Impact of Seed Dressing and Soil Application of Potassium Humate on Cotton Plants Productivity and Fiber Quality
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Project Number (RSP-2020/193)
The authors extend their appreciation to the Researchers supporting King Saud University, Riyadh, Saudi Arabia.
PubMed
33114781
PubMed Central
PMC7694001
DOI
10.3390/plants9111444
PII: plants9111444
Knihovny.cz E-zdroje
- Klíčová slova
- application method, biological yield, grain yield, nitrogen, phosphorus, potassium,
- Publikační typ
- časopisecké články MeSH
Humus is the stable form of added crop and animal residues. The organic matter after a long-term decomposition process converts into humic substances. The naturally occurring humus is present in less amount in soils of the arid and semi-arid regions. The addition of commercially available humic acid can, therefore, contribute to improving soil health and crop yields. The present study was conducted to evaluate the effect of potassium humate, applied through soil seed dressing, on cotton productivity and fiber quality attributes. Seed dressing with potassium humate was done at the rate of 0, 100, 150 and 200 mL kg-1 seed while in soil potassium humate was applied at the rate of 0, 10, 20 and 30 L ha-1. Results showed that the combined application of potassium humate by seed dressing and through soil application improved the soil properties, productivity and fiber quality traits of cotton. All levels of soil applied potassium humate (10, 20 and 30 L ha-1) performed better over seed dressing in terms of cotton productivity and fiber quality attributes. Among the soil application rates, 20 L ha-1 potassium humate proved better as compared to other rates (0, 10 and 30 L ha-1). Higher soil application of potassium humate (30 L ha-1) showed depressing effects on all the traits studied like the reduction of 12.4% and 6.6% in Ginning out turn and fiber length, respectively, at a seeding dressing of 200 mL kg-1. In conclusion, potassium humate seed dressing and soil application at the rate of 200 mL kg-1 and 20 L ha-1, respectively, is a better approach to improve cotton productivity. Soil potassium humate should not exceed a rate of 20 L ha-1 when the seed dressing of potassium is also practiced.
Central Cotton Research Institute Multan 60000 Pakistan
Department of Agronomy Muhammad Nawaz Sharif University of Agriculture Multan 60000 Pakistan
Department of Agronomy The University of Haripur Haripur 22620 Pakistan
Institute of Crop Science and Resource Conservation University Bonn 53115 Bonn Germany
Plant Nutrition Section Mango Research Institute Multan 60000 Pakistan
Zobrazit více v PubMed
Paul E.A. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biol. Biochem. 2016;98:109–126. doi: 10.1016/j.soilbio.2016.04.001. DOI
He Z., Lin H., Hao J., Kong X., Tian K., Bei Z., Tian X. Impact of vermiculite on ammonia emissions and organic matter decomposition of food waste during composting. Bioresour. Technol. 2018;263:548–554. doi: 10.1016/j.biortech.2018.05.031. PubMed DOI
Kumar D., Singh A., Raha P., Rakshit A., Singh C., Kishor P. Potassium Humate: A potential soil conditioner and plant growth promoter. Int. J. Agric. Environ. Biotechnol. 2013;6:441–446. doi: 10.5958/j.2230-732X.6.3.015. DOI
Meena R.S., Kumar S., Datta R., Lal R., Vijayakumar V., Brtnicky M., Sharma M.P., Yadav G.S., Jhariya M.K., Jangir C.K. Impact of agrochemicals on soil microbiota and management: A review. Land. 2020;9:34. doi: 10.3390/land9020034. DOI
Brtnicky M., Dokulilova T., Holatko J., Pecina V., Kintl A., Latal O., Vyhnanek T., Prichystalova J., Datta R. Long-Term Effects of Biochar-Based Organic Amendments on Soil Microbial Parameters. Agronomy. 2019;9:747. doi: 10.3390/agronomy9110747. DOI
Molaei A., Lakzian A., Datta R., Haghnia G., Astaraei A., Rasouli-Sadaghiani M., Ceccherini M.T. Impact of chlortetracycline and sulfapyridine antibiotics on soil enzyme activities. Int. Agrophys. 2017;31 doi: 10.1515/intag-2016-0084. DOI
Molaei A., Lakzian A., Haghnia G., Astaraei A., Rasouli-Sadaghiani M., Ceccherini M.T., Datta R. Assessment of some cultural experimental methods to study the effects of antibiotics on microbial activities in a soil: An incubation study. PLoS ONE. 2017;12 doi: 10.1371/journal.pone.0180663. PubMed DOI PMC
Suddarth S.R.P., Ferreira J.F.S., Cavalcante L.F., Fraga V.S., Anderson R.G., Halvorson J.J., Bezerra F.T.C., Medeiros S.A.S., Costa C.R.G., Dias N.S. Can humic substances improve soil fertility under salt stress and drought conditions? J. Environ. Qual. 2019;48:1605–1613. doi: 10.2134/jeq2019.02.0071. DOI
Danish S., Younis U., Akhtar N., Ameer A., Ijaz M., Nasreen S., Huma F., Sharif S., Ehsanullah M. Phosphorus solubilizing bacteria and rice straw biochar consequence on maize pigments synthesis. Int. J. Biosci. 2015;5:31–39. doi: 10.12692/ijb/5.12.31-39. DOI
Danish S., Younis U., Nasreen S., Akhtar N., Iqbal M.T. Biochar consequences on cations and anions of sandy soil. J. Biodivers. Environ. Sci. 2015;6:121–131.
Danish S., Zafar-ul-Hye M. Co-application of ACC-deaminase producing PGPR and timber-waste biochar improves pigments formation, growth and yield of wheat under drought stress. Sci. Rep. 2019;9 doi: 10.1038/s41598-019-42374-9. PubMed DOI PMC
Danish S., Zafar-ul-Hye M. Combined role of ACC deaminase producing bacteria and biochar on cereals productivity under drought. Phyton. 2020;89:217–227. doi: 10.32604/phyton.2020.08523. DOI
Younis U., Danish S., Malik S.A., Ahmed N., Munir T.M., Rasheed M.K. Role of cotton sticks biochar in immobilization of nickel under induced toxicity condition and growth indices of Trigonella corniculata L. Environ. Sci. Pollut. Res. 2020;27:1752–1761. doi: 10.1007/s11356-019-06466-3. PubMed DOI
Zafar-ul-Hye M., Tahzeeb-ul-Hassan M., Abid M., Fahad S., Brtnicky M., Dokulilova T., Datta R., Danish S. Potential role of compost mixed biochar with rhizobacteria in mitigating lead toxicity in spinach. Sci. Rep. 2020;10:1–12. PubMed PMC
Sultan H., Ahmed N., Mubashir M., Danish S. Chemical production of acidified activated carbon and its influences on soil fertility comparative to thermo-pyrolyzed biochar. Sci. Rep. 2020;10:595. doi: 10.1038/s41598-020-57535-4. PubMed DOI PMC
Izhar Shafi M., Adnan M., Fahad S., Wahid F., Khan A., Yue Z., Danish S., Zafar-ul-Hye M., Brtnicky M., Datta R. Application of Single Superphosphate with Humic Acid Improves the Growth, Yield and Phosphorus Uptake of Wheat (Triticum aestivum L.) in Calcareous Soil. Agronomy. 2020;10:1224. doi: 10.3390/agronomy10091224. DOI
Latal R.D.O., Hammerschmiedt T., Elbl J., Pecina V., Kintl A., Balakova L., Radziemska M., Baltazar T., Skarpa P., Danish S., et al. Bentonite-Based Organic Amendment Enriches Microbial Activity in Agricultural Soils. Land. 2020;9:258.
Marfo T.D., Datta R., Pathan S.I., Vranová V. Ecotone Dynamics and Stability from Soil Scientific Point of View. Diversity. 2019;11:53. doi: 10.3390/d11040053. DOI
Marfo T.D., Vranová V., Ekielski A. Ecotone Dynamics and Stability from Soil Perspective: Forest-Agriculture Land Transition. Agriculture. 2019;9:228. doi: 10.3390/agriculture9100228. DOI
Yadav G.S., Datta R., Imran Pathan S., Lal R., Meena R.S., Babu S., Das A., Bhowmik S., Datta M., Saha P. Effects of conservation tillage and nutrient management practices on soil fertility and productivity of rice (Oryza sativa L.)–rice system in North Eastern region of India. Sustainability. 2017;9:1816. doi: 10.3390/su9101816. DOI
Ali A.Y.A., Ibrahim M.E.H., Zhou G., Nimir N.E.A., Jiao X., Zhu G., Elsiddig A.M.I., Zhi W., Chen X., Lu H. Ameliorative effects of jasmonic acid and humic acid on antioxidant enzymes and salt tolerance of forage sorghum under salinity conditions. Agron. J. 2019;111:3099–3108. doi: 10.2134/agronj2019.05.0347. DOI
Khaleda L., Park H.J., Yun D.J., Jeon J.R., Kim M.G., Cha J.Y., Kim W.Y. Humic acid confers high-affinity K+ transporter 1-mediated salinity stress tolerance in Arabidopsis. Mol. Cells. 2017;40:966–975. doi: 10.14348/molcells.2017.0229. PubMed DOI PMC
Datta R., Anand S., Moulick A., Baraniya D., Pathan S.I., Rejsek K., Vranova V., Sharma M., Sharma D., Kelkar A., et al. How enzymes are adsorbed on soil solid phase and factors limiting its activity: A Review. Int. Agrophys. 2017;31 doi: 10.1515/intag-2016-0049. DOI
Datta R., Baraniya D., Wang Y.-F., Kelkar A., Meena R.S., Yadav G.S., Ceccherini M.T., Formanek P. Amino acid: Its dual role as nutrient and scavenger of free radicals in soil. Sustainability. 2017;9:1402. doi: 10.3390/su9081402. DOI
Imran M.A., Ali A., Ashfaq M., Hassan S., Culas R., Ma C. Impact of climate smart agriculture (CSA) practices on cotton production and livelihood of farmers in Punjab, Pakistan. Sustainability. 2018;10:2101. doi: 10.3390/su10062101. DOI
Reddy K.R., Brand D., Wijewardana C. Temperature effects on cotton seedling emergence, growth, and development. Agron. J. 2017;109:1379–1387. doi: 10.2134/agronj2016.07.0439. DOI
Acosta-Martinez V., Cotton J. Lasting effects of soil health improvements with management changes in cotton-based cropping systems in a sandy soil. Biol. Fertil. Soils. 2017;53:533–546. doi: 10.1007/s00374-017-1192-2. DOI
Abbasi M.A., Butt M.B. Soil fertility status of cultivated lands in different agro-ecological zones of Azad Jammu and Kashmir, Pakistan. J. Appl. Agric. Biotechnol. 2017;2:21–27.
Jamal A., Hifsa J. Assessment and Distribution of Macro and Micro Nutrients in Different Soil Series of District Swabi, Khyber Pakhtunkhwa, Pakistan. J. Hortic. Plant Res. 2018;2:23–33. doi: 10.18052/www.scipress.com/JHPR.2.23. DOI
El-ashmouny A.A.A., El-naqma K.A. Role of application method in responses of cotton plants to micronutrients and potassium humate. J. Soil Sci. Agric. Eng. 2018;9:165–172. doi: 10.21608/jssae.2018.35713. DOI
Drwish A.S., Abd Rabou R.S., Zaky A., Hamoda S.A. Effect of some nutrients on growth, yield and fiber quality of egyptian cotton under saline condition. J. Agric. Sci. 2018;26:1473–1482. doi: 10.21608/ajs.2018.34144. DOI
Patil R.B., Kadam A.S., Wadje S.S. Role of potassium humate on growth and yield of soybean and black gram. Int. J. Pharma Bio Sci. 2011;2:242–246.
Kumar D., Singh A.P., Raha P., Singh C.M. Effect of potassium humate and chemical fertilizers on growth, yield and quality of rice (Oryza sative L.) Bangladesh J. Bot. 2014;43:183–189. doi: 10.3329/bjb.v43i2.21671. DOI
Basbag S. Effects of humic acid application on yield and quality of cotton (Gossypium hirsutum L.) Asian J. Chem. 2008;3:1961–1966.
Imbufe A.U., Patti A.F., Burrow D., Surapaneni A., Jackson W.R., Milner A.D. Effects of potassium humate on aggregate stability of two soils from Victoria, Australia. Geoderma. 2005;125:321–330. doi: 10.1016/j.geoderma.2004.09.006. DOI
Shujrah A.A., Mohd K.Y., Hussin A., Othman R., Haruna O. Impact of potassium humate on selected chemical properties of an Acidic soil; Proceedings of the 19th World Congress of Soil Science; Brisbane, Australia. 1–6 August 2010; pp. 119–122.
Hassanpanah D., Khodadadi M. Evaluation of potassium humate effects on germination, yield and yield components of HPS-II/67 hybrid true poato seed under in vitro and vivo conditions. Am. J. Plant Physiol. 2009;4:52–57. doi: 10.3923/ajpp.2009.52.57. DOI
Bostan S.Z., Islam A., Yoilmaz M. Effect of potassium humate on hazelnut seed germination. Acta Hortic. 2001:287–290. doi: 10.17660/ActaHortic.2001.556.42. DOI
Danish S., Zafar-ul-Hye M., Mohsin F., Hussain M. ACC-deaminase producing plant growth promoting rhizobacteria and biochar mitigate adverse effects of drought stress on maize growth. PLoS ONE. 2020;15:e0230615. doi: 10.1371/journal.pone.0230615. PubMed DOI PMC
Zafar-ul-Hye M., Danish S., Abbas M., Ahmad M., Munir T.M. ACC deaminase producing PGPR Bacillus amyloliquefaciens and agrobacterium fabrum along with biochar improve wheat productivity under drought stress. Agronomy. 2019;9:343. doi: 10.3390/agronomy9070343. DOI
Pervez H., Ashraf M., Makhdum M.I. Influence of potassium nutrition on gas exchange characteristics and water relations in cotton (Gossypium hirsutum L.) Photosynthetica. 2004;42:251–255. doi: 10.1023/B:PHOT.0000040597.62743.5b. DOI
Hu W., Yang J., Meng Y., Wang Y., Chen B., Zhao W., Oosterhuis D.M., Zhou Z. Potassium application affects carbohydrate metabolism in the leaf subtending the cotton (Gossypium hirsutum L.) boll and its relationship with boll biomass. Filed Crop. Res. 2015;179:120–131. doi: 10.1016/j.fcr.2015.04.017. DOI
Liu J., Ma Y., Lv F., Chen J., Zhou Z., Wang Y., Abudurezike A., Oosterhuis D.M. Changes of sucrose metabolism in leaf subtending to cotton boll under cool temperature due to late planting. Filed Crop. Res. 2013;144:200–211. doi: 10.1016/j.fcr.2013.02.003. DOI
Formánek L.L.P., Drápelová I., Brtnicky M., Datta R.V.V. Enantiomers of Carbohydrates and Their Role in Ecosystem Interactions: A Review. Symmetry. 2020;12:470.
Hemida K.A., Eloufey A.Z.A., Seif El-Yazal M.A., Rady M.M. Integrated effect of potassium humate and α-tocopherol applications on soil characteristics and performance of Phaseolus vulgaris plants grown on a saline soil. Arch. Agron. Soil Sci. 2017;63:1556–1571. doi: 10.1080/03650340.2017.1292033. DOI
Baraldi R., Malavasi F.F.F., Predieri S., Castagneto M. Effect of potassium humate on apple cv. “Golden Delicious” cultured in vitro. Plant Cell. Tissue Organ Cult. 1991;24:187–191. doi: 10.1007/BF00033475. DOI
Report F. Use of Biochar from the Pyrolysis of Waste Organic Material as a Soil Amendment Ecology Publication Number 09-07-062. Washington State University; Pullman, WA, USA: 2009.
Page A.L., Miller R.H., Keeny D.R. Methods of Soil Analysis. American Society of Agronomy; Madison, WI, USA: 1982. Soil pH and lime requirement; pp. 199–208.
Walkley A. An Examination of Methods for Determining Organic Carbon and Nitrogen in Soils. J. Agric. Sci. 1935;25:598. doi: 10.1017/S0021859600019687. DOI
Olsen S.R., Sommers L.E. Phosphorus. In: Page A.L., editor. Method of Soil Analysis, Agronomy No. 9, Part 2: Chemical and Microbiological Properties. American Society of Agronomy; Madison, WI, USA: 1982. pp. 403–430.
Chapman H.D. Cation-Exchange Capacity. In: Norman A.G., editor. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9.2. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 1965. pp. 891–901.
Pratt P.F. Potassium. In: Norman A.G., editor. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9.2. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 1965. pp. 1022–1030.
Saleem M.F., Bilal M.F., Awais M., Shahid M., Anjum S.A. Effect of nitrogen on seed cotton yield and fiber qualities of cotton (Gossypium hirsutum L.) cultivars. J. Anim. Plant Sci. 2010;20:23–27.
R_Core_Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2020.
Proteomic changes in various plant tissues associated with chromium stress in sunflower