Synchronization of Boron application methods and rates is environmentally friendly approach to improve quality attributes of Mangifera indica L. On sustainable basis

. 2022 Mar ; 29 (3) : 1869-1880. [epub] 20211022

Status PubMed-not-MEDLINE Jazyk angličtina Země Saúdská Arábie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35280580
Odkazy

PubMed 35280580
PubMed Central PMC8913409
DOI 10.1016/j.sjbs.2021.10.036
PII: S1319-562X(21)00915-3
Knihovny.cz E-zdroje

Micronutrient deficiency in the soil is one of the major causes of mango fruit and yield's poor quality. Besides, the consumption of such a diet also causes a deficiency of micronutrients in humans. Boron deficiency adversely affects the flowering and pollen tube formation, thus decreasing mango yield and quality attributes. Soil and foliar application of B are considered a productive method to alleviate boron deficiency. A field experiment was conducted to explore the Boron most suitable method and application rate in mango under the current climatic scenario. There were nine treatments applied in three replications. The results showed that application of T8 = RD + Borax (75 g plant -1 as a basal application) + H3 BO3 (0.8% as a foliar spray) and T9 = RD + Borax (150 g plant -1 as a basal application) + H3 BO3 (0.8% as a foliar spray) significantly enhanced the nitrogen, potassium, proteins, ash, fats, fiber, and total soluble solids in mango as compared to the control. A significant decrease in sodium, total phenolics contents, antioxidant activity, and acidity as citric acid also validated the effective functioning of T8 = RD + Borax (75 g plant -1 as a basal application) + H3 BO3 (0.8% as a foliar spray) and T9 = RD + Borax (150 g plant -1 as a basal application) + H3 BO3 (0.8% as a foliar spray) as compared to control. In conclusion, T8 = RD + Borax (75 g plant -1 as a basal application) + H3 BO3 (0.8% as a foliar spray) and T9 = RD + Borax (150 g plant -1 as a basal application) + H3 BO3 (0.8% as a foliar spray) is a potent strategy to improve the quality attributes of mango under the changing climatic situation.

Zobrazit více v PubMed

Abbas M., Anwar J., Zafar-ul-Hye M., Iqbal Khan R., Saleem M., Rahi A.A., Danish S., Datta R. Effect of Seaweed Extract on Productivity and Quality Attributes of Four Onion Cultivars. Horticulturae. 2020;6(2):28. doi: 10.3390/horticulturae6020028. DOI

Abdoli M. Plant Micronutrients: Deficiency and Toxicity Management. Springer International Publishing; Cham: 2020. pp. 31–71. DOI

Aftab T., Khan M.M.A., Idrees M., Naeem M., Ram M. Boron Induced Oxidative Stress, Antioxidant Defence Response and Changes in Artemisinin Content in Artemisia annua L. Journal of Agronomy and Crop Science. 2010;196:423–430. doi: 10.1111/j.1439-037X.2010.00427.x. DOI

Amin G.A.M., Geweifel H.G., Gomaa M.A., El-kholy M.A., Magda H.M. Effect of sowing methods and fertilization on yield analysis and grain quality of wheat under new reclaimed sandy soil. Journal of Applied Sciences Research. 2011;7:1760–1767.

Anees M., Tahir F.M., Shahzad J., Mahmood N., Genetics M. Effect of foliar application of micronutrients on the quality of mango (Mangifera indica L.) cv. Dusehri fruit. Mycopath. 2011;9:25–28.

Benton J., Jr., Wolf B., Mills H.A. 1st ed. Micro-Macro Publishing Inc.; USA: 1991. Plant Analysis Handbook: A Practical Sampling, Preparation, Analysis, and Interpretation Guide - AbeBooks - Jones, J. Benton, Jr.; Wolf, Benjamin; Mills, Harry A.: 1878148001.

Bibi, F., Ahmad, I., Bakhsh, A., Kiran, S., Danish, S., Ullah, H., 2019. Effect of Foliar Application of Boron with Calcium and Potassium on Quality and Yield of Mango cv. Summer Bahisht (SB) Chaunsa. Open Agriculture 4, 98–106.

Bremner, M., 1996. Chapter 37: Nitrogen-Total. Methods of Soil Analysis Part 3. Chemical Methods-SSSA Book Series 5 1085–1121.

Cakmak I., Kutman U.B. Agronomic biofortification of cereals with zinc: a review. European Journal of Soil Science. 2018;69(1):172–180. doi: 10.1111/ejss.2018.69.issue-110.1111/ejss.12437. DOI

Camacho-Cristóbal J.J., Anzellotti D., González-Fontes A. Changes in phenolic metabolism of tobacco plants during short-term boron deficiency. Plant Physiology and Biochemistry. 2002;40(12):997–1002. doi: 10.1016/S0981-9428(02)01463-8. DOI

Danish S., Zafar-ul-Hye M., Fahad S., Saud S., Brtnicky M., Hammerschmiedt T., Datta R. Drought Stress Alleviation by ACC Deaminase Producing Achromobacter xylosoxidans and Enterobacter cloacae, with and without Timber Waste Biochar in Maize. Sustainability. 2020;12:6286. doi: 10.3390/su12156286. DOI

Dell B., Huang L. Physiological response of plants to low boron. Plant and Soil. 1997:103–120. doi: 10.1007/978-94-011-5580-9_8. DOI

Drake S., Larsen F., Fellman J., Higgins S. Maturity, storage quality, carbohydrate, and mineral content of Goldspur apples as influenced by rootstock. Journal of the American Society for Horticultural Science. 1988;113:949–952.

Ekbic H.B., Gokdemir N., Erdem H. Effects of boron on yield, quality and leaf nutrients of isabella (Vitis labrusca L.) grape cultivar. Acta Scientiarum Polonorum, Hortorum Cultus. 2018;17:149–157. doi: 10.24326/asphc.2018.1.14. DOI

Esfandiari E., Abdoli M. Wheat biofortification through zinc foliar application and its effects on wheat quantitative and qualitative yields under zinc deficient stress. Yuzuncu Yil University Journal of Agricultural Sciences. 2016;26:529–537. doi: 10.29133/yyutbd.282759. DOI

Gaines T.P., Mitchell G.A. Boron determination in plant tissue by the azomethine H method. Communications in Soil Science and Plant Analysis. 1979;10(8):1099–1108. doi: 10.1080/00103627909366965. DOI

Goldbach H.E., Wimmer M.A. Boron in plants and animals: Is there a role beyond cell-wall structure? Journal of Plant Nutrition and Soil Science. 2007;170(1):39–48. doi: 10.1002/(ISSN)1522-262410.1002/jpln.v170:110.1002/jpln.200625161. DOI

Han S., Chen L.-S., Jiang H.-X., Smith B.R., Yang L.-T., Xie C.-Y. Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings. Journal of Plant Physiology. 2008;165(13):1331–1341. doi: 10.1016/j.jplph.2007.11.002. PubMed DOI

Hettiarachchi M., Hilmers D.C., Liyanage C., Abrams S.A. Na2EDTA Enhances the Absorption of Iron and Zinc from Fortified Rice Flour in Sri Lankan Children. The Journal of Nutrition. 2004;134:3031–3036. doi: 10.1093/jn/134.11.3031. PubMed DOI

Izhar Shafi M., Adnan M., Fahad S., Wahid F., Khan A., Yue Z., Danish S., Zafar-ul-Hye M., Brtnicky M., Datta R. Application of Single Superphosphate with Humic Acid Improves the Growth, Yield and Phosphorus Uptake of Wheat (Triticum aestivum L.) in Calcareous Soil. Agronomy. 2020;10:1224. doi: 10.3390/agronomy10091224. DOI

Jankowski K.J., Sokólski M., Olszewski J. Effect of micro-granular starter fertilizer on the micronutrient content of winter rapeseed biomass. Journal of Elementology. 2019;24:449–460. doi: 10.5601/jelem.2018.23.3.1710. DOI

Jatav H.S., Sharma L.D., Sadhukhan R., Singh S.K., Singh S., Rajput V.D., Parihar M., Jatav S.S., Jinger D., Kumar S., Sukirtee . Plant Micronutrients: Deficiency and Toxicity Management. Springer International Publishing; Cham: 2020. pp. 1–30. DOI

Jayaraman J., Jayaraman J. 1st ed. Wiley Eastern Delhi; India: 1981. Laboratory manual in biochemistry.

Marfo T., Datta R., Pathan S., Vranová V. Ecotone Dynamics and Stability from Soil Scientific Point of View. Diversity. 2019;11(4):53. doi: 10.3390/d11040053. DOI

Marschner H. 3rd ed. Academic Press; 2011. Marschner’s Mineral Nutrition of Higher Plants.

Misaghi I.J., Grogan R.G. Physiological basis for tipburn development in head lettuce. Phytopathology. 1978;68:1744–1753.

Morsey M.A., Taha E.M. Effect of boron, manganese and their combination on sugar beet under El-Minia conditions. 2: concentration and uptake of N, P, K, B and Mn. Ann Agric Sci Ain Shams Univ Cairo. 1986;31:1241–1259.

Mozafar A. Boron Effect on Mineral Nutrients of Maize. Agronomy Journal. 1989;81(2):285–290. doi: 10.2134/agronj1989.00021962008100020029x. DOI

Pathan S.I., Větrovský T., Giagnoni L., Datta R., Baldrian P., Nannipieri P., Renella G. Microbial expression profiles in the rhizosphere of two maize lines differing in N use efficiency. Plant and Soil. 2018;433(1-2):401–413. doi: 10.1007/s11104-018-3852-x. DOI

Patil H., Tank R.V., Bennurmath P., Doni S. Role of zinc, copper and boron in fruit crops: A review. Int. J. Chem. Stud. 2018;6:1040–1045.

Pratt, P.F., 1965. Potassium, in: Norman, A.G. (Ed.), Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9.2. John Wiley & Sons, Ltd, pp. 1022–1030. https://doi.org/10.2134/agronmonogr9.2.c20

Rangana, S., 1979. Titratable Acidity in Manual of Fruit and Vegetable Products. Tala McGraw. Hill Pub. Cp. Ltd., New Delhi.

Redondo-Nieto Miguel, Pulido Luis, Reguera María, Bonilla Ildefonso, Bolaños Luis. Developmentally regulated membrane glycoproteins sharing antigenicity with rhamnogalacturonan II are not detected in nodulated boron deficient Pisum sativum. Plant, Cell and Environment. 2007;30(11):1436–1443. doi: 10.1111/pce:2007.30.issue-1110.1111/j.1365-3040.2007.01721.x. PubMed DOI

Robbertse P.J., Lock J.J., Stoffberg E., Coetzer L.A. Effect of boron on directionality of pollen tube growth in Petunia and Agapanthus. South African Journal of Botany. 1990;56(4):487–492. doi: 10.1016/S0254-6299(16)31046-8. DOI

Shen Z., Liang Y., Shen K. Effect of boron on the nitrate reductase activity in oilseed rape plants. Journal of Plant Nutrition. 1993;16(7):1229–1239. doi: 10.1080/01904169309364608. DOI

Shirgure P.S. Micro-irrigation systems, automation and fertigation in citrus. Scientific Journal of Review. 2012;1:156–169.

Singleton V.L., Rossi J.A. Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. American Journal of Enology and Viticulture. 1965;16:144–158.

Spencer J.L., Morris M.P., Kennard W.C. Vitamin C Concentration in Developing and Mature Fruits of Mango (Mangifera indica L.) Plant Physiology. 1956;31(1):79–80. doi: 10.1104/pp.31.1.79. PubMed DOI PMC

Steel R.G., Torrie J.H., Dickey D.A. 3rd ed. McGraw Hill Book International Co.; Singapore: 1997. Principles and Procedures of Statistics: A Biometrical Approach.

Danso Marfo T., Datta R., Vranová V., Ekielski A. Ecotone Dynamics and Stability from Soil Perspective: Forest-Agriculture Land Transition. Agriculture. 2019;9(10):228. doi: 10.3390/agriculture9100228. DOI

Thomidis T., Exadaktylou E. Effect of boron on the development of brown rot (Monilinia laxa) on peaches. Crop Protection. 2010;29(6):572–576. doi: 10.1016/j.cropro.2009.12.023. DOI

Ullah A., Ali M., Shahzad K., Ahmad F., Iqbal S., Rahman M.H.U., Ahmad S., Iqbal M.M., Danish S., Fahad S., Alkahtani J., Soliman Elshikh M., Datta R. Impact of Seed Dressing and Soil Application of Potassium Humate on Cotton Plants Productivity and Fiber Quality. Plants. 2020;9:1444. doi: 10.3390/plants9111444. PubMed DOI PMC

White P.J., Broadley M.R. Chloride in Soils and its Uptake and Movement within the Plant: A Review. Annals of Botany. 2001;88:967–988. doi: 10.1006/anbo.2001.1540. DOI

Zafar-ul-Hye M., Naeem M., Danish S., Fahad S., Datta R., Abbas M., Rahi A.A., Brtnicky M., Holátko J., Tarar Z.H., Nasir M. Alleviation of Cadmium Adverse Effects by Improving Nutrients Uptake in Bitter Gourd through Cadmium Tolerant Rhizobacteria. Environments. 2020;7:54. doi: 10.3390/environments7080054. DOI

Zafar-ul-Hye M., Naeem M., Danish S., Khan M.J., Fahad S., Datta R., Brtnicky M., Kintl A., Hussain G.S., El-Esawi M.A. Effect of Cadmium-Tolerant Rhizobacteria on Growth Attributes and Chlorophyll Contents of Bitter Gourd under Cadmium Toxicity. Plants. 2020;9:1386. doi: 10.3390/plants9101386. PubMed DOI PMC

Zafar-ul-Hye M., Tahzeeb-ul-Hassan M., Abid M., Fahad S., Brtnicky M., Dokulilova T., Datta R., Danish S. Author Correction: Potential role of compost mixed biochar with rhizobacteria in mitigating lead toxicity in spinach. Scientific Reports. 2020;10(1) doi: 10.1038/s41598-020-73325-4. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...