Plants are subjected to a variety of abiotic stressors, including drought stress, that are fatal to their growth and ability to produce under natural conditions. Therefore, the present study was intended to investigate the drought tolerance potential of faba bean (Vicia faba L.) plants under the co-application of biochar and rhizobacteria, Cellulomonas pakistanensis (National Culture Collection of Pakistan (NCCP)11) and Sphingobacterium pakistanensis (NCCP246). The experiment was initiated by sowing the inoculated seeds with the aforementioned rhizobacterial strains in earthen pots filled with 3 kg of sand-mixed soil and 5% biochar. The morphology of biochar was observed with highly porous nature, along with the detection of various essential elements. The biochemical and physiological data showed that phenolic compounds and osmolytes were adversely affected by the induction of drought stress. However, the application of biochar and rhizobacteria boosted the level of flavonoids on average by 52.03%, total phenols by 50.67%, soluble sugar by 82.85%, proline by 76.81%, glycine betaine by 107.25%, and total protein contents by 89.18% in all co-treatments of biochar and rhizobacteria. In addition, stress indicator compounds, including malondialdehyde (MDA) contents and H2O2, were remarkably alleviated by 54.21% and 47.03%, respectively. Similarly, the amplitude of antioxidant enzymes including catalase, peroxidase, superoxide dismutase, ascorbate peroxidase, and guaiacol peroxidase was also enhanced by 63.80%, 80.95%, 37.87%, and 58.20%, respectively, in all co-treatments of rhizobacteria and biochar. Conclusively, biochar and rhizobacteria have a magnificent role in enhancing the drought tolerance potential of crop plants by boosting the physio-biochemical traits and enhancing the level of antioxidant enzymes.
- MeSH
- antioxidancia metabolismus MeSH
- dřevěné a živočišné uhlí * chemie MeSH
- fenoly metabolismus MeSH
- flavonoidy metabolismus analýza MeSH
- fyziologický stres * MeSH
- kořeny rostlin mikrobiologie růst a vývoj MeSH
- malondialdehyd metabolismus MeSH
- období sucha * MeSH
- půdní mikrobiologie MeSH
- Vicia faba * mikrobiologie růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
Spruce wood and Typha (wetland plant) derived biochars pyrolyzed at 350 °C and 600 °C were tested for their sorption affinity for organic pollutants (diclofenac, methylparaben, benzotriazole and sodium 1-decanesulfonate) and nutrients (nitrate, ammonium, phosphate and boron) commonly found in greywater. Batch and column studies combined with molecular dynamics modelling determined the sorption capacity, kinetics, and described the underlying mechanisms. The spruce biochar (600 °C) exhibited the highest sorption capacity mainly for the tested organics. The dynamic test performed for spruce biochar (600 °C) showed that the magnitude of desorption was low, and the desorbed amount ranged between 3 and 11 %. Molecular dynamics modelling (a computational tool for elucidating molecular-level interactions) indicated that the increased sorption of nitrate and boron on spruce biochar (600 °C) could be attributed to hydrophobic interactions. The molecular dynamics shows that predominant adsorption of organic pollutants was governed by π-π stacking, with a minor role of hydrogen-bonding on the biochar surface. In summary, higher pyrolysis temperature biochar yielded greater adsorption capacity greywater borne contaminants and the reaction temperature (10-34 °C) and presence of anionic surfactant had a limited effect on the adsorption of organic pollutants, suggesting efficacious application of biochar in general for greywater treatment in nature-based systems.
The remediation of a soil contaminated with Zn, Pb and Cd was tested by using biochar (BC), nano zero-valent iron (nZVI) and a combination of these two (BC + nZVI). Each amendment was individually applied to the soil at 2 wt%. We tested the influence of (i) the used amendments, (ii) time, and (iii) soil moisture conditions on the metal availability and soil physico-chemical parameters using various extraction methods, as well as soil pore water samplings. We found that metal availability was mainly affected by pH under the influence of time and water content. Among the tested treatments, BC was the most successful, resulting in the lowest amounts of the target metals in the pore water and the smallest temporal changes in metal concentrations and pH in the soil. The use of nZVI efficiently decreased water-extractable Pb in the short- and long-term. The BC + nZVI treatment also yielded promising results regarding the immobilisation of the studied metals. Time provoked a general decrease in pH, which occasionally increased the available metal concentrations. Raising the soil water content increased the pH and subsequently lowered the available metal concentrations in the pore water. The mechanisms of metal stabilisation were further investigated by SEM/EDS. The results indicated that the used soil amendments enhanced the binding of Zn, Pb, and Cd on Fe/Mn/Al oxides/hydroxides, which in turn resulted in the stabilisation of the target metals.
- MeSH
- dřevěné a živočišné uhlí chemie MeSH
- kadmium analýza MeSH
- látky znečišťující půdu analýza chemie MeSH
- olovo MeSH
- oxidy chemie MeSH
- půda chemie MeSH
- regenerace a remediace životního prostředí metody MeSH
- těžké kovy analýza chemie MeSH
- železo chemie MeSH
- zinek analýza MeSH
- Publikační typ
- časopisecké články MeSH
A woody-biochar was added to waste biomass during a composting process. The resulting compost-char was amended to a metal contaminated soil and two plant species, L. perenne and E. sativa, were grown in a pot experiment to determine 1) plant survival and stress factors, 2) uptake of metals to plants and, 3) chemical characteristics of sampled soils and pore waters. Compost supplemented with biochar after the composting process were also tested, as well as a commercially available compost, for comparison. Co-composting with biochar hastened the composting process, resulting in a composite material of reduced odour, increased maturity, circum-neutral pH and increased moisture retention than compost (increase by 3% of easily removable water content). When amended to the soil, CaCl2 extractable and pore water metals s were reduced by all compost treatments with little influence of biochar addition at any tested dose. Plant growth success was promoted furthest by the addition of co-composted biochar to the test soil, especially in the case of E. sativa. For both tested plant species significant reductions in plant metal concentrations (e.g. 8-times for Zn) were achieved, against the control soil, by compost, regardless of biochar addition. The results of this study demonstrate that the addition of biochar into the composting process can hasten the stability of the resulting compost-char, with more favourable characteristics as a soil amendment/improver than compost alone. This appears achievable whilst also maintaining the provision of available nutrients to soils and the reduction of metal mobility, and improved conditions for plant establishment.
- MeSH
- biodegradace MeSH
- biomasa MeSH
- Brassicaceae chemie růst a vývoj MeSH
- dřevěné a živočišné uhlí chemie MeSH
- dřevo chemie MeSH
- jílek chemie růst a vývoj MeSH
- kompostování * MeSH
- kovy analýza MeSH
- látky znečišťující půdu analýza MeSH
- půda chemie MeSH
- teoretické modely MeSH
- Publikační typ
- časopisecké články MeSH
Consumption of heavy metals, especially lead (Pb) contaminated food is a serious threat to human health. Higher Pb uptake by the plant affects the quality, growth and yield of crops. However, inoculation of plant growth-promoting rhizobacteria (PGPR) along with a mixture of organic amendments and biochar could be an effective way to overcome the problem of Pb toxicity. That's why current pot experiment was conducted to investigate the effect of compost mixed biochar (CB) and ACC deaminase producing PGPR on growth and yield of spinach plants under artificially induced Pb toxicity. Six different treatments i.e., control, Alcaligenes faecalis (PGPR1), Bacillus amyloliquefaciens (PGPR2), compost + biochar (CB), PGPR1 + CB and PGPR2 + CB were applied under 250 mg Pb kg-1 soil. Results showed that inoculation of PGPRs (Alcaligenes faecalis and Bacillus amyloliquefaciens) alone and along with CB significantly enhanced root fresh (47%) and dry weight (31%), potassium concentration (11%) in the spinach plant. Whereas, CB + Bacillus amyloliquefaciens significantly decreased (43%) the concentration of Pb in the spinach root over control. In conclusion, CB + Bacillus amyloliquefaciens has the potential to mitigate the Pb induced toxicity in the spinach. The obtained result can be further used in the planning and execution of rhizobacteria and compost mixed biochar-based soil amendment.
- MeSH
- Alcaligenes faecalis enzymologie izolace a purifikace metabolismus MeSH
- Bacillus amyloliquefaciens enzymologie izolace a purifikace metabolismus MeSH
- bakteriální proteiny metabolismus MeSH
- chlorofyl metabolismus MeSH
- draslík analýza MeSH
- dřevěné a živočišné uhlí chemie MeSH
- koncentrace vodíkových iontů MeSH
- kořeny rostlin růst a vývoj metabolismus mikrobiologie MeSH
- látky znečišťující půdu chemie metabolismus toxicita MeSH
- lyasy štěpící vazby C-C metabolismus MeSH
- olovo chemie metabolismus toxicita MeSH
- půda chemie MeSH
- půdní mikrobiologie MeSH
- Spinacia oleracea chemie účinky léků mikrobiologie MeSH
- symbióza MeSH
- Publikační typ
- časopisecké články MeSH
For the pretreatment of wood, charcoal and collagen from bone micro samples using the Acid-Base-Acid (ABA) method, we have assembled an automated computer-controlled unit in our laboratory CRL. The sample is placed in a glass single-necked cuvette. The machine consists of prepared solutions which are guided through capillaries, switching valve and peristaltic pump into the cuvette with the sample according to the currently selected program. The automat can be used for the pretreatment of charcoal, wood and also collagen from bones.
- MeSH
- alkálie chemie MeSH
- dřevěné a živočišné uhlí chemie MeSH
- dřevo chemie MeSH
- kolagen chemie MeSH
- kosti a kostní tkáň chemie MeSH
- kyseliny chemie MeSH
- laboratorní automatizace metody MeSH
- lidé MeSH
- radioaktivní datování metody MeSH
- radioizotopy uhlíku analýza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The establishment of phytoextraction crops on highly contaminated soils can be limited by metal toxicity. A recent proposal has suggested establishing support crops during the critical initial phase by metal immobilization through soil amendments followed by subsequent mobilization using elemental sulphur to enhance phytoextraction efficiency. This 'combined phytoremediation' approach is tested for the first time in a pot experiment with a highly contaminated soil. During a 14-week period, relatively metal-tolerant maize was grown in a greenhouse under immobilization (before sulphur (S) application) and mobilization (after S application) conditions with soil containing Cd, Pb and Zn contaminants. Apart from the control (C) sample, the soil was amended with activated carbon (AC), lignite (Lig) or vermicompost (VC) all in two different doses (dose 1~45 g additive kg-1 soil and dose 2~90 g additive kg-1 soil). Elemental S was added as a mobilization agent in these samples after 9 weeks. Biomass production, nutrient and metal bioavailability in the soil were determined, along with their uptake by plants and the resulting remediation factors. Before S application, Cd and Zn mobility was reduced in all the AC, Lig and VC treatments, while Pb mobility was increased only in the Lig1 and VC1 treatments. Upon sulphur application, Fe, Mn, Cd, Pb and Zn mobility was not significantly affected in the C, AC and VC treatments, nor total Cd, Pb and Zn contents in maize shoots. Increased sulphate, Mn, Cd, Pb and Zn mobilities in soil together with related higher total S, Mn, Pb and Zn contents in shoots were observed in investigated treatments in the last sampling period. The highest biomass production and the lowest metal toxicity were seen in the VC treatments. These results were associated with effective metal immobilization and showed the trend of steady release of some nutrients. The highest remediation factors and total elemental content in maize shoots were recorded in the VC treatments. This increased phytoremediation efficiency by 400% for Cd and by 100% for Zn compared to the control. Considering the extreme metal load of the soil, it might be interesting to use highly metal-tolerant plants in future research. Future investigations could also explore the effect of carbonaceous additives on S oxidation, focusing on the specific microorganisms and redox reactions in the soil. In addition, the homogeneous distribution of the S rate in the soil should be considered, as well as longer observation times.
- MeSH
- biodegradace MeSH
- biologická dostupnost MeSH
- biomasa MeSH
- dřevěné a živočišné uhlí chemie MeSH
- fosfor farmakokinetika MeSH
- kompostování MeSH
- kukuřice setá účinky léků růst a vývoj metabolismus MeSH
- látky znečišťující půdu analýza farmakokinetika MeSH
- půda chemie MeSH
- regenerace a remediace životního prostředí metody MeSH
- síra * farmakokinetika MeSH
- těžké kovy analýza farmakokinetika MeSH
- výhonky rostlin účinky léků metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
Impacts of red beet consumption both on human and animal health are subject of intense research. In particular, products that are not heat-processed contain plethora of bioactive compounds that hold promise against numerous degenerative and aging-associated diseases. However, high level of nitrates (typically more than 2 g NO3- kg-1) whose health effects are perceived with reasoned objections counterbalance these benefits. Following the above, from a certain level, the increased consumption of red beet has contrary impacts, creating a limiting factor not only from the economic point of view but also in terms of beneficial compounds intake. Reduction of NO3- levels (- 35%) has been achieved by soil amendment via increased doses of biochar. The data obtained indicates that the mechanism can be explained as follows. The soil improvement reduces soil density, increases soil temperature, improves water retention, and other prerequisites for increased activity of soil microorganisms. Accelerated metabolism of soil biota turned more nitrogen from fertilizers into organic forms. Hence, less mineral nitrogen is left for red beet intake.
We conducted a pot experiment with biochar (BC), wood ash (WA), and humic substances (HS) to investigate their effect on As, Zn, Cu, Cd and Pb mobility in soil, as well as enzyme activities involved in C-, N-, and P-cycles, and Eisenia foetida toxicity in multi-contaminated soils. Amendments were dosed to increase еру soil pH from initial 6.0 to ∼6.5 and ∼7.0. Applying amendments has revealed, that WA significantly immobilized Cu, Zn and Pb, BC - Cu and Zn, and HS decreased solely Cu mobility in soil. The partition indices of Zn, Cu, and Pb, quantitatively describing the bioavailable species of elements in soil, were the lowest for WA. Changes in the water-soluble species of metals were more pronounced than in the exchangeable ones for all amendments. An opposite effect was observed on enzyme activity and earthworm toxicity for the WA and carbonaceous amendments. The BC and HS provided favourable soil conditions to dehydrogenase, β-glucosidase, urease activity and fluorescein diacetate hydrolysis, while WA significantly decreased the activity of all the mentioned enzymes in soil. The results are supported by an enzymes-based weighted mean index, being the highest for BC and HS and the lowest for WA (lower than in the control sample). At the same time, WA was suitable to eliminate the trace elements' stress to earthworms (biomass endpoints and cocoons production). Our data revealed that each amendment has its own advantages and disadvantages. The choice of the most suitable amendment therefore should always be made within an integral approach and based on the purpose of remediation.
- MeSH
- dřevěné a živočišné uhlí chemie MeSH
- huminové látky * MeSH
- látky znečišťující půdu analýza MeSH
- Oligochaeta metabolismus MeSH
- půda chemie MeSH
- regenerace a remediace životního prostředí MeSH
- stopové prvky analýza MeSH
- těžké kovy analýza MeSH
- znečištění životního prostředí analýza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
As nanoremediation strategies for in-situ groundwater treatment extend beyond nanoiron-based applications to adsorption and oxidation, ecotoxicological evaluations of newly developed materials are required. The biological effects of four new materials with different iron (Fe) speciations ([i] FerMEG12 - pristine flake-like milled Fe(0) nanoparticles (nZVI), [ii] Carbo-Iron® - Fe(0)-nanoclusters containing activated carbon (AC) composite, [iii] Trap-Ox® Fe-BEA35 (Fe-zeolite) - Fe-doped zeolite, and [iv] Nano-Goethite - 'pure' FeOOH) were studied using the unicellular green alga Chlamydomonas sp. as a model test system. Algal growth rate, chlorophyll fluorescence, efficiency of photosystem II, membrane integrity and reactive oxygen species (ROS) generation were assessed following exposure to 10, 50 and 500 mg L-1 of the particles for 2 h and 24 h. The particles had a concentration-, material- and time-dependent effect on Chlamydomonas sp., with increased algal growth rate after 24 h. Conversely, significant intracellular ROS levels were detected after 2 h, with much lower levels after 24 h. All Fe-nanomaterials displayed similar Z-average sizes and zeta-potentials at 2 h and 24 h. Effects on Chlamydomonas sp. decreased in the order FerMEG12 > Carbo-Iron® > Fe-zeolite > Nano-Goethite. Ecotoxicological studies were challenged due to some particle properties, i.e. dark colour, effect of constituents and a tendency to agglomerate, especially at high concentrations. All particles exhibited potential to induce significant toxicity at high concentrations (500 mg L-1), though such concentrations would rapidly decrease to mg or µg L-1 in aquatic environments, levels harmless to Chlamydomonas sp. The presented findings contribute to the practical usage of particle-based nanoremediation in environmental restoration.
- MeSH
- adsorpce MeSH
- buněčná membrána účinky léků MeSH
- Chlamydomonas účinky léků růst a vývoj metabolismus MeSH
- dřevěné a živočišné uhlí chemie MeSH
- minerály chemie MeSH
- nanostruktury chemie MeSH
- oxidace-redukce MeSH
- podzemní voda MeSH
- reaktivní formy kyslíku metabolismus MeSH
- regenerace a remediace životního prostředí metody MeSH
- sloučeniny železa chemie MeSH
- železo chemie farmakologie MeSH
- zeolity chemie MeSH
- Publikační typ
- časopisecké články MeSH