO nanoparticles towards biomedical applications. J. Photochem. Photobiol. B Biol. 2018;180:166–174. doi: 10.1016/j.jphotobiol.2018.02.009. PubMed DOI
Khorsand Zak A., Razali R., Abd Majid W.H., Darroudi M. Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles. Int. J. Nanomed. 2011;6:1399. doi: 10.2147/IJN.S19693. PubMed DOI PMC
Hudlikar M., Joglekar S., Dhaygude M., Kodam K. Latex-mediated synthesis of ZnS nanoparticles: Green synthesis approach. J. Nanopart. Res. 2012;14:865. doi: 10.1007/s11051-012-0865-x. DOI
Singhal G., Bhavesh R., Kasariya K., Sharma A.R., Singh R.P. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J. Nanopart. Res. 2011;13:2981–2988. doi: 10.1007/s11051-010-0193-y. DOI
Mishra P.K., Mishra H., Ekielski A., Talegaonkar S., Vaidya B. Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications. Drug Discov. Today. 2017;22:1825–1834. doi: 10.1016/j.drudis.2017.08.006. PubMed DOI
Mohanta Y.K., Nayak D., Mishra A.K., Chakrabartty I., Ray M.K., Mohanta T.K., Tayung K., Rajaganesh R., Vasanthakumaran M., Muthupandian S., et al. Green Synthesis of Endolichenic Fungi Functionalized Silver Nanoparticles: The Role in Antimicrobial, Anti-Cancer, and Mosquitocidal Activities. Int. J. Mol. Sci. 2022;23:10626. doi: 10.3390/ijms231810626. PubMed DOI PMC
Srivastava V., Gusain D., Sharma Y.C. Synthesis, characterization and application of zinc oxide nanoparticles (n-ZnO) Ceram. Int. 2013;39:9803–9808. doi: 10.1016/j.ceramint.2013.04.110. DOI
Sharma R.K., Ghose R. Synthesis of zinc oxide nanoparticles by homogeneous precipitation method and its application in antifungal activity against Candida albicans. Ceram. Int. 2015;41:967–975. doi: 10.1016/j.ceramint.2014.09.016. DOI
Hayat K., Gondal M.A., Khaled M.M., Ahmed S., Shemsi A.M. Nano ZnO synthesis by modified sol gel method and its application in heterogeneous photocatalytic removal of phenol from water. Appl. Catal. A Gen. 2011;393:122–129. doi: 10.1016/j.apcata.2010.11.032. DOI
Wang Y., Zhang C., Bi S., Luo G. Preparation of ZnO nanoparticles using the direct precipitation method in a membrane dispersion micro-structured reactor. Powder Technol. 2010;202:130–136. doi: 10.1016/j.powtec.2010.04.027. DOI
Hijaz M., Das S., Mert I., Gupta A., Al-Wahab Z., Tebbe C., Dar S., Chhina J., Giri S., Munkarah A., et al. Folic acid tagged nanoceria as a novel therapeutic agent in ovarian cancer. BMC Cancer. 2016;16:220. doi: 10.1186/s12885-016-2206-4. PubMed DOI PMC
Li H., Liu C., Zeng Y.-P., Hao Y.-H., Huang J.-W., Yang Z.-Y., Li R. Nanoceria-Mediated Drug Delivery for Targeted Photodynamic Therapy on Drug-Resistant Breast Cancer. ACS Appl. Mater. Interfaces. 2016;8:31510–31523. doi: 10.1021/acsami.6b07338. PubMed DOI
Chang H.-Y., Chen H.-I. Morphological evolution for CeO2 nanoparticles synthesized by precipitation technique. J. Cryst. Growth. 2005;283:457–468. doi: 10.1016/j.jcrysgro.2005.06.002. DOI
Kundu M., Karunakaran G., Van Minh N., Kuznetsov D. Improved Electrochemical Performance of Nanostructured Fe2O3 Anode Synthesized by Chemical Precipitation Method for Lithium-ion Batteries. J. Clust. Sci. 2017;28:1285–1293. doi: 10.1007/s10876-016-1140-6. DOI
Nazari M., Ghasemi N., Maddah H., Motlagh M.M. Synthesis and characterization of maghemite nanopowders by chemical precipitation method. J. Nanostruct. Chem. 2014;4:99–104. doi: 10.1007/s40097-014-0099-9. DOI
Carvalho M.D., Henriques F., Ferreira L.P., Godinho M., Cruz M.M. Iron oxide nanoparticles: The Influence of synthesis method and size on composition and magnetic properties. J. Solid State Chem. 2013;201:144–152. doi: 10.1016/j.jssc.2013.02.024. DOI
Buraso W., Lachom V., Siriya P., Laokul P. Synthesis of TiO2 nanoparticles via a simple precipitation method and photocatalytic performance. Mater. Res. Express. 2018;5:115003. doi: 10.1088/2053-1591/aadbf0. DOI
Pilarska A., Paukszta D., Ciesielczyk F., Jesionowski T. Physico-chemical and dispersive characterisation of magnesium oxides precipitated from the Mg(NO3)2 and MgSO4 solutions. Pol. J. Chem. Technol. 2010;12:52–56. doi: 10.2478/v10026-010-0018-x. DOI
Song X., Sun S., Zhang D., Wang J., Yu J. Synthesis and characterization of magnesium hydroxide by batch reaction crystallization. Front. Chem. Sci. Eng. 2011;5:416–421. doi: 10.1007/s11705-011-1125-9. DOI
Bahadur J., Sen D., Mazumder S., Ramanathan S. Effect of heat treatment on pore structure in nano-crystalline NiO: A small angle neutron scattering study. J. Solid State Chem. 2008;181:1227–1235. doi: 10.1016/j.jssc.2008.01.050. DOI
Sharma H., Kumar K., Choudhary C., Mishra P.K., Vaidya B. Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug. Artif. Cells Nanomed. Biotechnol. 2016;44:672–679. doi: 10.3109/21691401.2014.978980. PubMed DOI
Karakoti A.S., Monteiro-Riviere N.A., Aggarwal R., Davis J.P., Narayan R.J., Self W.T., McGinnis J., Seal S. Nanoceria as antioxidant: Synthesis and biomedical applications. JOM. 2008;60:33–37. doi: 10.1007/s11837-008-0029-8. PubMed DOI PMC
Wong L.L., Pye Q.N., Chen L., Seal S., McGinnis J.F. Defining the Catalytic Activity of Nanoceria in the P23H-1 Rat, a Photoreceptor Degeneration Model. PLoS ONE. 2015;10:e0121977. doi: 10.1371/journal.pone.0121977. PubMed DOI PMC
Lassoued A., Dkhil B., Gadri A., Ammar S. Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results Phys. 2017;7:3007–3015. doi: 10.1016/j.rinp.2017.07.066. DOI
Sutradhar N., Sinhamahapatra A., Roy B., Bajaj H.C., Mukhopadhyay I., Panda A.B. Preparation of MgO nano-rods with strong catalytic activity via hydrated basic magnesium carbonates. Mater. Res. Bull. 2011;46:2163–2167. doi: 10.1016/j.materresbull.2011.02.024. DOI
Bahari Molla Mahaleh Y., Sadrnezhaad S.K., Hosseini D. NiO Nanoparticles Synthesis by Chemical Precipitation and Effect of Applied Surfactant on Distribution of Particle Size. J. Nanomater. 2008;2008:470595. doi: 10.1155/2008/470595. DOI
Krishnakanth R., Jayakumar G., Irudayaraj A.A., Raj A.D. Structural and Magnetic Properties of NiO and Fe-doped NiO Nanoparticles Synthesized by Chemical Co-precipitation Method. Mater. Today Proc. 2016;3:1370–1377. doi: 10.1016/j.matpr.2016.04.017. DOI
Lang J., Wang J., Zhang Q., Li X., Han Q., Wei M., Sui Y., Wang D., Yang J. Chemical precipitation synthesis and significant enhancement in photocatalytic activity of Ce-doped ZnO nanoparticles. Ceram. Int. 2016;42:14175–14181. doi: 10.1016/j.ceramint.2016.06.042. DOI
Ranjithkumar R., Irudayaraj A.A., Jayakumar G., Raj A.D., Karthick S., Vinayagamoorthy R. Synthesis and Properties of CdO and Fe doped CdO Nanoparticles. Mater. Today Proc. 2016;3:1378–1382. doi: 10.1016/j.matpr.2016.04.018. DOI
Nasrullah M., Gul F.Z., Hanif S., Mannan A., Naz S., Ali J.S., Zia M. Green and Chemical Syntheses of CdO NPs: A Comparative Study for Yield Attributes, Biological Characteristics, and Toxicity Concerns. ACS Omega. 2020;5:5739–5747. doi: 10.1021/acsomega.9b03769. PubMed DOI PMC
Tang Z.-X., Lv B.-F. MgO nanoparticles as antibacterial agent: Preparation and activity. Braz. J. Chem. Eng. 2014;31:591–601. doi: 10.1590/0104-6632.20140313s00002813. DOI
Baruwati B., Kumar D.K., Manorama S.V. Hydrothermal synthesis of highly crystalline ZnO nanoparticles: A competitive sensor for LPG and EtOH. Sens. Actuators B Chem. 2006;119:676–682. doi: 10.1016/j.snb.2006.01.028. DOI
Ramimoghadam D., Bin Hussein M.Z., Taufiq-Yap Y.H. Hydrothermal synthesis of zinc oxide nanoparticles using rice as soft biotemplate. Chem. Cent. J. 2013;7:136. doi: 10.1186/1752-153X-7-136. PubMed DOI PMC
Maria Magdalane C., Kaviyarasu K., Siddhardha B., Ramalingam G. Synthesis and characterization of CeO2 nanoparticles by hydrothermal method. Mater. Today Proc. 2021;36:130–132. doi: 10.1016/j.matpr.2020.02.283. DOI
Wang F., Qin X.F., Meng Y.F., Guo Z.L., Yang L.X., Ming Y.F. Hydrothermal synthesis and characterization of α-Fe2O3 nanoparticles. Mater. Sci. Semicond. Process. 2013;16:802–806. doi: 10.1016/j.mssp.2012.12.029. DOI
Gomathi Thanga Keerthana B., Solaiyammal T., Muniyappan S., Murugakoothan P. Hydrothermal synthesis and characterization of TiO 2 nanostructures prepared using different solvents. Mater. Lett. 2018;220:20–23. doi: 10.1016/j.matlet.2018.02.119. DOI
Huang L., Li D.-Q., Lin Y.-J., Wei M., Evans D.G., Duan X. Controllable preparation of Nano-MgO and investigation of its bactericidal properties. J. Inorg. Biochem. 2005;99:986–993. doi: 10.1016/j.jinorgbio.2004.12.022. PubMed DOI
Alfaro A., León A., Guajardo-Correa E., Reúquen P., Torres F., Mery M., Segura R., Zapata P.A., Orihuela P.A. MgO nanoparticles coated with polyethylene glycol as carrier for 2-Methoxyestradiol anticancer drug. PLoS ONE. 2019;14:e0214900. doi: 10.1371/journal.pone.0214900. PubMed DOI PMC
Kumar A., Sanger A., Kumar A., Chandra R. Single-step growth of pyramidally textured NiO nanostructures with improved supercapacitive properties. Int. J. Hydrogen Energy. 2017;42:6080–6087. doi: 10.1016/j.ijhydene.2016.11.036. DOI
Cao S., Peng L., Han T., Liu B., Zhu D., Zhao C., Xu J., Tang Y., Wang J., He S. Hydrothermal synthesis of nanoparticles-assembled NiO microspheres and their sensing properties. Phys. E Low-Dimens. Syst. Nanostruct. 2020;118:113655. doi: 10.1016/j.physe.2019.113655. DOI
Somasundaram G., Rajan J., Sangaiya P., Dilip R. Hydrothermal synthesis of CdO nanoparticles for photocatalytic and antimicrobial activities. Results Mater. 2019;4:100044. doi: 10.1016/j.rinma.2019.100044. DOI
Walton R.I. Subcritical solvothermal synthesis of condensed inorganic materials. Chem. Soc. Rev. 2002;31:230–238. doi: 10.1039/b105762f. PubMed DOI
Razali R., Zak A.K., Majid W.A., Darroudi M. Solvothermal synthesis of microsphere ZnO nanostructures in DEA media. Ceram. Int. 2011;37:3657–3663. doi: 10.1016/j.ceramint.2011.06.026. DOI
Abdul Rashid N.M., Haw C., Chiu W., Khanis N.H., Rohaizad A., Khiew P., Abdul Rahman S. Structural- and optical-properties analysis of single crystalline hematite (α-Fe2O3) nanocubes prepared by one-pot hydrothermal approach. CrystEngComm. 2016;18:4720–4732. doi: 10.1039/C6CE00573J. DOI
Zhang X.L., Qiao R., Kim J.C., Kang Y.S. Inorganic Cluster Synthesis and Characterization of Transition-Metal-Doped ZnO Hollow Spheres. Cryst. Growth Des. 2008;8:2609–2613. doi: 10.1021/cg800260h. DOI
Chaianansutcharit S., Mekasuwandumrong O., Praserthdam P. Effect of Organic Solvents on Iron Oxide Nanoparticles by the Solvothermal Method. Cryst. Growth Des. 2006;6:40–45. doi: 10.1021/cg030072c. DOI
Kim C.-S., Moon B.K., Park J.-H., Choi B.-C., Seo H.-J. Solvothermal synthesis of nanocrystalline TiO2 in toluene with surfactant. J. Cryst. Growth. 2003;257:309–315. doi: 10.1016/S0022-0248(03)01468-4. DOI
Ghosh M., Biswas K., Sundaresan A., Rao C.N.R. MnO and NiO nanoparticles: Synthesis and magnetic properties. J. Mater. Chem. 2006;16:106–111. doi: 10.1039/B511920K. DOI
Liu J., Sun Z., Deng Y., Zou Y., Li C., Guo X., Xiong L., Gao Y., Li F., Zhao D. Highly Water-Dispersible Biocompatible Magnetite Particles with Low Cytotoxicity Stabilized by Citrate Groups. Angew. Chem. Int. Ed. 2009;48:5875–5879. doi: 10.1002/anie.200901566. PubMed DOI
Bokov D., Jalil A.T., Chupradit S., Suksatan W., Ansari M.J., Shewael I.H., Valiev G.H., Kianfar E. Nanomaterial by Sol-Gel Method: Synthesis and Application. Adv. Mater. Sci. Eng. 2021;2021:5102014. doi: 10.1155/2021/5102014. DOI
Hasnidawani J.N., Azlina H.N., Norita H., Bonnia N.N., Ratim S., Ali E.S. Synthesis of ZnO Nanostructures Using Sol-Gel Method. Procedia Chem. 2016;19:211–216. doi: 10.1016/j.proche.2016.03.095. DOI
Raja K., Jaculine M.M., Jose M., Verma S., Prince A.A.M., Ilangovan K., Sethusankar K., Das S.J. Sol–gel synthesis and characterization of α-Fe2O3 nanoparticles. Superlattices Microstruct. 2015;86:306–312. doi: 10.1016/j.spmi.2015.07.044. DOI
Wu Y., He Y., Wu T., Chen T., Weng W., Wan H. Influence of some parameters on the synthesis of nanosized NiO material by modified sol–gel method. Mater. Lett. 2007;61:3174–3178. doi: 10.1016/j.matlet.2006.11.018. DOI
Thota S., Kumar J. Sol–gel synthesis and anomalous magnetic behaviour of NiO nanoparticles. J. Phys. Chem. Solids. 2007;68:1951–1964. doi: 10.1016/j.jpcs.2007.06.010. DOI
Zahera M., Khan S.A., Khan I.A., Sharma R.K., Sinha N., Al-Shwaiman H.A., Al-Zahrani R.R., Elgorban A.M., Syed A., Khan M.S. Cadmium oxide nanoparticles: An attractive candidate for novel therapeutic approaches. Colloids Surf. A Physicochem. Eng. Asp. 2020;585:124017. doi: 10.1016/j.colsurfa.2019.124017. DOI
Wang Z., Zhang H., Zhang L., Yuan J., Yan S., Wang C. Low-temperature synthesis of ZnO nanoparticles by solid-state pyrolytic reaction. Nanotechnology. 2003;14:11–15. doi: 10.1088/0957-4484/14/1/303. DOI
Nikam A.V., Prasad B.L.V., Kulkarni A.A. Wet chemical synthesis of metal oxide nanoparticles: A review. CrystEngComm. 2018;20:5091–5107. doi: 10.1039/C8CE00487K. DOI
Mehra S., Bergerud A., Milliron D.J., Chan E.M., Salleo A. Core/Shell Approach to Dopant Incorporation and Shape Control in Colloidal Zinc Oxide Nanorods. Chem. Mater. 2016;28:3454–3461. doi: 10.1021/acs.chemmater.6b00981. DOI
Park J., An K., Hwang Y., Park J.-G., Noh H.-J., Kim J.-Y., Park J.-H., Hwang N.-M., Hyeon T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004;3:891–895. doi: 10.1038/nmat1251. PubMed DOI
Song H.-W., Kim N.-Y., Park J.-E., Ko J.-H., Hickey R.J., Kim Y.-H., Park S.-J. Shape-controlled syntheses of metal oxide nanoparticles by the introduction of rare-earth metals. Nanoscale. 2017;9:2732–2738. doi: 10.1039/C6NR07555J. PubMed DOI
Imagawa H., Suda A., Yamamura K., Sun S. Monodisperse CeO2 Nanoparticles and Their Oxygen Storage and Release Properties. J. Phys. Chem. C. 2011;115:1740–1745. doi: 10.1021/jp109878j. DOI
Deshmukh S.M., Tamboli M.S., Shaikh H., Babar S.B., Hiwarale D.P., Thate A.G., Shaikh A.F., Alam M.A., Khetre S.M., Bamane S.R. A Facile Urea-Assisted Thermal Decomposition Process of TiO2 Nanoparticles and Their Photocatalytic Activity. Coatings. 2021;11:165. doi: 10.3390/coatings11020165. DOI
Mohandes F., Davar F., Salavati-Niasari M. Magnesium oxide nanocrystals via thermal decomposition of magnesium oxalate. J. Phys. Chem. Solids. 2010;71:1623–1628. doi: 10.1016/j.jpcs.2010.08.014. DOI
Xiang L., Deng X.Y., Jin Y. Experimental study on synthesis of NiO nano-particles. Scr. Mater. 2002;47:219–224. doi: 10.1016/S1359-6462(02)00108-2. DOI
Qasem M.A.A., Aziz M.A., Qamaruddin M., Kim J.-P., Onaizi S.A. Influence of Pamoic Acid as a Complexing Agent in the Thermal Preparation of NiO Nanoparticles: Application to Electrochemical Water Oxidation. ChemistrySelect. 2018;3:573–580. doi: 10.1002/slct.201702340. DOI
Mohammadikish M., Hajisadeghi H. Synthesis and growth mechanism of CdO nanoparticles prepared from thermal decomposition of CdSO3 nanorods. J. Mater. Sci. Mater. Electron. 2016;27:6480–6487. doi: 10.1007/s10854-016-4589-z. DOI
Hu X., Gong J., Zhang L., Yu J.C. Continuous Size Tuning of Monodisperse ZnO Colloidal Nanocrystal Clusters by a Microwave-Polyol Process and Their Application for Humidity Sensing. Adv. Mater. 2008;20:4845–4850. doi: 10.1002/adma.200801433. DOI
Soren S., Bessoi M., Parhi P. A rapid microwave initiated polyol synthesis of cerium oxide nanoparticle using different cerium precursors. Ceram. Int. 2015;41:8114–8118. doi: 10.1016/j.ceramint.2015.03.013. DOI
Wang W.-W., Zhu Y.-J., Ruan M.-L. Microwave-assisted synthesis and magnetic property of magnetite and hematite nanoparticles. J. Nanopart. Res. 2007;9:419–426. doi: 10.1007/s11051-005-9051-8. DOI
Selvam N.C.S., Kumar R.T., Yogeenth K., Kennedy L.J., Sekaran G., Vijaya J.J. Simple and rapid synthesis of Cadmium Oxide (CdO) nanospheres by a microwave-assisted combustion method. Powder Technol. 2011;211:250–255. doi: 10.1016/j.powtec.2011.04.031. DOI
Tohidiyan Z., Hashemi S., Boroujeni K.P. Facile microwave-assisted synthesis of NiO nanoparticles and its effect on soybean (Glycine max) IET Nanobiotechnol. 2019;13:101–106. doi: 10.1049/iet-nbt.2018.5003. PubMed DOI PMC
Dar M.I., Chandiran A.K., Grätzel M., Nazeeruddin M.K., Shivashankar S.A. Controlled synthesis of TiO2 nanoparticles and nanospheres using a microwave assisted approach for their application in dye-sensitized solar cells. J. Mater. Chem. A. 2014;2:1662–1667. doi: 10.1039/C3TA14130F. DOI
Wang X., Tian J., Fei C., Lv L., Wang Y., Cao G. Rapid construction of TiO2 aggregates using microwave assisted synthesis and its application for dye-sensitized solar cells. RSC Adv. 2015;5:8622–8629. doi: 10.1039/C4RA11266K. DOI
Allahyar S., Taheri M., Abharya A., Mohammadi K. Simple new synthesis of nickel oxide (NiO) in water using microwave irradiation. J. Mater. Sci. Mater. Electron. 2017;28:2846–2851. doi: 10.1007/s10854-016-5868-4. DOI
Hasanpoor M., Aliofkhazraei M., Delavari H. Microwave-assisted Synthesis of Zinc Oxide Nanoparticles. Procedia Mater. Sci. 2015;11:320–325. doi: 10.1016/j.mspro.2015.11.101. DOI
Cho S., Jung S.-H., Lee K.-H. Morphology-Controlled Growth of ZnO Nanostructures Using Microwave Irradiation: From Basic to Complex Structures. J. Phys. Chem. C. 2008;112:12769–12776. doi: 10.1021/jp803783s. DOI
Sharma D., Sharma S., Kaith B.S., Rajput J., Kaur M. Synthesis of ZnO nanoparticles using surfactant free in-air and microwave method. Appl. Surf. Sci. 2011;257:9661–9672. doi: 10.1016/j.apsusc.2011.06.094. DOI
Seyedi M., Haratian S., Khaki J.V. Mechanochemical Synthesis of Fe2O3 Nanoparticles. Procedia Mater. Sci. 2015;11:309–313. doi: 10.1016/j.mspro.2015.11.093. DOI
Besenhard M.O., LaGrow A.P., Hodzic A., Kriechbaum M., Panariello L., Bais G., Loizou K., Damilos S., Cruz M.M., Thanh N.T.K., et al. Co-precipitation synthesis of stable iron oxide nanoparticles with NaOH: New insights and continuous production via flow chemistry. Chem. Eng. J. 2020;399:125740. doi: 10.1016/j.cej.2020.125740. DOI
Zhang L., Li Y., Zhang Q., Shi G., Wang H. Fast Synthesis of Highly Dispersed Anatase TiO2 Nanocrystals in a Microfluidic Reactor. Chem. Lett. 2011;40:1371–1373. doi: 10.1246/cl.2011.1371. DOI
Abou Hassan A., Sandre O., Cabuil V., Tabeling P. Synthesis of iron oxide nanoparticles in a microfluidic device: Preliminary results in a coaxial flow millichannel. Chem. Commun. 2008;15:1783–1785. doi: 10.1039/b719550h. PubMed DOI
Gund G.S., Lokhande C.D., Park H.S. Controlled synthesis of hierarchical nanoflake structure of NiO thin film for supercapacitor application. J. Alloys Compd. 2018;741:549–556. doi: 10.1016/j.jallcom.2018.01.166. DOI
Cai H., Sun B., Chen H., Li X., Suo H., Zhao C. Enhanced electrochemical glucose-sensing properties of NiO nanospheres modified with indium. J. Mater. Sci. 2017;52:11547–11553. doi: 10.1007/s10853-017-1300-6. DOI
Wei Z., Qiao H., Yang H., Zhang C., Yan X. Characterization of NiO nanoparticles by anodic arc plasma method. J. Alloys Compd. 2009;479:855–858. doi: 10.1016/j.jallcom.2009.01.064. DOI
Chouke P.B., Shrirame T., Potbhare A.K., Mondal A., Chaudhary A.R., Mondal S., Thakare S.R., Nepovimova E., Valis M., Kuca K., et al. Bioinspired metal/metal oxide nanoparticles: A road map to potential applications. Mater. Today Adv. 2022;16:100314. doi: 10.1016/j.mtadv.2022.100314. DOI
Cuong H.N., Pansambal S., Ghotekar S., Oza R., Hai N.T.T., Viet N.M., Nguyen V.-H. New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review. Environ. Res. 2022;203:111858. doi: 10.1016/j.envres.2021.111858. PubMed DOI
Pansambal S., Oza R., Borgave S., Chauhan A., Bardapurkar P., Vyas S., Ghotekar S. Bioengineered cerium oxide (CeO2) nanoparticles and their diverse applications: A review. Appl. Nanosci. 2022:1–26. doi: 10.1007/s13204-022-02574-8. DOI
Jadoun S., Arif R., Jangid N.K., Meena R.K. Green synthesis of nanoparticles using plant extracts: A review. Environ. Chem. Lett. 2021;19:355–374. doi: 10.1007/s10311-020-01074-x. DOI
Gade A.K., Bonde P., Ingle A.P., Marcato P.D., Durán N., Rai M.K. Exploitation of Aspergillus niger for Synthesis of Silver Nanoparticles. J. Biobased Mater. Bioenergy. 2008;2:243–247. doi: 10.1166/jbmb.2008.401. DOI
Durán N., Marcato P.D., Alves O.L., de Souza G.I.H., Esposito E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechnol. 2005;3:8. doi: 10.1186/1477-3155-3-8. PubMed DOI PMC
Mohammed S.S.S., Lawrance A.V., Sampath S., Sunderam V., Madhavan Y. Facile green synthesis of silver nanoparticles from sprouted Zingiberaceae species: Spectral characterisation and its potential biological applications. Mater. Technol. 2022;37:533–546. doi: 10.1080/10667857.2020.1863571. DOI
Thakur M., Poojary S., Swain N. Nanotechnology Applications in Health and Environmental Sciences. Springer; Cham, Switzerland: 2021. Green Synthesis of Iron Oxide Nanoparticles and Its Biomedical Applications; pp. 83–109.
Lakshminarayanan S., Shereen M.F., Niraimathi K.L., Brindha P., Arumugam A. One-pot green synthesis of iron oxide nanoparticles from Bauhinia tomentosa: Characterization and application towards synthesis of 1, 3 diolein. Sci. Rep. 2021;11:8643. doi: 10.1038/s41598-021-87960-y. PubMed DOI PMC
Aravind M., Amalanathan M., Mary M.S.M. Synthesis of TiO2 nanoparticles by chemical and green synthesis methods and their multifaceted properties. SN Appl. Sci. 2021;3:409. doi: 10.1007/s42452-021-04281-5. DOI
Sun Y., Wang S., Zheng J. Biosynthesis of TiO2 nanoparticles and their application for treatment of brain injury-An in-vitro toxicity study towards central nervous system. J. Photochem. Photobiol. B Biol. 2019;194:1–5. doi: 10.1016/j.jphotobiol.2019.02.008. PubMed DOI
Abinaya S., Kavitha H.P., Prakash M., Muthukrishnaraj A. Green synthesis of magnesium oxide nanoparticles and its applications: A review. Sustain. Chem. Pharm. 2021;19:100368. doi: 10.1016/j.scp.2020.100368. DOI
Bouafia A., Laouini S.E., Ouahrani M.R. A Review on Green Synthesis of CuO Nanoparticles using Plant Extract and Evaluation of Antimicrobial Activity. Asian J. Res. Chem. 2020;13:65. doi: 10.5958/0974-4150.2020.00014.0. DOI
Lingaraju K., Naika H.R., Nagabhushana H., Jayanna K., Devaraja S., Nagaraju G. Biosynthesis of Nickel oxide Nanoparticles from Euphorbia heterophylla (L.) and their biological application. Arab. J. Chem. 2020;13:4712–4719. doi: 10.1016/j.arabjc.2019.11.003. DOI
Saraswathi V.S., Santhakumar K. Photocatalytic activity against azo dye and cytotoxicity on MCF-7 cell lines of zirconium oxide nanoparticle mediated using leaves of Lagerstroemia speciosa. J. Photochem. Photobiol. B Biol. 2017;169:47–55. doi: 10.1016/j.jphotobiol.2017.02.023. PubMed DOI
Vennila R., Kamaraj P., Arthanareeswari M., Sridharan M., Sudha G., Devikala S., Arockiaselvi J., Sivakumar B., Banu A.H., Rajeshwari K. Biosynthesis of ZrO Nanoparticles And Its Natural Dye Sensitized Solar Cell Studies. Mater. Today Proc. 2018;5:8691–8698. doi: 10.1016/j.matpr.2017.12.295. DOI
van Tran T., Nguyen D.T.C., Kumar P.S., Din A.T.M., Jalil A.A., Vo D.-V.N. Green synthesis of ZrO2 nanoparticles and nanocomposites for biomedical and environmental applications: A review. Environ. Chem. Lett. 2022;20:1309–1331. doi: 10.1007/s10311-021-01367-9. PubMed DOI PMC
Ghotekar S. Green Synthesis of Fluorescent CdO Nanoparticles using Leucaena leucocephala L. Extract and their Biological Activities. J. Bacteriol. Mycol. Open Access. 2017;5:00148. doi: 10.15406/jbmoa.2017.05.00148. DOI
Lin Y.-H., Shen L.-J., Chou T.-H., Shih Y.-H. Synthesis, Stability, and Cytotoxicity of Novel Cerium Oxide Nanoparticles for Biomedical Applications. J. Clust. Sci. 2021;32:405–413. doi: 10.1007/s10876-020-01798-4. DOI
Singh K.R., Nayak V., Sarkar T., Singh R.P. Cerium oxide nanoparticles: Properties, biosynthesis and biomedical application. RSC Adv. 2020;10:27194–27214. doi: 10.1039/D0RA04736H. PubMed DOI PMC
Nelson B., Johnson M., Walker M., Riley K., Sims C. Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine. Antioxidants. 2016;5:15. doi: 10.3390/antiox5020015. PubMed DOI PMC
Ahmed R.M., Hasan I. A review on properties and applications of TiO2 and associated nanocomposite materials. Mater. Today Proc. 2021 doi: 10.1016/j.matpr.2021.04.381. DOI
Chinthala M., Balakrishnan A., Venkataraman P., Gowtham V.M., Polagani R.K. Synthesis and applications of nano-MgO and composites for medicine, energy, and environmental remediation: A review. Environ. Chem. Lett. 2021;19:4415–4454. doi: 10.1007/s10311-021-01299-4. DOI
Pilarska A.A., Klapiszewski Ł., Jesionowski T. Recent development in the synthesis, modification and application of Mg(OH)2 and MgO: A review. Powder Technol. 2017;319:373–407. doi: 10.1016/j.powtec.2017.07.009. DOI
Manyasree D., Peddi K.M., Ravikumar R. CuO Nanoparticles: Synthesis, Characterization and Their Bactericidal Efficacy. Int. J. Appl. Pharm. 2017;9:71–74. doi: 10.22159/ijap.2017v9i6.71757. DOI
Bonomo M. Synthesis and characterization of NiO nanostructures: A review. J. Nanopart. Res. 2018;20:222. doi: 10.1007/s11051-018-4327-y. DOI
Mou J., Ren Y., Wang J., Wang C., Zou Y., Lou K., Zheng Z., Zhang D. Nickel oxide nanoparticle synthesis and photocatalytic applications: Evolution from conventional methods to novel microfluidic approaches. Microfluid. Nanofluid. 2022;26:25. doi: 10.1007/s10404-022-02534-2. DOI
Ghotekar S. A review on plant extract mediated biogenic synthesis of CdO nanoparticles and their recent applications. Asian J. Green Chem. 2019;3:187–200. doi: 10.22034/ajgc.2018.140313.1084. DOI
Elsabahy M., Wooley K.L. Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 2012;41:2545–2561. doi: 10.1039/c2cs15327k. PubMed DOI PMC
Ankamwar B. Biomedical Engineering—Technical Applications in Medicine. InTech; London, UK: 2012. Size and Shape Effect on Biomedical Applications of Nanomaterials.
Feng Q., Liu Y., Huang J., Chen K., Huang J., Xiao K. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci. Rep. 2018;8:2082. doi: 10.1038/s41598-018-19628-z. PubMed DOI PMC
Andrade R.G.D., Veloso S.R.S., Castanheira E.M.S. Shape Anisotropic Iron Oxide-Based Magnetic Nanoparticles: Synthesis and Biomedical Applications. Int. J. Mol. Sci. 2020;21:2455. doi: 10.3390/ijms21072455. PubMed DOI PMC
Morones J.R., Elechiguerra J.L., Camacho A., Holt K., Kouri J.B., Ramírez J.T., Yacaman M.J. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346–2353. doi: 10.1088/0957-4484/16/10/059. PubMed DOI
Utembe W., Potgieter K., Stefaniak A.B., Gulumian M. Dissolution and biodurability: Important parameters needed for risk assessment of nanomaterials. Part. Fibre Toxicol. 2015;12:11. doi: 10.1186/s12989-015-0088-2. PubMed DOI PMC
Michaelis M., Fischer C., Ciacchi L.C., Luttge A. Variability of Zinc Oxide Dissolution Rates. Environ. Sci. Technol. 2017;51:4297–4305. doi: 10.1021/acs.est.6b05732. PubMed DOI
He H., Cao J., Fei X., Duan N. High-temperature annealing of ZnO nanoparticles increases the dissolution magnitude and rate in water by altering O vacancy distribution. Environ. Int. 2019;130:104930. doi: 10.1016/j.envint.2019.104930. PubMed DOI
He Y., Ingudam S., Reed S., Gehring A., Strobaugh T.P., Irwin P. Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. J. Nanobiotechnol. 2016;14:54. doi: 10.1186/s12951-016-0202-0. PubMed DOI PMC
Avramescu M.-L., Rasmussen P.E., Chénier M., Gardner H.D. Influence of pH, particle size and crystal form on dissolution behaviour of engineered nanomaterials. Environ. Sci. Pollut. Res. 2017;24:1553–1564. doi: 10.1007/s11356-016-7932-2. PubMed DOI PMC
Nikolova M.P., Chavali M.S. Metal Oxide Nanoparticles as Biomedical Materials. Biomimetics. 2020;5:27. doi: 10.3390/biomimetics5020027. PubMed DOI PMC
Pham B.T.T., Colvin E.K., Pham N.T.H., Kim B.J., Fuller E.S., Moon E.A., Barbey R., Yuen S., Rickman B.H., Bryce N.S., et al. Biodistribution and Clearance of Stable Superparamagnetic Maghemite Iron Oxide Nanoparticles in Mice Following Intraperitoneal Administration. Int. J. Mol. Sci. 2018;19:205. doi: 10.3390/ijms19010205. PubMed DOI PMC
Osaka T., Nakanishi T., Shanmugam S., Takahama S., Zhang H. Effect of surface charge of magnetite nanoparticles on their internalization into breast cancer and umbilical vein endothelial cells. Colloids Surf. B Biointerfaces. 2009;71:325–330. doi: 10.1016/j.colsurfb.2009.03.004. PubMed DOI
Augustine R., Mathew A.P., Sosnik A. Metal Oxide Nanoparticles as Versatile Therapeutic Agents Modulating Cell Signaling Pathways: Linking Nanotechnology with Molecular Medicine. Appl. Mater. Today. 2017;7:91–103. doi: 10.1016/j.apmt.2017.01.010. DOI
Schanen B.C., Das S., Reilly C.M., Warren W.L., Self W.T., Seal S., Drake D.R. Immunomodulation and T Helper TH1/TH2 Response Polarization by CeO2 and TiO2 Nanoparticles. PLoS ONE. 2013;8:e62816. doi: 10.1371/journal.pone.0062816. PubMed DOI PMC
Lanone S., Rogerieux F., Geys J., Dupont A., Maillot-Marechal E., Boczkowski J., Lacroix G., Hoet P. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part. Fibre Toxicol. 2009;6:14. doi: 10.1186/1743-8977-6-14. PubMed DOI PMC
Rambabu D., Mangili V., Kumbam L.R., Sagara P.S., Nakka N., Yogesh M. Metal Oxides for Biomedical and Biosensor Applications. Elsevier; Amsterdam, The Netherlands: 2022. Surface Coating and Functionalization of Metal and Metal Oxide Nanoparticles for Biomedical Applications; pp. 205–231.
Sun S.-N., Wei C., Zhu Z.-Z., Hou Y.-L., Venkatraman S.S., Xu Z.-C. Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications. Chin. Phys. B. 2014;23:037503. doi: 10.1088/1674-1056/23/3/037503. DOI
Arias L.S., Pessan J.P., Vieira A.P.M., de Lima T.M.T., Delbem A.C.B., Monteiro D.R. Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity. Antibiotics. 2018;7:46. doi: 10.3390/antibiotics7020046. PubMed DOI PMC
Raghu S.N.V., Onyenso G., Mohajernia S., Killian M.S. Functionalization strategies to facilitate multi-depth, multi-molecule modifications of nanostructured oxides for triggered release applications. Surf. Sci. 2022;719:122024. doi: 10.1016/j.susc.2022.122024. DOI
Chaudhary R.G., Bhusari G.S., Tiple A.D., Rai A.R., Somkuvar S.R., Potbhare A.K., Lambat T.L., Ingle P.P., Abdala A.A. Metal/Metal Oxide Nanoparticles: Toxicity, Applications, and Future Prospects. Curr. Pharm. Des. 2019;25:4013–4029. doi: 10.2174/1381612825666191111091326. PubMed DOI
Soliman M.G., Pelaz B., Parak W.J., del Pino P. Phase Transfer and Polymer Coating Methods toward Improving the Stability of Metallic Nanoparticles for Biological Applications. Chem. Mater. 2015;27:990–997. doi: 10.1021/cm5043167. DOI
Aktan M.K., Coppola G.A., Van der Gucht M., Yoshioka T., Killian M.S., Lavigne R., Van der Eycken E., Steenackers H.P., Braem A. Influence of polydopamine functionalization on the rapid protein immobilization by alternating current electrophoretic deposition. Surf. Interfaces. 2022;34:102347. doi: 10.1016/j.surfin.2022.102347. DOI
Sperling R.A., Parak W.J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010;368:1333–1383. doi: 10.1098/rsta.2009.0273. PubMed DOI
Killian M.S., Schmuki P. Influence of bioactive linker molecules on protein adsorption. Surf. Interface Anal. 2014;46:193–197. doi: 10.1002/sia.5497. DOI
Farokhzad O.C., Karp J.M., Langer R. Nanoparticle—Aptamer bioconjugates for cancer targeting. Expert Opin. Drug Deliv. 2006;3:311–324. doi: 10.1517/17425247.3.3.311. PubMed DOI
Ahmad F., Salem-Bekhit M.M., Khan F., Alshehri S., Khan A., Ghoneim M.M., Wu H.-F., Taha E.I., Elbagory I. Unique Properties of Surface-Functionalized Nanoparticles for Bio-Application: Functionalization Mechanisms and Importance in Application. Nanomaterials. 2022;12:1333. doi: 10.3390/nano12081333. PubMed DOI PMC
Rajeshkumar S., Naik P. Synthesis and biomedical applications of Cerium oxide nanoparticles—A Review. Biotechnol. Rep. 2018;17:1–5. doi: 10.1016/j.btre.2017.11.008. PubMed DOI PMC
Wu S., Weng Z., Liu X., Yeung K.W.K., Chu P.K. Functionalized TiO2 Based Nanomaterials for Biomedical Applications. Adv. Funct. Mater. 2014;24:5464–5481. doi: 10.1002/adfm.201400706. DOI
Wintzheimer S., Genin E., Vellutini L., Le Bourdon G., Kessler M., Hackenberg S., Dembski S., Heuzé K. Functionalisation of TiO2 nanoparticles with a fluorescent organosilane: A synergy enabling their visualisation in biological cells and an enhanced photocatalytic activity. Colloids Surf. B Biointerfaces. 2019;181:1019–1025. doi: 10.1016/j.colsurfb.2019.05.060. PubMed DOI
Fan L., Zhang B., Qiu Z., Dharanipragada N.V.R.A., Timmer B.J.J., Zhang F., Sheng X., Liu T., Meng Q., Inge A.K., et al. Molecular Functionalization of NiO Nanocatalyst for Enhanced Water Oxidation by Electronic Structure Engineering. ChemSusChem. 2020;13:5901–5909. doi: 10.1002/cssc.202001716. PubMed DOI PMC
Ebnesajjad S. Surface Treatment of Materials for Adhesive Bonding. William Andrew; Norwich, NY, USA: 2014. Surface and Material Characterization Techniques; pp. 39–75. DOI
Chung I.-M., Rahuman A.A., Marimuthu S., Kirthi A.V., Anbarasan K., Rajakumar G. An Investigation of the Cytotoxicity and Caspase-Mediated Apoptotic Effect of Green Synthesized Zinc Oxide Nanoparticles Using Eclipta prostrata on Human Liver Carcinoma Cells. Nanomaterials. 2015;5:1317–1330. doi: 10.3390/nano5031317. PubMed DOI PMC
Wei F., Neal C.J., Sakthivel T.S., Kean T., Seal S., Coathup M.J. Multi-functional cerium oxide nanoparticles regulate inflammation and enhance osteogenesis. Mater. Sci. Eng. C. 2021;124:112041. doi: 10.1016/j.msec.2021.112041. PubMed DOI
Hirst S.M., Karakoti A.S., Tyler R.D., Sriranganathan N., Seal S., Reilly C.M. Anti-inflammatory Properties of Cerium Oxide Nanoparticles. Small. 2009;5:2848–2856. doi: 10.1002/smll.200901048. PubMed DOI
Balaji S., Mandal B.K., Vinod Kumar Reddy L., Sen D. Biogenic Ceria Nanoparticles (CeO2 NPs) for Effective Photocatalytic and Cytotoxic Activity. Bioengineering. 2020;7:26. doi: 10.3390/bioengineering7010026. PubMed DOI PMC
Rufus A., Sreeju N., Philip D. Synthesis of biogenic hematite (α-Fe2O3) nanoparticles for antibacterial and nanofluid applications. RSC Adv. 2016;6:94206–94217. doi: 10.1039/C6RA20240C. DOI
Mallick G., Labh J., Giri L., Pandey A.C., Karna S.P. Facile synthesis and electron transport properties of NiO nanostructures investigated by scanning tunneling microscopy. AIP Adv. 2017;7:085007. doi: 10.1063/1.4989977. DOI
Al-Fakeh M.S., Alsaedi R.O., Amiri N., Allazzam G.A. Synthesis, Characterization, and Antimicrobial of MnO and CdO Nanoparticles by Using a Calcination Method. Coatings. 2022;12:215. doi: 10.3390/coatings12020215. DOI
El-Belely E.F., Farag M.M.S., Said H.A., Amin A.S., Azab E., Gobouri A.A., Fouda A. Green Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) Using Arthrospira platensis (Class: Cyanophyceae) and Evaluation of their Biomedical Activities. Nanomaterials. 2021;11:95. doi: 10.3390/nano11010095. PubMed DOI PMC
Miri A., Sarani M. Biosynthesis, characterization and cytotoxic activity of CeO2 nanoparticles. Ceram. Int. 2018;44:12642–12647. doi: 10.1016/j.ceramint.2018.04.063. DOI
Singh A., Hussain I., Singh N.B., Singh H. Uptake, translocation and impact of green synthesized nanoceria on growth and antioxidant enzymes activity of Solanum lycopersicum L. Ecotoxicol. Environ. Saf. 2019;182:109410. doi: 10.1016/j.ecoenv.2019.109410. PubMed DOI
Zare E., Pourseyedi S., Khatami M., Darezereshki E. Simple biosynthesis of zinc oxide nanoparticles using nature’s source, and it’s in vitro bio-activity. J. Mol. Struct. 2017;1146:96–103. doi: 10.1016/j.molstruc.2017.05.118. DOI
Pugazhendhi A., Prabhu R., Muruganantham K., Shanmuganathan R., Natarajan S. Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. J. Photochem. Photobiol. B Biol. 2019;190:86–97. doi: 10.1016/j.jphotobiol.2018.11.014. PubMed DOI
Younis U., Rahi A.A., Danish S., Ali M.A., Ahmed N., Datta R., Fahad S., Holatko J., Hammerschmiedt T., Brtnicky M., et al. Fourier Transform Infrared Spectroscopy vibrational bands study of Spinacia oleracea and Trigonella corniculata under biochar amendment in naturally contaminated soil. PLoS ONE. 2021;16:e0253390. doi: 10.1371/journal.pone.0253390. PubMed DOI PMC
Fahelelbom K.M., Saleh A., Al-Tabakha M.M.A., Ashames A.A. Recent applications of quantitative analytical FTIR spectroscopy in pharmaceutical, biomedical, and clinical fields: A brief review. Rev. Anal. Chem. 2022;41:21–33. doi: 10.1515/revac-2022-0030. DOI
Mahajan R., Suriyanarayanan S., Nicholls I.A. Improved Solvothermal Synthesis of γ-Fe2O3 Magnetic Nanoparticles for SiO2 Coating. Nanomaterials. 2021;11:1889. doi: 10.3390/nano11081889. PubMed DOI PMC
Sanchez Tobon C., Ljubas D., Mandić V., Panžić I., Matijašić G., Ćurković L. Microwave-Assisted Synthesis of N/TiO2 Nanoparticles for Photocatalysis under Different Irradiation Spectra. Nanomaterials. 2022;12:1473. doi: 10.3390/nano12091473. PubMed DOI PMC
Fouda A., Awad M.A., Eid A.M., Saied E., Barghoth M.G., Hamza M.F., Awad M.F., Abdelbary S., Hassan S.E.-D. An Eco-Friendly Approach to the Control of Pathogenic Microbes and Anopheles stephensi Malarial Vector Using Magnesium Oxide Nanoparticles (Mg-NPs) Fabricated by Penicillium chrysogenum. Int. J. Mol. Sci. 2021;22:5096. doi: 10.3390/ijms22105096. PubMed DOI PMC
Greczynski G., Hultman L. The same chemical state of carbon gives rise to two peaks in X-ray photoelectron spectroscopy. Sci. Rep. 2021;11:11195. doi: 10.1038/s41598-021-90780-9. PubMed DOI PMC
Greczynski G., Hultman L. Reliable determination of chemical state in x-ray photoelectron spectroscopy based on sample-work-function referencing to adventitious carbon: Resolving the myth of apparent constant binding energy of the C 1s peak. Appl. Surf. Sci. 2018;451:99–103. doi: 10.1016/j.apsusc.2018.04.226. DOI
Biesinger M.C. Accessing the robustness of adventitious carbon for charge referencing (correction) purposes in XPS analysis: Insights from a multi-user facility data review. Appl. Surf. Sci. 2022;597:153681. doi: 10.1016/j.apsusc.2022.153681. DOI
Greczynski G., Hultman L. A step-by-step guide to perform X-ray photoelectron spectroscopy. J. Appl. Phys. 2022;132:011101. doi: 10.1063/5.0086359. DOI
Alamdari S., Ghamsari M.S., Lee C., Han W., Park H.-H., Tafreshi M.J., Afarideh H., Ara M.H.M. Preparation and Characterization of Zinc Oxide Nanoparticles Using Leaf Extract of Sambucus ebulus. Appl. Sci. 2020;10:3620. doi: 10.3390/app10103620. DOI
Bêche E., Charvin P., Perarnau D., Abanades S., Flamant G. Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz) Surf. Interface Anal. 2008;40:264–267. doi: 10.1002/sia.2686. DOI
Krill G., Kappler J.-P., Meyer A., Abadli L., Ravet M.F. Surface and bulk properties of cerium atoms in several cerium intermetallic compounds: XPS and X-ray absorption measurements. J. Phys. F Met. Phys. 1981;11:1713–1725. doi: 10.1088/0305-4608/11/8/024. DOI
Eslami M., Fedel M., Speranza G., Deflorian F., Zanella C. Deposition and Characterization of Cerium-Based Conversion Coating on HPDC Low Si Content Aluminum Alloy. J. Electrochem. Soc. 2017;164:C581–C590. doi: 10.1149/2.1511709jes. DOI
Yamashita T., Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008;254:2441–2449. doi: 10.1016/j.apsusc.2007.09.063. DOI
Zhang Y., Li L., Ma W., Zhang Y., Yu M., Guo J., Lu H., Wang C. Two-in-One Strategy for Effective Enrichment of Phosphopeptides Using Magnetic Mesoporous γ-Fe2O3 Nanocrystal Clusters. ACS Appl. Mater. Interfaces. 2013;5:614–621. doi: 10.1021/am3019806. PubMed DOI
Atuchin V.V., Kesler V.G., Pervukhina N.V., Zhang Z. Ti 2p and O 1s core levels and chemical bonding in titanium-bearing oxides. J. Electron. Spectrosc. Relat. Phenom. 2006;152:18–24. doi: 10.1016/j.elspec.2006.02.004. DOI
Wanger C.D., Riggs W.M., Davis L.E., Moulder J.F., Muilenberg G.E. Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Corp.; Eden Prairie, MN, USA: 1992.
Le Febvrier A., Jensen J., Eklund P. Wet-cleaning of MgO(001): Modification of surface chemistry and effects on thin film growth investigated by x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. J. Vac. Sci. Technol. A Vac. Surf. Films. 2017;35:021407. doi: 10.1116/1.4975595. DOI
Biju V. Ni 2p X-ray photoelectron spectroscopy study of nanostructured nickel oxide. Mater. Res. Bull. 2007;42:791–796. doi: 10.1016/j.materresbull.2006.10.009. DOI
Jeejamol D.J., Raj A.M.E., Jayakumari K., Ravidhas C. Optimization of CdO nanoparticles by Zr4+ doping for better photocatalytic activity. J. Mater. Sci. Mater. Electron. 2018;29:97–116. doi: 10.1007/s10854-017-7893-3. DOI
Killian M.S., Seiler S., Wagener V., Hahn R., Ebensperger C., Meyer B., Schmuki P. Interface Chemistry and Molecular Bonding of Functional Ethoxysilane-Based Self-Assembled Monolayers on Magnesium Surfaces. ACS Appl. Mater. Interfaces. 2015;7:9006–9014. doi: 10.1021/am5075634. PubMed DOI
Tang Y., Rajendran P., Veeraraghavan V.P., Hussain S., Balakrishna J.P., Chinnathambi A., Alharbi S.A., Alahmadi T.A., Rengarajan T., Mohan S.K. Osteogenic differentiation and mineralization potential of zinc oxide nanoparticles from Scutellaria baicalensis on human osteoblast-like MG-63 cells. Mater. Sci. Eng. C. 2021;119:111656. doi: 10.1016/j.msec.2020.111656. PubMed DOI
Augustine R. Skin bioprinting: A novel approach for creating artificial skin from synthetic and natural building blocks. Prog. Biomater. 2018;7:77–92. doi: 10.1007/s40204-018-0087-0. PubMed DOI PMC
Augustine R., Dan P., Schlachet I., Rouxel D., Menu P., Sosnik A. Chitosan ascorbate hydrogel improves water uptake capacity and cell adhesion of electrospun poly(epsilon-caprolactone) membranes. Int. J. Pharm. 2019;559:420–426. doi: 10.1016/j.ijpharm.2019.01.063. PubMed DOI
Lansdown A.B.G., Mirastschijski U., Stubbs N., Scanlon E., Ågren M.S. Zinc in wound healing: Theoretical, experimental, and clinical aspects. Wound Repair Regen. 2007;15:2–16. doi: 10.1111/j.1524-475X.2006.00179.x. PubMed DOI
Raguvaran R., Manuja B.K., Chopra M., Thakur R., Anand T., Kalia A., Manuja A. Sodium alginate and gum acacia hydrogels of ZnO nanoparticles show wound healing effect on fibroblast cells. Int. J. Biol. Macromol. 2017;96:185–191. doi: 10.1016/j.ijbiomac.2016.12.009. PubMed DOI
Chen J., Patil S., Seal S., McGinnis J.F. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat. Nanotechnol. 2006;1:142–150. doi: 10.1038/nnano.2006.91. PubMed DOI
Davan R., Prasad R.G.S.V., Jakka V.S., Aparna R.S.L., Phani A.R., Jacob B., Salins P.C., Raju D.B. Cerium Oxide Nanoparticles Promotes Wound Healing Activity in In-Vivo Animal Model. J. Bionanosci. 2012;6:78–83. doi: 10.1166/jbns.2012.1074. DOI
Naseri-Nosar M., Farzamfar S., Sahrapeyma H., Ghorbani S., Bastami F., Vaez A., Salehi M. Cerium oxide nanoparticle-containing poly (ε-caprolactone)/gelatin electrospun film as a potential wound dressing material: In vitro and in vivo evaluation. Mater. Sci. Eng. C. 2017;81:366–372. doi: 10.1016/j.msec.2017.08.013. PubMed DOI
Wu H., Li F., Wang S., Lu J., Li J., Du Y., Sun X., Chen X., Gao J., Ling D. Ceria nanocrystals decorated mesoporous silica nanoparticle based ROS-scavenging tissue adhesive for highly efficient regenerative wound healing. Biomaterials. 2018;151:66–77. doi: 10.1016/j.biomaterials.2017.10.018. PubMed DOI
Pai B.G., Kulkarni A.V., Jain S. Study of smart antibacterial PCL-xFe3O4 thin films using mouse NIH-3T3 fibroblast cells in vitro. J. Biomed. Mater. Res. Part B Appl. Biomater. 2019;105:795–804. doi: 10.1002/jbm.b.33615. PubMed DOI
Grumezescu A.M., Holban A.M., Andronescu E., Mogoşanu G.D., Vasile B.S., Chifiriuc M.C., Lazar V., Andrei E., Constantinescu A., Maniu H. Anionic polymers and 10nm Fe3O4@UA wound dressings support human foetal stem cells normal development and exhibit great antimicrobial properties. Int. J. Pharm. 2014;463:146–154. doi: 10.1016/j.ijpharm.2013.08.026. PubMed DOI
Bunea M.C., Vasile E., Galateanu B., Hudita A., Serban M., Zaharia C. Silk Fibroin Films Decorated with Magnetic Nanoparticles for Wound Healling Applications. Mater. Plast. 2017;54:83–87. doi: 10.37358/MP.17.1.4791. DOI
Anghel I., Holban A.M., Grumezescu A.M., Andronescu E., Ficai A., Anghel A.G., Maganu M., Lazǎr V., Chifiriuc M.C. Modified wound dressing with phyto-nanostructured coating to prevent staphylococcal and pseudomonal biofilm development. Nanoscale Res. Lett. 2012;7:690. doi: 10.1186/1556-276X-7-690. PubMed DOI PMC
Wu J., Zhu J., Wu Q., An Y., Wang K., Xuan T., Zhang J., Song W., He H., Song L., et al. Mussel-Inspired Surface Immobilization of Heparin on Magnetic Nanoparticles for Enhanced Wound Repair via Sustained Release of a Growth Factor and M2 Macrophage Polarization. ACS Appl. Mater. Interfaces. 2021;13:2230–2244. doi: 10.1021/acsami.0c18388. PubMed DOI
Li X., Wei Z., Zhang W., Lv H., Li J., Wu L., Zhang H., Yang B., Zhu M., Jiang J. Anti-Inflammatory Effects of Magnetically Targeted Mesenchymal Stem Cells on Laser-Induced Skin Injuries in Rats. Int. J. Nanomed. 2020;15:5645–5659. doi: 10.2147/IJN.S258017. PubMed DOI PMC
Khader A., Arinzeh T.L. Biodegradable zinc oxide composite scaffolds promote osteochondral differentiation of mesenchymal stem cells. Biotechnol. Bioeng. 2020;117:194–209. doi: 10.1002/bit.27173. PubMed DOI
Garino N., Sanvitale P., Dumontel B., Laurenti M., Colilla M., Izquierdo-Barba I., Cauda V., Vallet-Regì M. Zinc oxide nanocrystals as a nanoantibiotic and osteoinductive agent. RSC Adv. 2019;9:11312–11321. doi: 10.1039/C8RA10236H. PubMed DOI PMC
Zhou G., Gu G., Li Y., Zhang Q., Wang W., Wang S., Zhang J. Effects of Cerium Oxide Nanoparticles on the Proliferation, Differentiation, and Mineralization Function of Primary Osteoblasts In Vitro. Biol. Trace Elem. Res. 2013;153:411–418. doi: 10.1007/s12011-013-9655-2. PubMed DOI
Yuan K., Mei J., Shao D., Zhou F., Qiao H., Liang Y., Li K., Tang T. Cerium Oxide Nanoparticles Regulate Osteoclast Differentiation Bidirectionally by Modulating the Cellular Production of Reactive Oxygen Species. Int. J. Nanomed. 2020;15:6355–6372. doi: 10.2147/IJN.S257741. PubMed DOI PMC
Li J., Wen J., Li B., Li W., Qiao W., Shen J., Jin W., Jiang X., Yeung K.W.K., Chu P.K. Valence State Manipulation of Cerium Oxide Nanoparticles on a Titanium Surface for Modulating Cell Fate and Bone Formation. Adv. Sci. 2018;5:1700678. doi: 10.1002/advs.201700678. PubMed DOI PMC
Singh R.K., Patel K.D., Lee J.H., Lee E.-J., Kim J.-H., Kim T.-H., Kim H.-W. Potential of Magnetic Nanofiber Scaffolds with Mechanical and Biological Properties Applicable for Bone Regeneration. PLoS ONE. 2014;9:e91584. doi: 10.1371/journal.pone.0091584. PubMed DOI PMC
Cojocaru F.D., Balan V., Popa M.I., Lobiuc A., Antoniac A., Antoniac I.V., Verestiuc L. Biopolymers—Calcium phosphates composites with inclusions of magnetic nanoparticles for bone tissue engineering. Int. J. Biol. Macromol. 2019;125:612–620. doi: 10.1016/j.ijbiomac.2018.12.083. PubMed DOI
Lee Y.-J., Lee S.-C., Jee S.C., Sung J.-S., Kadam A.A. Surface functionalization of halloysite nanotubes with supermagnetic iron oxide, chitosan and 2-D calcium-phosphate nanoflakes for synergistic osteoconduction enhancement of human adipose tissue-derived mesenchymal stem cells. Colloids Surf. B Biointerfaces. 2019;173:18–26. doi: 10.1016/j.colsurfb.2018.09.045. PubMed DOI
Zeng X.B., Hu H., Xie L.Q., Lan F., Jiang W., Wu Y., Gu Z.W. Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation. Int. J. Nanomed. 2012;7:3365. doi: 10.2147/IJN.S32264. PubMed DOI PMC
Tanasa E., Zaharia C., Hudita A., Radu I.-C., Costache M., Galateanu B. Impact of the magnetic field on 3T3-E1 preosteoblasts inside SMART silk fibroin-based scaffolds decorated with magnetic nanoparticles. Mater. Sci. Eng. C. 2020;110:110714. doi: 10.1016/j.msec.2020.110714. PubMed DOI
Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI
Arruebo M., Vilaboa N., Sáez-Gutierrez B., Lambea J., Tres A., Valladares M., González-Fernández Á. Assessment of the Evolution of Cancer Treatment Therapies. Cancers. 2011;3:3279–3330. doi: 10.3390/cancers3033279. PubMed DOI PMC
Danhier F., Feron O., Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release. 2010;148:135–146. doi: 10.1016/j.jconrel.2010.08.027. PubMed DOI
Chandrasekaran M., Pandurangan M. In Vitro Selective Anti-Proliferative Effect of Zinc Oxide Nanoparticles Against Co-Cultured C2C12 Myoblastoma Cancer and 3T3-L1 Normal Cells. Biol. Trace Elem. Res. 2016;172:148–154. doi: 10.1007/s12011-015-0562-6. PubMed DOI
Wahab R., Kaushik N.K., Kaushik N., Choi E.H., Umar A., Dwivedi S., Musarrat J., Al-Khedhairy A.A. ZnO Nanoparticles Induces Cell Death in Malignant Human T98G Gliomas, KB and Non-Malignant HEK Cells. J. Biomed. Nanotechnol. 2013;9:1181–1189. doi: 10.1166/jbn.2013.1652. PubMed DOI
Premanathan M., Karthikeyan K., Jeyasubramanian K., Manivannan G. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed. Nanotechnol. Biol. Med. 2011;7:184–192. doi: 10.1016/j.nano.2010.10.001. PubMed DOI
Pandurangan M., Enkhtaivan G., Kim D.H. Anticancer studies of synthesized ZnO nanoparticles against human cervical carcinoma cells. J. Photochem. Photobiol. B Biol. 2016;158:206–211. doi: 10.1016/j.jphotobiol.2016.03.002. PubMed DOI
Padmanabhan A., Kaushik M., Niranjan R., Richards J.S., Ebright B., Venkatasubbu G.D. Zinc oxide nanoparticles induce oxidative and proteotoxic stress in ovarian cancer cells and trigger apoptosis independent of p53-mutation status. Appl. Surf. Sci. 2019;487:807–818. doi: 10.1016/j.apsusc.2019.05.099. PubMed DOI PMC
Majeed S., Danish M., Ismail M.H.B., Ansari M.T., Ibrahim M.N.M. Anticancer and apoptotic activity of biologically synthesized zinc oxide nanoparticles against human colon cancer HCT-116 cell line- in vitro study. Sustain. Chem. Pharm. 2019;14:100179. doi: 10.1016/j.scp.2019.100179. DOI
Chakraborti S., Chakraborty S., Saha S., Manna A., Banerjee S., Adhikary A., Sarwar S., Hazra T.K., Das T., Chakrabarti P. PEG-functionalized zinc oxide nanoparticles induce apoptosis in breast cancer cells through reactive oxygen species-dependent impairment of DNA damage repair enzyme NEIL2. Free Radic. Biol. Med. 2017;103:35–47. doi: 10.1016/j.freeradbiomed.2016.11.048. PubMed DOI
Rahman H.S., Azizi S., Namvar F., Mohamad R., Rasedee A., Soltani M., Rahim R.A. Green synthesis, characterization, and anticancer activity of hyaluronan/zinc oxide nanocomposites. OncoTargets Ther. 2016;9:4549–4559. doi: 10.2147/OTT.S95962. PubMed DOI PMC
KC B., Paudel S.N., Rayamajhi S., Karna D., Adhikari S., Shrestha B.G., Bisht G. Enhanced preferential cytotoxicity through surface modification: Synthesis, characterization and comparative in vitro evaluation of TritonX-100 modified and unmodified zinc oxide nanoparticles in human breast cancer cell (MDA-MB-231) Chem. Cent. J. 2016;10:16. doi: 10.1186/s13065-016-0162-3. PubMed DOI PMC
Wu H., Zhang J. Chitosan-based zinc oxide nanoparticle for enhanced anticancer effect in cervical cancer: A physicochemical and biological perspective. Saudi Pharm. J. 2018;26:205–210. doi: 10.1016/j.jsps.2017.12.010. PubMed DOI PMC
Singh T.A., Das J., Sil P.C. Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks. Adv. Colloid Interface Sci. 2020;286:102317. doi: 10.1016/j.cis.2020.102317. PubMed DOI
Zhang J., Wu D., Li M.-F., Feng J. Multifunctional Mesoporous Silica Nanoparticles Based on Charge-Reversal Plug-Gate Nanovalves and Acid-Decomposable ZnO Quantum Dots for Intracellular Drug Delivery. ACS Appl. Mater. Interfaces. 2015;7:26666–26673. doi: 10.1021/acsami.5b08460. PubMed DOI
Cai X., Luo Y., Zhang W., Du D., Lin Y. pH-Sensitive ZnO Quantum Dots–Doxorubicin Nanoparticles for Lung Cancer Targeted Drug Delivery. ACS Appl. Mater. Interfaces. 2016;8:22442–22450. doi: 10.1021/acsami.6b04933. PubMed DOI
Wang X., Li X., Ito A., Sogo Y., Watanabe Y., Tsuji N.M. Hollow ZnO Nanospheres Enhance Anticancer Immunity by Promoting CD4 + and CD8 + T Cell Populations In Vivo. Small. 2017;13:1701816. doi: 10.1002/smll.201701816. PubMed DOI
Akbarian M., Mahjoub S., Elahi S.M., Zabihi E., Tashakkorian H. Green synthesis, formulation and biological evaluation of a novel ZnO nanocarrier loaded with paclitaxel as drug delivery system on MCF-7 cell line. Colloids Surf. B Biointerfaces. 2020;186:110686. doi: 10.1016/j.colsurfb.2019.110686. PubMed DOI
Dhivya R., Ranjani J., Rajendhran J., Mayandi J., Annaraj J. Enhancing the anti-gastric cancer activity of curcumin with biocompatible and pH sensitive PMMA-AA/ZnO nanoparticles. Mater. Sci. Eng. C. 2018;82:182–189. doi: 10.1016/j.msec.2017.08.058. PubMed DOI
Ezhuthupurakkal P.B., Ariraman S., Arumugam S., Subramaniyan N., Muthuvel S.K., Kumpati P., Rajamani B., Chinnasamy T. Anticancer potential of ZnO nanoparticle-ferulic acid conjugate on Huh-7 and HepG2 cells and diethyl nitrosamine induced hepatocellular cancer on Wistar albino rat. Nanomed. Nanotechnol. Biol. Med. 2018;14:415–428. doi: 10.1016/j.nano.2017.11.003. PubMed DOI
Abbasian M., Hasanzadeh P., Mahmoodzadeh F., Salehi R. Novel cationic cellulose-based nanocomposites for targeted delivery of methotrexate to breast cancer cells. J. Macromol. Sci. Part A. 2020;57:99–115. doi: 10.1080/10601325.2019.1673174. DOI
Hassan H.F.H., Mansour A.M., Abo-Youssef A.M.H., Elsadek B.E.M., Messiha B.A.S. Zinc oxide nanoparticles as a novel anticancer approach; in vitro and in vivo evidence. Clin. Exp. Pharmacol. Physiol. 2017;44:235–243. doi: 10.1111/1440-1681.12681. PubMed DOI
DeLong R., Mitchell J., Morris R.T., Comer J., Hurst M., Ghosh K., Wanekaya A., Mudge M., Schaeffer A., Washington L., et al. Enzyme and Cancer Cell Selectivity of Nanoparticles: Inhibition of 3-D Metastatic Phenotype and Experimental Melanoma by Zinc Oxide. J. Biomed. Nanotechnol. 2017;13:221–231. doi: 10.1166/jbn.2017.2336. PubMed DOI
Condello M., De Berardis B., Ammendolia M.G., Barone F., Condello G., Degan P., Meschini S. ZnO nanoparticle tracking from uptake to genotoxic damage in human colon carcinoma cells. Toxicol. Vitr. 2016;35:169–179. doi: 10.1016/j.tiv.2016.06.005. PubMed DOI
Zijno A., De Angelis I., De Berardis B., Andreoli C., Russo M.T., Pietraforte D., Scorza G., Degan P., Ponti J., Rossi F., et al. Different mechanisms are involved in oxidative DNA damage and genotoxicity induction by ZnO and TiO2 nanoparticles in human colon carcinoma cells. Toxicol. Vitr. 2015;29:1503–1512. doi: 10.1016/j.tiv.2015.06.009. PubMed DOI
Asik M.R., Gowdhami B., Jaabir M.S., Archunan G., Suganthy N. Anticancer potential of zinc oxide nanoparticles against cervical carcinoma cells synthesized via biogenic route using aqueous extract of Gracilaria edulis. Mater. Sci. Eng. C. 2019;103:109840. doi: 10.1016/j.msec.2019.109840. PubMed DOI
Baskar G., Chandhuru J., Sheraz Fahad K., Praveen A.S., Chamundeeswari M., Muthukumar T. Anticancer activity of fungal l-asparaginase conjugated with zinc oxide nanoparticles. J. Mater. Sci. Mater. Med. 2015;26:43. doi: 10.1007/s10856-015-5380-z. PubMed DOI
Alarifi S., Ali D., Alkahtani S., Verma A., Ahamed M., Ahmed M., Alhadlaq H.A. Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles. Int. J. Nanomed. 2013;8:983. doi: 10.2147/IJN.S42028. PubMed DOI PMC
Wu B., Wu J., Liu S., Shen Z., Chen L., Zhang X.-X., Ren H.-Q. Combined effects of graphene oxide and zinc oxide nanoparticle on human A549 cells: Bioavailability, toxicity and mechanisms. Environ. Sci. Nano. 2019;6:635–645. doi: 10.1039/C8EN00965A. DOI
Bai K.-J., Chuang K.-J., Ma C.-M., Chang T.-Y., Chuang H.-C. Human lung adenocarcinoma cells with an EGFR mutation are sensitive to non-autophagic cell death induced by zinc oxide and aluminium-doped zinc oxide nanoparticles. J. Toxicol. Sci. 2017;42:437–444. doi: 10.2131/jts.42.437. PubMed DOI
Generalov R., Kuan W.B., Chen W., Kristensen S., Juzenas P. Radiosensitizing effect of zinc oxide and silica nanocomposites on cancer cells. Colloids Surf. B Biointerfaces. 2015;129:79–86. doi: 10.1016/j.colsurfb.2015.03.026. PubMed DOI
Tripathy N., Ahmad R., Ko H.A., Khang G., Hahn Y.-B. Enhanced anticancer potency using an acid-responsive ZnO-incorporated liposomal drug-delivery system. Nanoscale. 2015;7:4088–4096. doi: 10.1039/C4NR06979J. PubMed DOI
Guo D., Wu C., Jiang H., Li Q., Wang X., Chen B. Synergistic cytotoxic effect of different sized ZnO nanoparticles and daunorubicin against leukemia cancer cells under UV irradiation. J. Photochem. Photobiol. B Biol. 2008;93:119–126. doi: 10.1016/j.jphotobiol.2008.07.009. PubMed DOI
Yuan L., Wang Y., Wang J., Xiao H., Liu X. Additive effect of zinc oxide nanoparticles and isoorientin on apoptosis in human hepatoma cell line. Toxicol. Lett. 2014;225:294–304. doi: 10.1016/j.toxlet.2013.12.015. PubMed DOI
Fakhar-e-Alam M., Ali S.M.U., Ibupoto Z.H., Kimleang K., Atif M., Kashif M., Loong F.K., Hashim U., Willander M. Sensitivity of A-549 human lung cancer cells to nanoporous zinc oxide conjugated with Photofrin. Lasers Med. Sci. 2012;27:607–614. doi: 10.1007/s10103-011-0989-8. PubMed DOI
Puvvada N., Rajput S., Kumar B.N.P., Sarkar S., Konar S., Brunt K.R., Rao R.R., Mazumdar A., Das S.K., Basu R., et al. Novel ZnO hollow-nanocarriers containing paclitaxel targeting folate-receptors in a malignant pH-microenvironment for effective monitoring and promoting breast tumor regression. Sci. Rep. 2015;5:11760. doi: 10.1038/srep11760. PubMed DOI PMC
Hariharan R., Senthilkumar S., Suganthi A., Rajarajan M. Synthesis and characterization of doxorubicin modified ZnO/PEG nanomaterials and its photodynamic action. J. Photochem. Photobiol. B Biol. 2012;116:56–65. doi: 10.1016/j.jphotobiol.2012.08.008. PubMed DOI
Colon J., Hsieh N., Ferguson A., Kupelian P., Seal S., Jenkins D.W., Baker C.H. Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2. Nanomed. Nanotechnol. Biol. Med. 2010;6:698–705. doi: 10.1016/j.nano.2010.01.010. PubMed DOI
Madero-Visbal R.A., Alvarado B.E., Colon J.F., Baker C.H., Wason M.S., Isley B., Seal S., Lee C.M., Das S., Mañon R. Harnessing nanoparticles to improve toxicity after head and neck radiation. Nanomed. Nanotechnol. Biol. Med. 2012;8:1223–1231. doi: 10.1016/j.nano.2011.12.011. PubMed DOI
Tarnuzzer R.W., Colon J., Patil S., Seal S. Vacancy Engineered Ceria Nanostructures for Protection from Radiation-Induced Cellular Damage. Nano Lett. 2005;5:2573–2577. doi: 10.1021/nl052024f. PubMed DOI
Colon J., Herrera L., Smith J., Patil S., Komanski C., Kupelian P., Seal S., Jenkins D.W., Baker C.H. Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2009;5:225–231. doi: 10.1016/j.nano.2008.10.003. PubMed DOI
Wason M.S., Colon J., Das S., Seal S., Turkson J., Zhao J., Baker C.H. Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomed. Nanotechnol. Biol. Med. 2013;9:558–569. doi: 10.1016/j.nano.2012.10.010. PubMed DOI PMC
Cheng G., Guo W., Han L., Chen E., Kong L., Wang L., Ai W., Song N., Li H., Chen H. Cerium oxide nanoparticles induce cytotoxicity in human hepatoma SMMC-7721 cells via oxidative stress and the activation of MAPK signaling pathways. Toxicol. Vitr. 2013;27:1082–1088. doi: 10.1016/j.tiv.2013.02.005. PubMed DOI
Singh S., Kumar A., Karakoti A., Seal S., Self W.T. Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles. Mol. Biosyst. 2010;6:1813–1820. doi: 10.1039/c0mb00014k. PubMed DOI PMC
Alili L., Sack M., von Montfort C., Giri S., Das S., Carroll K.S., Zanger K., Seal S., Brenneisen P. Downregulation of Tumor Growth and Invasion by Redox-Active Nanoparticles. Antioxid. Redox Signal. 2013;19:765–778. doi: 10.1089/ars.2012.4831. PubMed DOI PMC
Giri S., Karakoti A., Graham R.P., Maguire J.L., Reilly C.M., Seal S., Rattan R., Shridhar V. Nanoceria: A Rare-Earth Nanoparticle as a Novel Anti-Angiogenic Therapeutic Agent in Ovarian Cancer. PLoS ONE. 2013;8:e54578. doi: 10.1371/journal.pone.0054578. PubMed DOI PMC
Wason M.S., Zhao J. Cerium oxide nanoparticles: Potential applications for cancer and other diseases. Am. J. Transl. Res. 2013;5:126–131. PubMed PMC
Lin W., Huang Y., Zhou X.-D., Ma Y. Toxicity of Cerium Oxide Nanoparticles in Human Lung Cancer Cells. Int. J. Toxicol. 2006;25:451–457. doi: 10.1080/10915810600959543. PubMed DOI
Jana S.K., Banerjee P., Das S., Seal S., Chaudhury K. Redox-active nanoceria depolarize mitochondrial membrane of human colon cancer cells. J. Nanopart. Res. 2014;16:2441. doi: 10.1007/s11051-014-2441-z. DOI
Renu G., Rani V.V.D., Nair S.V., Subramanian K.R.V., Lakshmanan V.-K. Development of Cerium Oxide Nanoparticles and Its Cytotoxicity in Prostate Cancer Cells. Adv. Sci. Lett. 2012;6:17–25. doi: 10.1166/asl.2012.3312. DOI
Kumari M., Singh S.P., Chinde S., Rahman M.F., Mahboob M., Grover P. Toxicity Study of Cerium Oxide Nanoparticles in Human Neuroblastoma Cells. Int. J. Toxicol. 2014;33:86–97. doi: 10.1177/1091581814522305. PubMed DOI
Nourmohammadi E., Khoshdel-Sarkarizi H., Nedaeinia R., Sadeghnia H.R., Hasanzadeh L., Darroudi M., Oskuee R.K. Evaluation of anticancer effects of cerium oxide nanoparticles on mouse fibrosarcoma cell line. J. Cell. Physiol. 2019;234:4987–4996. doi: 10.1002/jcp.27303. PubMed DOI
Muhammad F., Wang A., Qi W., Zhang S., Zhu G. Intracellular Antioxidants Dissolve Man-Made Antioxidant Nanoparticles: Using Redox Vulnerability of Nanoceria to Develop a Responsive Drug Delivery System. ACS Appl. Mater. Interfaces. 2014;6:19424–19433. doi: 10.1021/am5055367. PubMed DOI
Das J., Choi Y.-J., Han J.W., Reza A.M.M.T., Kim J.-H. Nanoceria-mediated delivery of doxorubicin enhances the anti-tumour efficiency in ovarian cancer cells via apoptosis. Sci. Rep. 2017;7:9513. doi: 10.1038/s41598-017-09876-w. PubMed DOI PMC
Sulthana S., Banerjee T., Kallu J., Vuppala S.R., Heckert B., Naz S., Shelby T., Yambem O., Santra S. Combination Therapy of NSCLC Using Hsp90 Inhibitor and Doxorubicin Carrying Functional Nanoceria. Mol. Pharm. 2017;14:875–884. doi: 10.1021/acs.molpharmaceut.6b01076. PubMed DOI PMC
Zhang Y., Wu X., Hou C., Shang K., Yang K., Tian Z., Pei Z., Qu Y., Pei Y. Dual-responsive dithio-polydopamine coated porous CeO2 nanorods for targeted and synergistic drug delivery. Int. J. Nanomed. 2018;13:2161–2173. doi: 10.2147/IJN.S152002. PubMed DOI PMC
Kalashnikova I., Mazar J., Neal C.J., Rosado A.L., Das S., Westmoreland T.J., Seal S. Nanoparticle delivery of curcumin induces cellular hypoxia and ROS-mediated apoptosis via modulation of Bcl-2/Bax in human neuroblastoma. Nanoscale. 2017;9:10375–10387. doi: 10.1039/C7NR02770B. PubMed DOI
Xie J., Huang J., Li X., Sun S., Chen X. Iron Oxide Nanoparticle Platform for Biomedical Applications. Curr. Med. Chem. 2009;16:1278–1294. doi: 10.2174/092986709787846604. PubMed DOI
Corot C., Robert P., Idée J.-M., Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Deliv. Rev. 2006;58:1471–1504. doi: 10.1016/j.addr.2006.09.013. PubMed DOI
Indira T.K., Lakshmi P.K. Magnetic Nanoparticles—A Review. Int. J. Pharm. Sci. Nanotechnol. 2010;3:1035–1042. doi: 10.37285/ijpsn.2010.3.3.1. DOI
Giustini A.J., Petryk A.A., Cassim S.M., Tate J.A., Baker I., Hoopes P.J. Magnetic Nanoparticle Hyperthermia in Cancer Treatment. Nano Life. 2010;1:17–32. doi: 10.1142/S1793984410000067. PubMed DOI PMC
Hilger I., Hiergeist R., Hergt R., Winnefeld K., Schubert H., Kaiser W.A. Thermal Ablation of Tumors Using Magnetic Nanoparticles. Investig. Radiol. 2002;37:580–586. doi: 10.1097/00004424-200210000-00008. PubMed DOI
Xie J., Lee S., Chen X. Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev. 2010;62:1064–1079. doi: 10.1016/j.addr.2010.07.009. PubMed DOI PMC
Zhu L., Zhou Z., Mao H., Yang L. Magnetic nanoparticles for precision oncology: Theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine. 2017;12:73–87. doi: 10.2217/nnm-2016-0316. PubMed DOI PMC
Plichta Z., Horák D., Mareková D., Turnovcová K., Kaiser R., Jendelová P. Poly [N-(2-hydroxypropyl)methacrylamide]-Modified Magnetic γ-F2O3 Nanoparticles Conjugated with Doxorubicin for Glioblastoma Treatment. ChemMedChem. 2020;15:96–104. doi: 10.1002/cmdc.201900564. PubMed DOI
Li S., Zhang R., Wang D., Feng L., Cui K. Synthesis of hollow maghemite (<gamma>-Fe2O3) particles for magnetic field and pH-responsive drug delivery and lung cancer treatment. Ceram. Int. 2021;47:7457–7464. doi: 10.1016/j.ceramint.2020.11.086. DOI
Lungu I.I., Nistorescu S., Badea M.A., Petre A.-M., Udrea A.-M., Banici A.-M., Fleacă C., Andronescu E., Dinischiotu A., Dumitrache F., et al. Doxorubicin-Conjugated Iron Oxide Nanoparticles Synthesized by Laser Pyrolysis: In Vitro Study on Human Breast Cancer Cells. Polymers. 2020;12:2799. doi: 10.3390/polym12122799. PubMed DOI PMC
Plichta Z., Kozak Y., Panchuk R., Sokolova V., Epple M., Kobylinska L., Jendelová P., Horák D. Cytotoxicity of doxorubicin-conjugated poly[N-(2-hydroxypropyl)methacrylamide]-modified γ-Fe2O3 nanoparticles towards human tumor cells. Beilstein J. Nanotechnol. 2018;9:2533–2545. doi: 10.3762/bjnano.9.236. PubMed DOI PMC
Quan Q., Xie J., Gao H., Yang M., Zhang F., Liu G., Lin X., Wang A., Eden H.S., Lee S., et al. HSA Coated Iron Oxide Nanoparticles as Drug Delivery Vehicles for Cancer Therapy. Mol. Pharm. 2011;8:1669–1676. doi: 10.1021/mp200006f. PubMed DOI PMC
MubarakAli D., Manzoor M.A., Sabarinathan A., Devi C.A., Rekha P., Thajuddin N., Lee S.-Y. An investigation of antibiofilm and cytotoxic property of MgO nanoparticles. Biocatal. Agric. Biotechnol. 2019;18:101069. doi: 10.1016/j.bcab.2019.101069. DOI
Karthik K., Dhanuskodi S., Gobinath C., Prabukumar S., Sivaramakrishnan S. Fabrication of MgO nanostructures and its efficient photocatalytic, antibacterial and anticancer performance. J. Photochem. Photobiol. B Biol. 2019;190:8–20. doi: 10.1016/j.jphotobiol.2018.11.001. PubMed DOI
Mangalampalli B., Dumala N., Grover P. Acute oral toxicity study of magnesium oxide nanoparticles and microparticles in female albino Wistar rats. Regul. Toxicol. Pharmacol. 2017;90:170–184. doi: 10.1016/j.yrtph.2017.09.005. PubMed DOI
Blanco E., Shen H., Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015;33:941–951. doi: 10.1038/nbt.3330. PubMed DOI PMC
Yuan W., Li Z., Xie X., Zhang Z.-Y., Bian L. Bisphosphonate-based nanocomposite hydrogels for biomedical applications. Bioact. Mater. 2020;5:819–831. doi: 10.1016/j.bioactmat.2020.06.002. PubMed DOI PMC
Khalid A., Norello R., Abraham A.N., Tetienne J.-P., Karle T.J., Lui E.W.C., Xia K., Tran P.A., O’Connor A.J., Mann B.G., et al. Biocompatible and Biodegradable Magnesium Oxide Nanoparticles with In Vitro Photostable Near-Infrared Emission: Short-Term Fluorescent Markers. Nanomaterials. 2019;9:1360. doi: 10.3390/nano9101360. PubMed DOI PMC
Busi S., Rajkumari J. Nanoparticles in Pharmacotherapy. William Andrew Publishing; Norwich, NY, USA: 2019. Microbially synthesized nanoparticles as next generation antimicrobials: Scope and applications; pp. 485–524.
Fahmy H., El-Hakin M., Nady D., Mostafa Y., Mohamed F., Yasien A., Moustafa M., Elmsery B., Yousef H. Review on MgO nanoparticles nultifunctional role in the biomedical field: Properties and applications. Nanomed. J. 2022;9:1–14. doi: 10.22038/NMJ.2022.60646.1629. DOI
Letchumanan D., Sok S.P.M., Ibrahim S., Nagoor N.H., Arshad N.M. Plant-Based Biosynthesis of Copper/Copper Oxide Nanoparticles: An Update on Their Applications in Biomedicine, Mechanisms, and Toxicity. Biomolecules. 2021;11:564. doi: 10.3390/biom11040564. PubMed DOI PMC
Hu Y.-P., Wang Y., Zi X.-Y., Su J., Zhang H.-X., Zhang X.-R., Zhu H.-Y., Li J.-X., Yin M., Yang F. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells. Int. J. Nanomed. 2012;7:2641. doi: 10.2147/IJN.S31133. PubMed DOI PMC
Siddiqui M.A., Alhadlaq H.A., Ahmad J., Al-Khedhairy A.A., Musarrat J., Ahamed M. Copper Oxide Nanoparticles Induced Mitochondria Mediated Apoptosis in Human Hepatocarcinoma Cells. PLoS ONE. 2013;8:e69534. doi: 10.1371/journal.pone.0069534. PubMed DOI PMC
Wang C., Cao S., Tie X., Qiu B., Wu A., Zheng Z. Induction of cytotoxicity by photoexcitation of TiO2 can prolong survival in glioma-bearing mice. Mol. Biol. Rep. 2011;38:523–530. doi: 10.1007/s11033-010-0136-9. PubMed DOI
Zeni P.F., Dos Santos D.P., Canevarolo R.R., Yunes J.A., Padilha F.F., Júnior R.L.C.D.A., Egues S.M., Hernández-Macedo M.L. Photocatalytic and Cytotoxic Effects of Nitrogen-Doped TiO 2 Nanoparticles on Melanoma Cells. J. Nanosci. Nanotechnol. 2018;18:3722–3728. doi: 10.1166/jnn.2018.14621. PubMed DOI
Nešić M., Žakula J., Korićanac L., Stepić M., Radoičić M., Popović I., Šaponjić Z., Petković M. Light controlled metallo-drug delivery system based on the TiO2-nanoparticles and Ru-complex. J. Photochem. Photobiol. A Chem. 2017;347:55–66. doi: 10.1016/j.jphotochem.2017.06.045. DOI
Hou Z., Zhang Y., Deng K., Chen Y., Li X., Deng X., Cheng Z., Lian H., Li C., Lin J. UV-Emitting Upconversion-Based TiO2 Photosensitizing Nanoplatform: Near-Infrared Light Mediated in Vivo Photodynamic Therapy via Mitochondria-Involved Apoptosis Pathway. ACS Nano. 2015;9:2584–2599. doi: 10.1021/nn506107c. PubMed DOI
Lucky S.S., Idris N.M., Li Z., Huang K., Soo K.C., Zhang Y. Titania Coated Upconversion Nanoparticles for Near-Infrared Light Triggered Photodynamic Therapy. ACS Nano. 2015;9:191–205. doi: 10.1021/nn503450t. PubMed DOI
Venkatasubbu G.D., Ramasamy S., Reddy G.P., Kumar J. In vitro and In vivo anticancer activity of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles. Biomed. Microdevices. 2013;15:711–726. doi: 10.1007/s10544-013-9767-7. PubMed DOI
Liu E., Zhou Y., Liu Z., Li J., Zhang D., Chen J., Cai Z. Cisplatin Loaded Hyaluronic Acid Modified TiO2 Nanoparticles for Neoadjuvant Chemotherapy of Ovarian Cancer. J. Nanomater. 2015;2015:390358. doi: 10.1155/2015/390358. DOI
Parodi A., Quattrocchi N., van de Ven A.L., Chiappini C., Evangelopoulos M., Martinez J.O., Brown B.S., Khaled S.Z., Yazdi I.K., Enzo M.V., et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotechnol. 2013;8:61–68. doi: 10.1038/nnano.2012.212. PubMed DOI PMC
Delalat B., Sheppard V.C., Ghaemi S.R., Rao S., Prestidge C.A., McPhee G., Rogers M.-L., Donoghue J.F., Pillay V., Johns T.G., et al. Targeted drug delivery using genetically engineered diatom biosilica. Nat. Commun. 2015;6:8791. doi: 10.1038/ncomms9791. PubMed DOI
Decuzzi P., Godin B., Tanaka T., Lee S.-Y., Chiappini C., Liu X., Ferrari M. Size and shape effects in the biodistribution of intravascularly injected particles. J. Control. Release. 2010;141:320–327. doi: 10.1016/j.jconrel.2009.10.014. PubMed DOI
Kafshgari M.H., Mazare A., Distaso M., Goldmann W.H., Peukert W., Fabry B., Schmuki P. Intracellular Drug Delivery with Anodic Titanium Dioxide Nanotubes and Nanocylinders. ACS Appl. Mater. Interfaces. 2019;11:14980–14985. doi: 10.1021/acsami.9b01211. PubMed DOI
Kafshgari M.H., Kah D., Mazare A., Nguyen N.T., Distaso M., Peukert W., Goldmann W.H., Schmuki P., Fabry B. Anodic Titanium Dioxide Nanotubes for Magnetically Guided Therapeutic Delivery. Sci. Rep. 2019;9:14336. doi: 10.1038/s41598-019-49513-2. PubMed DOI PMC
Abbasi B.A., Iqbal J., Mahmood T., Ahmad R., Kanwal S., Afridi S. Plant-mediated synthesis of nickel oxide nanoparticles (NiO) via Geranium wallichianum: Characterization and different biological applications. Mater. Res. Express. 2019;6:0850a7. doi: 10.1088/2053-1591/ab23e1. DOI
Zhang Y., Mahdavi B., Mohammadhosseini M., Rezaei-Seresht E., Paydarfard S., Qorbani M., Karimian M., Abbasi N., Ghaneialvar H., Karimi E. Green synthesis of NiO nanoparticles using Calendula officinalis extract: Chemical charactrization, antioxidant, cytotoxicity, and anti-esophageal carcinoma properties. Arab. J. Chem. 2021;14:103105. doi: 10.1016/j.arabjc.2021.103105. DOI
Tabassum N., Kumar D., Verma D., Bohara R.A., Singh M.P. Zirconium oxide (ZrO2) nanoparticles from antibacterial activity to cytotoxicity: A next-generation of multifunctional nanoparticles. Mater. Today Commun. 2021;26:102156. doi: 10.1016/j.mtcomm.2021.102156. DOI
El Zowalaty M., Al-Fahdawi M.Q., Al-Qubaisi M.S., Alhassan F., Rosli R., Webster T.J., Naadja S.-E., Taufiq-Yap Y.H., Abdullah R. Cytotoxicity and physicochemical characterization of iron-manganese-doped sulfated zirconia nanoparticles. Int. J. Nanomed. 2015;10:5739–5750. doi: 10.2147/IJN.S82586. PubMed DOI PMC
Balaji S., Mandal B.K., Ranjan S., Dasgupta N., Chidambaram R. Nano-zirconia—Evaluation of its antioxidant and anticancer activity. J. Photochem. Photobiol. B Biol. 2017;170:125–133. doi: 10.1016/j.jphotobiol.2017.04.004. PubMed DOI
Dizaj S.M., Lotfipour F., Barzegar-Jalali M., Zarrintan M.H., Adibkia K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C. 2014;44:278–284. doi: 10.1016/j.msec.2014.08.031. PubMed DOI
Besinis A., De Peralta T., Handy R.D. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology. 2014;8:1–16. doi: 10.3109/17435390.2012.742935. PubMed DOI PMC
Webster T.J., Seil J.T. Antimicrobial applications of nanotechnology: Methods and literature. Int. J. Nanomed. 2012;7:2767–2781. doi: 10.2147/IJN.S24805. PubMed DOI PMC
Khosro A., Mahmood A.B., Mohammad B.J., Gobad M., Mehdi S.A. Evaluation and optimization of factors affecting novel diclofenac sodium-eudragit RS100 nanoparticles. Afr. J. Pharm. Pharmacol. 2012;6:941–947. doi: 10.5897/AJPP12.025. DOI
Buzea C., Pacheco I.I., Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. 2007;2:MR17–MR71. doi: 10.1116/1.2815690. PubMed DOI
Pal S., Tak Y.K., Song J.M. Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli. Appl. Environ. Microbiol. 2007;73:1712–1720. doi: 10.1128/AEM.02218-06. PubMed DOI PMC
Egger S., Lehmann R.P., Height M.J., Loessner M.J., Schuppler M. Antimicrobial Properties of a Novel Silver-Silica Nanocomposite Material. Appl. Environ. Microbiol. 2009;75:2973–2976. doi: 10.1128/AEM.01658-08. PubMed DOI PMC
Yun H., Kim J.D., Choi H.C., Lee C.W. Antibacterial Activity of CNT-Ag and GO-Ag Nanocomposites Against Gram-negative and Gram-positive Bacteria. Bull. Korean Chem. Soc. 2013;34:3261–3264. doi: 10.5012/bkcs.2013.34.11.3261. DOI
Iavicoli I., Fontana L., Leso V., Bergamaschi A. The Effects of Nanomaterials as Endocrine Disruptors. Int. J. Mol. Sci. 2013;14:16732–16801. doi: 10.3390/ijms140816732. PubMed DOI PMC
Pelletier D.A., Suresh A.K., Holton G.A., McKeown C.K., Wang W., Gu B., Mortensen N.P., Allison D.P., Joy D.C., Allison M.R., et al. Effects of Engineered Cerium Oxide Nanoparticles on Bacterial Growth and Viability. Appl. Environ. Microbiol. 2010;76:7981–7989. doi: 10.1128/AEM.00650-10. PubMed DOI PMC
Ravishankar T.N., Ramakrishnappa T., Nagaraju G., Rajanaika H. Synthesis and Characterization of CeO2 Nanoparticles via Solution Combustion Method for Photocatalytic and Antibacterial Activity Studies. ChemistryOpen. 2015;4:146–154. doi: 10.1002/open.201402046. PubMed DOI PMC
Azam A., Ahmed A.S., Oves M., Khan M., Memic A. Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. Int. J. Nanomed. 2012;7:3527–3535. doi: 10.2147/IJN.S29020. PubMed DOI PMC
Mahapatra O., Bhagat M., Gopalakrishnan C., Arunachalam K.D. Ultrafine dispersed CuO nanoparticles and their antibacterial activity. J. Exp. Nanosci. 2008;3:185–193. doi: 10.1080/17458080802395460. DOI
Ahamed M., Alhadlaq H.A., Khan M.A.M., Karuppiah P., Al-Dhabi N.A. Synthesis, Characterization, and Antimicrobial Activity of Copper Oxide Nanoparticles. J. Nanomater. 2014;2014:637858. doi: 10.1155/2014/637858. DOI
Jin T., He Y. Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J. Nanopart. Res. 2011;13:6877–6885. doi: 10.1007/s11051-011-0595-5. DOI
Vidic J., Stankic S., Haque F., Ciric D., Le Goffic R., Vidy A., Jupille J., Delmas B. Selective antibacterial effects of mixed ZnMgO nanoparticles. J. Nanopart. Res. 2013;15:1595. doi: 10.1007/s11051-013-1595-4. PubMed DOI PMC
Yamamoto O., Ohira T., Alvarez K., Fukuda M. Antibacterial characteristics of CaCO3-MgO composites. Mater. Sci. Eng. B. 2010;173:208–212. doi: 10.1016/j.mseb.2009.12.007. DOI
Allahverdiyev A.M., Abamor E.S., Bagirova M., Rafailovich M. Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol. 2011;6:933–940. doi: 10.2217/fmb.11.78. PubMed DOI
Haghighi F., Roudbar Mohammadi S., Mohammadi P., Hosseinkhani S., Shipour R. Antifungal activity of TiO2 nanoparticles and EDTA on Candida albicans biofilms. Infect. Epidemiol. Microbiol. 2013;1:33–38.
Roy A.S., Parveen A., Koppalkar A.R., Prasad M.V.N.A. Effect of Nano-Titanium Dioxide with Different Antibiotics against Methicillin-Resistant Staphylococcus Aureus. J. Biomater. Nanobiotechnol. 2010;1:37–41. doi: 10.4236/jbnb.2010.11005. DOI
Carré G., Hamon E., Ennahar S., Estner M., Lett M.-C., Horvatovich P., Gies J.-P., Keller V., Keller N., Andre P. TiO2 Photocatalysis Damages Lipids and Proteins in Escherichia coli. Appl. Environ. Microbiol. 2014;80:2573–2581. doi: 10.1128/AEM.03995-13. PubMed DOI PMC
Saraf R. Cost effective and Monodispersed Zinc Oxide Nanoparticles Synthesis and their Characterization. Int. J. Adv. Appl. Sci. 2013;2:85–88. doi: 10.11591/ijaas.v2i2.1614. DOI
Azam A., Ahmed A.S., Oves M., Khan M.S., Habib S.S., Memic A. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: A comparative study. Int. J. Nanomed. 2012;7:6003–6009. doi: 10.2147/IJN.S35347. PubMed DOI PMC
Ravishankar Rai V., Jamuna Bai A. Science against Microbial Pathogens: Communicating Current Research and Technological Advances. Formatex Research Center; Badajoz, Spain: 2011. Nanoparticles and Their Potential Application as Antimicrobials; pp. 197–209.
Fellahi O., Sarma R.K., Das M.R., Saikia R., Marcon L., Coffinier Y., Hadjersi T., Maamache M., Boukherroub R. The antimicrobial effect of silicon nanowires decorated with silver and copper nanoparticles. Nanotechnology. 2013;24:495101. doi: 10.1088/0957-4484/24/49/495101. PubMed DOI
Mohammadi G., Nokhodchi A., Barzegar-Jalali M., Lotfipour F., Adibkia K., Ehyaei N., Valizadeh H. Physicochemical and anti-bacterial performance characterization of clarithromycin nanoparticles as colloidal drug delivery system. Colloids Surf. B Biointerfaces. 2011;88:39–44. doi: 10.1016/j.colsurfb.2011.05.050. PubMed DOI
Dwivedi S., Siddiqui M.A., Farshori N.N., Ahamed M., Musarrat J., Al-Khedhairy A.A. Synthesis, characterization and toxicological evaluation of iron oxide nanoparticles in human lung alveolar epithelial cells. Colloids Surf. B Biointerfaces. 2014;122:209–215. doi: 10.1016/j.colsurfb.2014.06.064. PubMed DOI
Padmavathy N., Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles—An antimicrobial study. Sci. Technol. Adv. Mater. 2008;9:035004. doi: 10.1088/1468-6996/9/3/035004. PubMed DOI PMC
Hosseinkhani P., Zand A.M., Imani S., Rezayi M., Rezaei Z.S. Determining the antibacterial effect of ZnO nanoparticle against the pathogenic bacterium, Shigella dysenteriae (type 1) Int. J. Nano Dimens. 2011;1:279–285.
Zarrindokht E.K., Pegah C. Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria. Afr. J. Microbiol. Res. 2012;5:1368–1373. doi: 10.5897/AJMR10.159. DOI
Ghasemi F., Jalal R. Antimicrobial action of zinc oxide nanoparticles in combination with ciprofloxacin and ceftazidime against multidrug-resistant Acinetobacter baumannii. J. Glob. Antimicrob. Resist. 2016;6:118–122. doi: 10.1016/j.jgar.2016.04.007. PubMed DOI
Sarwar S., Chakraborti S., Bera S., Sheikh I.A., Hoque K.M., Chakrabarti P. The antimicrobial activity of ZnO nanoparticles against Vibrio cholerae: Variation in response depends on biotype. Nanomed. Nanotechnol. Biol. Med. 2016;12:1499–1509. doi: 10.1016/j.nano.2016.02.006. PubMed DOI
Manzoor U., Siddique S., Ahmed R., Noreen Z., Bokhari H., Ahmad I. Antibacterial, Structural and Optical Characterization of Mechano-Chemically Prepared ZnO Nanoparticles. PLoS ONE. 2016;11:e0154704. doi: 10.1371/journal.pone.0154704. PubMed DOI PMC
Jafari A.R., Mosavi T., Mosavari N., Majid A., Movahedzade F., Tebyaniyan M., Kamalzadeh M., Dehgan M., Jafari S., Arastoo S. Mixed metal oxide nanoparticles inhibit growth of Mycobacterium tuberculosis into THP-1 cells. Int. J. Mycobacteriol. 2016;5:S181–S183. doi: 10.1016/j.ijmyco.2016.09.011. PubMed DOI
Cioffi N., Rai M., editors. Synthesis and Characterization of Novel Nano Antimicrobials. Springer; Berlin/Heidelberg, Germany: 2012. Nano-Antimicrobials.
Sawai J., Kojima H., Igarashi H., Hashimoto A., Shoji S., Sawaki T., Hakoda A., Kawada E., Kokugan T., Shimizu M. Antibacterial characteristics of magnesium oxide powder. World J. Microbiol. Biotechnol. 2000;16:187–194. doi: 10.1023/A:1008916209784. DOI
Sondi I., Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004;275:177–182. doi: 10.1016/j.jcis.2004.02.012. PubMed DOI
Heckert E.G., Karakoti A.S., Seal S., Self W.T. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials. 2008;29:2705–2709. doi: 10.1016/j.biomaterials.2008.03.014. PubMed DOI PMC
Sener G., Hilton S.A., Osmond M.J., Zgheib C., Newsom J.P., Dewberry L., Singh S., Sakthivel T.S., Seal S., Liechty K.W., et al. Injectable, self-healable zwitterionic cryogels with sustained microRNA-cerium oxide nanoparticle release promote accelerated wound healing. Acta Biomater. 2020;101:262–272. doi: 10.1016/j.actbio.2019.11.014. PubMed DOI
Dewberry L.K., Zgheib C., Hilton S.A., Seal S., Newsom J., Krebs M.D., Hu J., Xu J., Liechty K.W. Cerium Oxide Nanoparticle-miR146a Decreases Inflammation in a Murine Dextran Sodium Sulfate Colitis Model. J. Am. Coll. Surg. 2019;229:S91. doi: 10.1016/j.jamcollsurg.2019.08.208. DOI
Gowri S., Gandhi R.R., Sundrarajan M. Structural, Optical, Antibacterial and Antifungal Properties of Zirconia Nanoparticles by Biobased Protocol. J. Mater. Sci. Technol. 2014;30:782–790. doi: 10.1016/j.jmst.2014.03.002. DOI
Kumaresan M., Anand K.V., Govindaraju K., Tamilselvan S., Kumar V.G. Seaweed Sargassum wightii mediated preparation of zirconia (ZrO2) nanoparticles and their antibacterial activity against gram positive and gram negative bacteria. Microb. Pathog. 2018;124:311–315. doi: 10.1016/j.micpath.2018.08.060. PubMed DOI
Ghomi A.R.G., Mohammadi-Khanaposhti M., Vahidi H., Kobarfard F., Reza M.A.S., Barabadi H. Fungus-mediated extracellular biosynthesis and characterization of zirconium nanoparticles using standard penicillium species and their preliminary bactericidal potential: A novel biological approach to nanoparticle synthesis. Iran. J. Pharm. Res. IJPR. 2019;18:2101–2110. doi: 10.22037/ijpr.2019.112382.13722. PubMed DOI PMC
Skheel A.Z., Jaduaa M.H., Abd A.N. AIP Conference Proceedings. AIP Publishing LLC.; Melville, NY, USA: 2022. Biosynthesis of Cadmium Oxide Nanoparticles (CdO NPS) Using Aqueous Rhizome Extract of Curcuma for Biological Applications; p. 020030.
Xu C., Qu X. Cerium oxide nanoparticle: A remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 2014;6:e90. doi: 10.1038/am.2013.88. DOI
Applerot G., Lellouche J., Lipovsky A., Nitzan Y., Lubart R., Gedanken A., Banin E. Understanding the Antibacterial Mechanism of CuO Nanoparticles: Revealing the Route of Induced Oxidative Stress. Small. 2012;8:3326–3337. doi: 10.1002/smll.201200772. PubMed DOI
Gunawan C., Teoh W.Y., Marquis C.P., Amal R. Cytotoxic Origin of Copper(II) Oxide Nanoparticles: Comparative Studies with Micron-Sized Particles, Leachate, and Metal Salts. ACS Nano. 2011;5:7214–7225. doi: 10.1021/nn2020248. PubMed DOI
Misra S.K., Nuseibeh S., Dybowska A., Berhanu D., Tetley T.D., Valsami-Jones E. Comparative study using spheres, rods and spindle-shaped nanoplatelets on dispersion stability, dissolution and toxicity of CuO nanomaterials. Nanotoxicology. 2014;8:422–432. doi: 10.3109/17435390.2013.796017. PubMed DOI
Heinlaan M., Ivask A., Blinova I., Dubourguier H.-C., Kahru A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere. 2008;71:1308–1316. doi: 10.1016/j.chemosphere.2007.11.047. PubMed DOI
Horie M., Fujita K., Kato H., Endoh S., Nishio K., Komaba L.K., Nakamura A., Miyauchi A., Kinugasa S., Hagihara Y., et al. Association of the physical and chemical properties and the cytotoxicity of metal oxide nanoparticles: Metal ion release, adsorption ability and specific surface area. Metallomics. 2012;4:350–360. doi: 10.1039/c2mt20016c. PubMed DOI
Leung Y.H., Chan C.M.N., Ng A.M.C., Chan H.T., Chiang M.W.L., Djurišić A.B., Ng Y.H., Jim W.Y., Guo M.Y., Leung F.C.C., et al. Antibacterial activity of ZnO nanoparticles with a modified surface under ambient illumination. Nanotechnology. 2012;23:475703. doi: 10.1088/0957-4484/23/47/475703. PubMed DOI
Liu Y., He L., Mustapha A., Li H., Hu Z.Q., Lin M. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J. Appl. Microbiol. 2009;107:1193–1201. doi: 10.1111/j.1365-2672.2009.04303.x. PubMed DOI
Gogniat G., Thyssen M., Denis M., Pulgarin C., Dukan S. The bactericidal effect of TiO2 photocatalysis involves adsorption onto catalyst and the loss of membrane integrity. FEMS Microbiol. Lett. 2006;258:18–24. doi: 10.1111/j.1574-6968.2006.00190.x. PubMed DOI
Karlsson H.L., Toprak M.S., Fadeel B. Handbook on the Toxicology of Metals. Academic Press; Cambridge, MA, USA: 2022. Toxicity of Metal and Metal Oxide Nanoparticles; pp. 87–126.
Wang J.J., Sanderson B.J.S., Wang H. Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat. Res. Toxicol. Environ. Mutagen. 2007;628:99–106. doi: 10.1016/j.mrgentox.2006.12.003. PubMed DOI
Kang S.J., Kim B.M., Lee Y.J., Chung H.W. Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ. Mol. Mutagen. 2008;49:399–405. doi: 10.1002/em.20399. PubMed DOI
Falck G.C.M., Lindberg H.K., Suhonen S., Vippola M., Vanhala E., Catalán J., Savolainen K., Norppa H. Genotoxic effects of nanosized and fine TiO2. Hum. Exp. Toxicol. 2009;28:339–352. doi: 10.1177/0960327109105163. PubMed DOI
Magdolenova Z., Bilaničová D., Pojana G., Fjellsbø L.M., Hudecova A., Hasplova K., Marcomini A., Dusinska M. Impact of agglomeration and different dispersions of titanium dioxide nanoparticles on the human related in vitro cytotoxicity and genotoxicity. J. Environ. Monit. 2012;14:455–464. doi: 10.1039/c2em10746e. PubMed DOI
Akhal’tseva L.V., Moshkov N.E., Ingel’ F.I., Iurtseva N.A., Iurchenko V.V. Effect of titanium dioxide nano- and microparticles on the values of the micronucleus test using human blood lymphocytes in culture. Gig. Sanit. 2011;5:61–63. PubMed
Dobrzyńska M.M., Gajowik A., Radzikowska J., Lankoff A., Dušinská M., Kruszewski M. Genotoxicity of silver and titanium dioxide nanoparticles in bone marrow cells of rats in vivo. Toxicology. 2014;315:86–91. doi: 10.1016/j.tox.2013.11.012. PubMed DOI
Kao Y.-Y., Chen Y.-C., Cheng T.-J., Chiung Y.-M., Liu P.-S. Zinc Oxide Nanoparticles Interfere With Zinc Ion Homeostasis to Cause Cytotoxicity. Toxicol. Sci. 2012;125:462–472. doi: 10.1093/toxsci/kfr319. PubMed DOI
Sahu D., Kannan G.M., Vijayaraghavan R., Anand T., Khanum F. Nanosized Zinc Oxide Induces Toxicity in Human Lung Cells. ISRN Toxicol. 2013;2013:316075. doi: 10.1155/2013/316075. PubMed DOI PMC
Huang C.-C., Aronstam R.S., Chen D.-R., Huang Y.-W. Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol. Vitr. 2010;24:45–55. doi: 10.1016/j.tiv.2009.09.007. PubMed DOI
Wu W., Samet J.M., Peden D.B., Bromberg P.A. Phosphorylation of p65 Is Required for Zinc Oxide Nanoparticle–Induced Interleukin 8 Expression in Human Bronchial Epithelial Cells. Environ. Health Perspect. 2010;118:982–987. doi: 10.1289/ehp.0901635. PubMed DOI PMC
Ng K.W., Khoo S.P.K., Heng B.C., Setyawati M.I., Tan E.C., Zhao X., Xiong S., Fang W., Leong D.T., Loo J.S.C. The role of the tumor suppressor p53 pathway in the cellular DNA damage response to zinc oxide nanoparticles. Biomaterials. 2011;32:8218–8225. doi: 10.1016/j.biomaterials.2011.07.036. PubMed DOI
George S., Pokhrel S., Xia T., Gilbert B., Ji Z., Schowalter M., Rosenauer A., Damoiseaux R., Bradley K.A., Mädler L., et al. Use of a Rapid Cytotoxicity Screening Approach To Engineer a Safer Zinc Oxide Nanoparticle through Iron Doping. ACS Nano. 2010;4:15–29. doi: 10.1021/nn901503q. PubMed DOI PMC
Hanley C., Thurber A., Hanna C., Punnoose A., Zhang J., Wingett D.G. The Influences of Cell Type and ZnO Nanoparticle Size on Immune Cell Cytotoxicity and Cytokine Induction. Nanoscale Res. Lett. 2009;4:1409–1420. doi: 10.1007/s11671-009-9413-8. PubMed DOI PMC
Park E.-J., Choi J., Park Y.-K., Park K. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology. 2008;245:90–100. doi: 10.1016/j.tox.2007.12.022. PubMed DOI
Hussain S., Al-Nsour F., Rice A.B., Marshburn J., Yingling B., Ji Z., Zink J.I., Walker N.J., Garantziotis S. Cerium Dioxide Nanoparticles Induce Apoptosis and Autophagy in Human Peripheral Blood Monocytes. ACS Nano. 2012;6:5820–5829. doi: 10.1021/nn302235u. PubMed DOI PMC
Mahmoudi M., Sant S., Wang B., Laurent S., Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev. 2011;63:24–46. doi: 10.1016/j.addr.2010.05.006. PubMed DOI
Yang W.J., Lee J.H., Hong S.C., Lee J., Lee J., Han D.-W. Difference between Toxicities of Iron Oxide Magnetic Nanoparticles with Various Surface-Functional Groups against Human Normal Fibroblasts and Fibrosarcoma Cells. Materials. 2013;6:4689–4706. doi: 10.3390/ma6104689. PubMed DOI PMC
Sarkar A., Sil P.C. Iron oxide nanoparticles mediated cytotoxicity via PI3K/AKT pathway: Role of quercetin. Food Chem. Toxicol. 2014;71:106–115. doi: 10.1016/j.fct.2014.06.003. PubMed DOI
Naqvi S., Samim M., Abdin M.Z., Ahmed F.J., Maitra A.N., Prashant C.K., Dinda A.K. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int. J. Nanomed. 2010;5:983. doi: 10.2147/IJN.S13244. PubMed DOI PMC
Ma J.Y., Zhao H., Mercer R.R., Barger M., Rao M., Meighan T., Schwegler-Berry D., Castranova V., Ma J.K. Cerium oxide nanoparticle-induced pulmonary inflammation and alveolar macrophage functional change in rats. Nanotoxicology. 2011;5:312–325. doi: 10.3109/17435390.2010.519835. PubMed DOI
Ma J.Y., Mercer R.R., Barger M., Schwegler-Berry D., Scabilloni J., Ma J.K., Castranova V. Induction of pulmonary fibrosis by cerium oxide nanoparticles. Toxicol. Appl. Pharmacol. 2012;262:255–264. doi: 10.1016/j.taap.2012.05.005. PubMed DOI PMC
Donaldson K., Brown D.M., Clouter A., Duffin R., MacNee W., Renwick L., Tran L., Stone V. The Pulmonary Toxicology of Ultrafine Particles. J. Aerosol Med. 2002;15:213–220. doi: 10.1089/089426802320282338. PubMed DOI
Renwick L.C., Brown D., Clouter A., Donaldson K. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup. Environ. Med. 2004;61:442–447. doi: 10.1136/oem.2003.008227. PubMed DOI PMC
Trouiller B., Reliene R., Westbrook A., Solaimani P., Schiestl R.H. Titanium Dioxide Nanoparticles Induce DNA Damage and Genetic Instability In vivo in Mice. Cancer Res. 2009;69:8784–8789. doi: 10.1158/0008-5472.CAN-09-2496. PubMed DOI PMC
Sycheva L.P., Zhurkov V.S., Iurchenko V.V., Daugel-Dauge N.O., Kovalenko M.A., Krivtsova E.K., Durnev A.D. Investigation of genotoxic and cytotoxic effects of micro- and nanosized titanium dioxide in six organs of mice in vivo. Mutat. Res. Toxicol. Environ. Mutagen. 2011;726:8–14. doi: 10.1016/j.mrgentox.2011.07.010. PubMed DOI
Lindberg H.K., Falck G.C.-M., Catalán J., Koivisto A.J., Suhonen S., Järventaus H., Rossi E.M., Nykäsenoja H., Peltonen Y., Moreno C., et al. Genotoxicity of inhaled nanosized TiO2 in mice. Mutat. Res. Toxicol. Environ. Mutagen. 2012;745:58–64. doi: 10.1016/j.mrgentox.2011.10.011. PubMed DOI
Cho W.-S., Duffin R., Howie S.E., Scotton C.J., Wallace W.A., MacNee W., Bradley M., Megson I.L., Donaldson K. Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part. Fibre Toxicol. 2011;8:27. doi: 10.1186/1743-8977-8-27. PubMed DOI PMC
Yang Z., Han D., Tian Y., Zhang T., Ren G. Nano-zinc oxide damages spatial cognition capability via over-enhanced long-term potentiation in hippocamus of Wistar rats. Int. J. Nanomed. 2011;6:1453–1461. doi: 10.2147/IJN.S18507. PubMed DOI PMC
Elshama S.S., El-Kenawy A.E.M., Osman H.E.H. Histopathological study of zinc oxide nanoparticle-induced neurotoxicity in rats. Curr. Top. Toxicol. 2017;13:95–103.
Li C.-H., Shen C.-C., Cheng Y.-W., Huang S.-H., Wu C.-C., Kao C.-C., Liao J.-W., Kang J.-J. Organ biodistribution, clearance, and genotoxicity of orally administered zinc oxide nanoparticles in mice. Nanotoxicology. 2012;6:746–756. doi: 10.3109/17435390.2011.620717. PubMed DOI
Saman S., Moradhaseli S., Shokouhian A., Ghorbani M. Histopathological Effects of ZnO Nanoparticles on Liver and Heart Tissues in Wistar Rats. Adv. Biores. 2013;4:83–88.
Esmaeillou M., Moharamnejad M., Hsankhani R., Tehrani A.A., Maadi H. Toxicity of ZnO nanoparticles in healthy adult mice. Environ. Toxicol. Pharmacol. 2013;35:67–71. doi: 10.1016/j.etap.2012.11.003. PubMed DOI
An S.S.A., Kim Y.-R., Park J.-I., Lee E.J., Park S.H., Seong N.-W., Kim J.-H., Kim G.-Y., Meang E.-H., Hong J.-S., et al. Toxicity of 100 nm zinc oxide nanoparticles: A report of 90-day repeated oral administration in Sprague Dawley rats. Int. J. Nanomed. 2014;9:109–126. doi: 10.2147/IJN.S57928. PubMed DOI PMC
Hong J.-S., Park M.-K., Kim M.-S., Lim J.-H., Park G.-J., Maeng E.-H., Shin J.-H., Kim M.-K., Jeong J., Park J.-A., et al. Prenatal development toxicity study of zinc oxide nanoparticles in rats. Int. J. Nanomed. 2014;9:159–171. doi: 10.2147/IJN.S57932. PubMed DOI PMC
Jan T.-R., Shen C.-C., Wang C.-C., Liao M.-H. A single exposure to iron oxide nanoparticles attenuates antigen-specific antibody production and T-cell reactivity in ovalbumin-sensitized BALB/c mice. Int. J. Nanomed. 2011;6:1229–1235. doi: 10.2147/IJN.S21019. PubMed DOI PMC
Reinert M., Schlachter E.K., Bregy A., Lönnfors-Weitzel T., Vajtai I., Bernau V.J., Weitzel T., Mordasini P., Slotboom J., Herrmann G., et al. Metabolic pathway and distribution of superparamagnetic iron oxide nanoparticles: In vivo study. Int. J. Nanomed. 2011;6:1793–1800. doi: 10.2147/IJN.S23638. PubMed DOI PMC
Malindretos P., Sarafidis P.A., Rudenco I., Raptis V., Makedou K., Makedou A., Grekas D.M. Slow Intravenous Iron Administration Does Not Aggravate Oxidative Stress and Inflammatory Biomarkers during Hemodialysis: A Comparative Study between Iron Sucrose and Iron Dextran. Am. J. Nephrol. 2007;27:572–579. doi: 10.1159/000107928. PubMed DOI
Anzai Y., Piccoli C.W., Outwater E.K., Stanford W., Bluemke D.A., Nurenberg P., Saini S., Maravilla K.R., Feldman D.E., Schmiedl U.P., et al. Evaluation of Neck and Body Metastases to Nodes with Ferumoxtran 10–enhanced MR Imaging: Phase III Safety and Efficacy Study. Radiology. 2003;228:777–788. doi: 10.1148/radiol.2283020872. PubMed DOI
Gu L., Fang R.H., Sailor M.J., Park J.-H. In Vivo Clearance and Toxicity of Monodisperse Iron Oxide Nanocrystals. ACS Nano. 2012;6:4947–4954. doi: 10.1021/nn300456z. PubMed DOI PMC
Pacchierotti F., Bellusci M., La Barbera A., Padella F., Mancuso M., Pasquo A., Grollino M.G., Leter G., Nardi E., Cremisini C., et al. Biodistribution and acute toxicity of a nanofluid containing manganese iron oxide nanoparticles produced by a mechanochemical process. Int. J. Nanomed. 2014;9:1919–1929. doi: 10.2147/IJN.S56394. PubMed DOI PMC
Patil U.S., Adireddy S., Jaiswal A., Mandava S.H., Lee B.R., Chrisey D.B. In Vitro/In Vivo Toxicity Evaluation and Quantification of Iron Oxide Nanoparticles. Int. J. Mol. Sci. 2015;16:24417–24450. doi: 10.3390/ijms161024417. PubMed DOI PMC