Chemical role of α-tocopherol in salt stress mitigation by improvement in morpho-physiological attributes of sunflower (Helianthus annuus L.)
Status PubMed-not-MEDLINE Jazyk angličtina Země Saúdská Arábie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35280589
PubMed Central
PMC8913399
DOI
10.1016/j.sjbs.2021.11.027
PII: S1319-562X(21)00992-X
Knihovny.cz E-zdroje
- Klíčová slova
- Chlorophyll contents, Photosynthesis, Stomatal conductance, α-tocopherol,
- Publikační typ
- časopisecké články MeSH
Elevated concentrations of salts in soil and water represent abiotic stresses. It considerably restricts plant productivity. However, the use of alpha-tocopherol (α-toc) as foliar can overcome this problem. It can improve crop productivity grown under salinity stress. Limited literature is documented regarding its optimum foliar application on sunflower. That's why the need for the time is to optimize α-toc foliar application rates for sunflower cultivated in salt-affected soil. A pot experiment was performed to select a better α-toc foliar application for mitigation of salt stress in different sunflower cultivars FH (572 and 621). There were 2 levels of salts, i.e., control (no salt stress) and sodium chloride (120 mM) and four α-toc foliar application (0, 100, 200, and 300 mg L-1). Results showed that foliar application of 100 mg/L- α-toc triggered the remarkable increase in fresh shoot weight, fresh root weight, shoot, and root lengths under salinity stress in FH-572 and FH-621 over 0 mg/L- α-toc. Foliar application of 200 mg/L- α-toc was most effective for improvement in chlorophyll a, chlorophyll b, total chlorophyll and carotenoids compared to 0 mg/L- α-toc. Furthermore, an increase in A was noted in FH-572 (17%) and FH-621 (22%) with α-toc (300 mg L-1) application under saline condition. In conclusion, the 100 and 200 mg/L- α-toc are the best application rates for the improvement in sunflower FH-572 and FH-621 growth, chlorophyll contents and gas exchange attributes. Further investigations are needed to select a better foliar application rate between 100 and 200 mg/L- α-toc at the field level under the different agro-climatic zone and soil types.
Benha University Faculty of Agriculture Soils and Water Department Egypt
Biology Department College of Science Taif University P O Box 11099 Taif 21944 Saudi Arabia
College of Life Sciences Yan'an University Yan'an Shaanxi 716000 PR China
Department of Botany Government College Women University Faisalabad 38000 Pakistan
Department of Botany University of Agriculture Faisalabad 38000 Pakistan
Department of Chemistry College of Science Taif University P O Box 11099 Taif 21944 Saudi Arabia
Department of Plant Breeding and Genetics PMAS Arid Agriculture University Rawalpindi 46000 Pakistan
Institute of Biological Sciences Campus Talca Universidad deTalca Talca 3465548 Chile
Institute of Biological Sciences University of Talca 1 Poniente 1141 Talca 3460000 Chile
National Committee of Soil Science Academy of Scientific Research and Technology Egypt
New Valley University Faculty of Agriculture Soils and Water Department Egypt
Zobrazit více v PubMed
Abbas M., Anwar J., Zafar-ul-Hye M., Iqbal Khan R., Saleem M., Rahi A.A., Danish S., Datta R. Effect of Seaweed Extract on Productivity and Quality Attributes of Four Onion Cultivars. Horticulturae. 2020;6(2):28. doi: 10.3390/horticulturae6020028. DOI
Abbasi G.H., Akhtar J., Ahmad R., Jamil M., Anwar-ul-Haq M., Ali S., Ijaz M. Potassium application mitigates salt stress differentially at different growth stages in tolerant and sensitive maize hybrids. Plant Growth Regul. 2015;76(1):111–125.
Ahmed N., Ahsen S., Ali M.A., Hussain M.B., Hussain S.B., Rasheed M.K., Butt B., Irshad I., Danish S. Rhizobacteria and silicon synergy modulates the growth, nutrition and yield of mungbean under saline soil. Pakistan J. Bot. 2020;52:9–15. doi: 10.30848/PJB2020-1(16). DOI
Akram N.A., Ashraf M., Al-Qurainy F. Aminolevulinic acid-induced changes in some key physiological attributes and activities of antioxidant enzymes in sunflower (Helianthus annuus L.) plants under saline regimes. Sci. Hortic. (Amsterdam) 2012;142:143–148.
Amjad S.F., Mansoora N., Yaseen S., Kamal A., Butt B., Matloob H., Alamri S.A.M., Alrumman S.A., Eid E.M., Shahbaz M. Combined Use of Endophytic Bacteria and Pre-Sowing Treatment of Thiamine Mitigates the Adverse Effects of Drought Stress in Wheat (Triticum aestivum L.) Cultivars. Sustainability. 2021;13:6582. doi: 10.3390/su13126582. DOI
Anuradha C. Effect of salt stress on seedling growth of sunflower (Helianthus annuus L.) Biotechnology. 2014;3
Arnon D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949;24(1):1–15. PubMed PMC
Ashfaque F., Khan M.I.R., Khan N.A. Exogenously applied H2O2 promotes proline accumulation, water relations, photosynthetic efficiency and growth of wheat (Triticum aestivum L.) under salt stress. Annu. Res. Rev. Biol. 2014;105–120
Awais M., Wajid A., Nasim W., Ahmad A., Saleem M.F., Sammar Raza M.A., Bashir M.U., Habib-ur-Rahman M., Saeed U., Hussain J., Arshad N., Hoogenboom G. Modeling the water and nitrogen productivity of sunflower using OILCROP-SUN model in Pakistan. F. Crop. Res. 2017;205:67–77.
Björkman O. Physiological Plant Ecology I. Springer Berlin Heidelberg; Berlin, Heidelberg: 1981. pp. 57–107. DOI
Chaves M.M., Flexas J., Pinheiro C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. 2009;103:551–560. doi: 10.1093/aob/mcn125. PubMed DOI PMC
Danish S., Tahir F.A., Rasheed M.K., Ahmad N., Ali M.A., Kiran S., Younis U., Irshad I., Butt B. Effect of foliar application of Fe and banana peel waste biochar on growth, chlorophyll content and accessory pigments synthesis in spinach under chromium (IV) toxicity. Open Agric. 2019;4:381–390. doi: 10.1515/opag-2019-0034. DOI
Danish S., Zafar-ul-Hye M. Combined role of ACC deaminase producing bacteria and biochar on cereals productivity under drought. Phyton (B. Aires) 2020;89:217–227. doi: 10.32604/phyton.2020.08523. DOI
Dawood M.G., Abd Elhamid E.M., Shalaby M.A.F., El-Din K.G. Physiological response of two wheat cultivars grown under newly reclaimed sandy soil to $α$tocopherol foliar application. Middle East J. Appl. Sci. 2014;4:771–778.
El Bassiouny H.M.S., Gobarah M.E., Ramadan A.A. Effect of antioxidants on growth, yield and favism causative agents in seeds of Vicia faba L. plants grown under reclaimed sandy soil. J. Agron. 2005;4(4):281–287.
Falk J., Munné-Bosch S. Tocochromanol functions in plants: antioxidation and beyond. J. Exp. Bot. 2010;61:1549–1566. PubMed
Fernández-Martínez J.M., Domínguez J., Pérez-Vich B., Velasco L. UPDATE ON BREEDING FOR RESISTANCE TO SUNFLOWER BROOMRAPE/ACTUALIZACIÓN DE LA SITUACIÓN DE LA MEJORA GENÉTICA DE GIRASOL PARA RESISTENCIA AL JOPO. Helia. 2010;33(52):1–11.
Franks P., Brodribb T.J. Stomatal control and water transport in the xylem. Vascular Transport in Plants. Elsevier. 2005:69–89.
Garcia-Franco N., Wiesmeier M., Colocho Hurtarte L.C., Fella F., Martínez-Mena M., Almagro M., Martínez E.G., Kögel-Knabner I. Pruning residues incorporation and reduced tillage improve soil organic matter stabilization and structure of salt-affected soils in a semi-arid Citrus tree orchard. Soil Tillage Res. 2021;213:105129. doi: 10.1016/j.still.2021.105129. DOI
Gengmao Z., Yu H., Xing S., Shihui L.i., Quanmei S., Changhai W. Salinity stress increases secondary metabolites and enzyme activity in safflower. Ind. Crops Prod. 2015;64:175–181.
Hassanein R.A., Bassuony F.M., Baraka D.M., Khalil R.R., et al. Physiological effects of nicotinamide and ascorbic acid on Zea mays plant grown under salinity stress. 1-Changes in growth, some relevant metabolic activities and oxidative defense systems. Res. J. Agric. Biol. Sci. 2009;5:72–81.
Hemida K.A., Eloufey A.Z.A., Seif El-Yazal M.A., Rady M.M. Integrated effect of potassium humate and α-tocopherol applications on soil characteristics and performance of Phaseolus vulgaris plants grown on a saline soil. Arch. Agron. Soil Sci. 2017;63(11):1556–1571. doi: 10.1080/03650340.2017.1292033. DOI
Hincha D.K. Effects of $α$-tocopherol (vitamin E) on the stability and lipid dynamics of model membranes mimicking the lipid composition of plant chloroplast membranes. FEBS Lett. 2008;582:3687–3692. PubMed
Hyun T.K., Kumar K., Rao K.P., Sinha A.K., Roitsch T. Role of $α$-tocopherol in cellular signaling: $α$-tocopherol inhibits stress-induced mitogen-activated protein kinase activation. Plant Biotechnol. Rep. 2011;5(1):19–25.
Irfana L., Muhammad S., et al. Impact of alpha-tocopherol seed priming on accumulation of osmolytes and ion homeostasis in sunflower (Helianthus annuus) under salt stress. Int. J. Agric. Biol. 2020;24:1672–1680.
Jung J.K.H.M., McCouch S.R.M. Getting to the roots of it: genetic and hormonal control of root architecture. Front. Plant Sci. 2013;4:186. PubMed PMC
Kanwal H., Ashraf M., Shahbaz M. Assessment of salt tolerance of some newly developed and candidate wheat (Triticum aestivum L.) cultivars using gas exchange and chlorophyll fluorescence attributes. Pak. J. Bot. 2011;43:2693–2699.
Kaya Y., Balalic I., Milic V. Eastern Europe perspectives on sunflower production and processing. Sunflower. Elsevier. 2015:575–637.
Keerio R.A., Soomro N.S., Soomro A.A., Siddiqui M.A., Khan M.T., Nizamani G.S., Kandhro M.N., Siddiqui M., Khan H., Soomro F.D. Effect of Foliar Spray of Zinc on Growth and Yield of Sunflower (Helianthus annuus L.). Pakistan. J. Agric. Res. 2020;33(2) doi: 10.17582/journal.pjar/2020/33.2.264.269. DOI
Kostopoulou Z., Therios I., Molassiotis A. Resveratrol and its combination with $α$-tocopherol mediate salt adaptation in citrus seedlings. Plant Physiol. Biochem. 2014;78:1–9. PubMed
Koyro H.-W. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.) Environ. Exp. Bot. 2006;56(2):136–146.
Kumar S., Ahmad A., Rao V., Masood A. Effect of salinity on growth and leaf area of sunflower (Helianthus annuus L.) cv. Suntech-85. African J. Agric. Res. 2014;9:1144–1150.
Lalarukh I., Shahbaz M. Response of antioxidants and lipid peroxidation to exogenous application of alpha-tocopherol in sunflower (Helianthus annuus L.) under salt stress. Pak. J. Bot. 2020;52(1) doi: 10.30848/PAK.J.BOT10.30848/PJB2020-110.30848/PJB2020-1(41). DOI
Lalarukh I. Alpha-tocopherol induced modulations in morpho-physiological attributes of sunflower (Helianthus annuus) grown under saline environment. Int. J. Agric. Biol. 2018;20(03):661–668.
Liu S., Dong Y., Xu L., Kong J. Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings. Plant Growth Regul. 2014;73(1):67–78.
Marfo T.D., Datta R., Pathan S.I., Vranová V. Ecotone dynamics and stability from soil scientific point of view. Diversity. 2019;11:53. doi: 10.3390/d11040053. DOI
Marfo T.D., Datta R., Vranová V., Ekielski A. Ecotone Dynamics and Stability from Soil Perspective: Forest-Agriculture Land Transition. Agriculture. 2019;9(10):228. doi: 10.3390/agriculture9100228. DOI
Mène-Saffrané L. Vitamin E biosynthesis and its regulation in plants. Antioxidants. 2018;7(1):2. doi: 10.3390/antiox7010002. PubMed DOI PMC
Mohamed N.N. Conventional Water Resources and Agriculture in Egypt. Springer; 2018. Egyptian food insecurity under water shortage and its socioeconomic impacts; pp. 245–273.
Mohammed A.R., Tarpley L. High night temperature and plant growth regulator effects on spikelet sterility, grain characteristics and yield of rice (Oryza sativa L.) plants. Can. J. plant Sci. 2011;91(2):283–291.
Muneer S., Park Y., Manivannan A., Soundararajan P., Jeong B. Physiological and proteomic analysis in chloroplasts of Solanum lycopersicum L. under silicon efficiency and salinity stress. Int. J. Mol. Sci. 2014;15(12):21803–21824. PubMed PMC
Orabi S.A., Abdelhamid M.T. Protective role of $α$-tocopherol on two Vicia faba cultivars against seawater-induced lipid peroxidation by enhancing capacity of anti-oxidative system. J. Saudi Soc. Agric. Sci. 2016;15(2):145–154.
Patel P.R., Kajal S.S., Patel V.R., Patel V.J., Khristi S.M. Impact of saline water stress on nutrient uptake and growth of cowpea. Brazilian J. Plant Physiol. 2010;22(1):43–48.
Radi A.A., Farghaly F.A., Hamada A.M. Physiological and biochemical responses of salt-tolerant and salt-sensitive wheat and bean cultivars to salinity. J. Biol. Earth Sci. 2013;3:72–88.
Rafeeq, H., Arshad, M., Amjad, S., Ullah, M., n.d. Effect of Nickel on Different Physiological Parameters of Raphanus Sativus. academia.edu.
Rafiullah, Tariq M., Khan F., Shah A.H., Fahad S., Wahid F., Ali J., Adnan M., Ahmad M., Irfan M., Zafar-ul-Hye M., Battaglia M.L., Zarei T., Datta R., Saleem I.A., Hafeez-u-Rehman, Danish S. Effect of micronutrients foliar supplementation on the production and eminence of plum. Qual. Assur. Saf. Crop. Foods. 2020;12:32–40. doi: 10.15586/qas.v12iSP1.793. DOI
Sadiq Muhammad, Akram Nudrat Aisha, Ashraf Muhammad, Al-Qurainy Fahad, Ahmad Parvaiz. Alpha-tocopherol-induced regulation of growth and metabolism in plants under non-stress and stress conditions. J. Plant Growth Regul. 2019;38(4):1325–1340.
Sadiq M., Akram N.A., Javed M.T. Alpha-tocopherol alters endogenous oxidative defense system in mung bean plants under water-deficit conditions. Pak. J. Bot. 2016;48:2177–2182.
Semchuk, N.M., Vasylyk, Y.V, Lushchak, O.V, Lushchak, V.I., 2012. Effect of short-term salt stress on oxidative stress markers and antioxidant enzymes activity in tocopherol-deficient Arabidopsis thaliana plants, pp. 41–48. PubMed
Semida W.M., Abd El-Mageed T.A., Howladar S.M., Rady M.M. Foliar-applied alpha-tocopherol enhances salt-tolerance in onion plants by improving antioxidant defence system. Aust. J. Crop Sci. 2016;10:1030–1039.
Sereflioglu Seda, Dinler Burcu Seckin, Tasci Eda. Alpha-tocopherol-dependent salt tolerance is more related with auxin synthesis rather than enhancement antioxidant defense in soybean roots. Acta Biol. Hung. 2017;68(1):115–125. PubMed
Sh S.M., et al. Role of ascorbic acid and $α$ tocopherol in alleviating salinity stress on flax plant (Linum usitatissimum L.) J. Stress Physiol Biochem. 2014;10
Shahbaz Muhammad, Mushtaq Zainab, Andaz Fatima, Masood Atifa. Does proline application ameliorate adverse effects of salt stress on growth, ions and photosynthetic ability of eggplant (Solanum melongena L.)? Sci. Hortic. (Amsterdam) 2013;164:507–511.
Shaheen Shagufta, Naseer Sobia, Ashraf Muhammad, Akram Nudrat Aisha. Salt stress affects water relations, photosynthesis, and oxidative defense mechanisms in Solanum melongena L. J. Plant Interact. 2013;8(1):85–96.
Tian Fei, Hou Mengjie, Qiu Yuan, Zhang Tong, Yuan Yusen. Salinity stress effects on transpiration and plant growth under different salinity soil levels based on thermal infrared remote (TIR) technique. Geoderma. 2020;357:113961. doi: 10.1016/j.geoderma.2019.113961. DOI
Ullah Asmat, Ali Muqarrab, Shahzad Khurram, Ahmad Fiaz, Iqbal Shahid, Rahman Muhammad Habib Ur, Ahmad Shakeel, Iqbal Muhammad Mazhar, Danish Subhan, Fahad Shah, Alkahtani Jawaher, Soliman Elshikh Mohamed, Datta Rahul. Impact of seed dressing and soil application of potassium humate on cotton plants productivity and fiber quality. Plants. 2020;9(11):1444. doi: 10.3390/plants9111444. PubMed DOI PMC
Wahid F., Fahad S., Danish S., Adnan M., Yue Z., Saud S., Siddiqui M.H., Brtnicky M., Hammerschmiedt T., Datta R. Sustainable management with mycorrhizae and phosphate solubilizing bacteria for enhanced phosphorus uptake in calcareous soils. Agriculture. 2020;10:334. doi: 10.3390/agriculture10080334. DOI
Wang Peng, Ma Lingling, Li Ya, Wang Shu’an, Li Linfang, Yang Rutong. Transcriptome analysis reveals sunflower cytochrome P450 CYP93A1 responses to high salinity treatment at the seedling stage. Genes Genomics. 2017;39(6):581–591.
Yadav G.S., Datta R., Pathan S.I., Lal R., Meena R.S., Babu S., Das A., Bhowmik S.N., Datta M., Saha P., Mishra P.K. Effects of conservation tillage and nutrient management practices on soil fertility and productivity of rice (Oryza sativa L.)-rice system in North eastern region of India. Sustain. 2017;9:1816. doi: 10.3390/su9101816. DOI
Yaseen S., Amjad S.F., Mansoora N., Kausar S., Shahid H., Alamri S.A.M., Alrumman S.A., Eid E.M., Ansari M.J., Danish S., et al. Supplemental Effects of Biochar and Foliar Application of Ascorbic Acid on Physio-Biochemical Attributes of Barley (Hordeum vulgare L.) under Cadmium-Contaminated Soil. Sustainability. 2021;13:9128.
Zafar-ul-Hye M., Shahjahan A., Danish S., Abid M., Qayyum M.F. Mitigation of cadmium toxicity induced stress in wheat by ACC-deaminase containing PGPR isolated from cadmium polluted wheat rhizosphere. Pakistan J. Bot. 2018;50:1727–1734.
Zafar-ul-Hye M., Zahra M.B., Danish S., Abbas M. Multi-strain Inoculation with PGPR Producing ACC Deaminase is More Effective Than Single-strain Inoculation to Improve Wheat (Triticum aestivum) Growth and Yield. Phyton-Int. J. Exp. Bot. 2020;89:405–413.
Zörb Christian, Mühling Karl H., Kutschera Ulrich, Geilfus Christoph-Martin, Bie Zhilong. Salinity stiffens the epidermal cell walls of salt-stressed maize leaves: is the epidermis growth-restricting? PLoS One. 2015;10(3):e0118406. doi: 10.1371/journal.pone.0118406. PubMed DOI PMC