Sole and combined effect of foliar zinc and arbuscular mycorrhizae inoculation on basmati rice growth, productivity and grains nutrient
Status odvoláno Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem, publikace stažené z tisku
PubMed
35486658
PubMed Central
PMC9053806
DOI
10.1371/journal.pone.0266248
PII: PONE-D-22-03734
Knihovny.cz E-zdroje
- MeSH
- mykorhiza * MeSH
- průmyslová hnojiva MeSH
- rýže (rod) * MeSH
- zinek farmakologie MeSH
- živiny MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- publikace stažené z tisku MeSH
- Názvy látek
- průmyslová hnojiva MeSH
- zinek MeSH
Mismanagement in foliar fertilizer application at different crop stages decreases the productivity of the crop. Likewise, higher application of phosphorus (P) beyond recommended application rates not only decrease zinc (Zn) uptake in rice but also increase fertilizer use cost. Inoculation of arbuscular mycorrhizae (AMF) may optimize the uptake of P and improve crops production via organic secretions. That's why the current study was conducted to examine the individual and coordinated effects of 0.5% Zn (0.5Zn) foliar spray (tillering (T) and/or panicle (P) initiation stage) and AMF application. Application of foliar 0.5Zn at tillering+panicle stage remained significantly better for significant enhancement in plant height, spike length, gas exchange attributes and total chlorophyll contents than control. A significant decrease in electrolyte leakage Also validated the effectiveness of treatment 0.5ZnT+P compared to control. Compared to control, the maximum increase in N (14.5 and 25.7%), P (42.1 and 33.3%), K (22.2 and 30.0%) and Zn (19.3 and 27.8%) accumulation was also found in 0.5ZnT+P, with and without AMF, respectively. In conclusion, 0.5ZnT+P with AMF is a better approach than sole application of Zn at tillering or panicle initiation stages. Nevertheless, more investigations are suggested at field level under variable climatic zones to confirm the effectiveness of 0.5ZnT+P with AMF for improvement in rice growth and production.
Department of Agronomy University of Agriculture Faisalabad Punjab Pakistan
Soil and Water Testing Laboratory Muzaffargarh Punjab Pakistan
Zobrazit více v PubMed
Saboor A, Ali MA, Danish S, Ahmed N, Fahad S, Datta R, et al.. Effect of arbuscular mycorrhizal fungi on the physiological functioning of maize under zinc-deficient soils. Sci Rep. 2021;11: 18468. doi: 10.1038/s41598-021-97742-1 PubMed DOI PMC
Sacristán D, González–Guzmán A, Barrón V, Torrent J, Del Campillo MC. Phosphorus-induced zinc deficiency in wheat pot-grown on noncalcareous and calcareous soils of different properties. Arch Agron Soil Sci. 2019;65: 208–223. doi: 10.1080/03650340.2018.1492714 DOI
Rahman N, Hangs R, Peak D, Schoenau J. Chemical and molecular scale speciation of copper, zinc, and boron in agricultural soils of the canadian prairies. Can J Soil Sci. 2021;101: 581–595. doi: 10.1139/cjss-2020-0162 DOI
Hussain S, Shah MAA, Khan A, Ahmad F, Hussain M. Potassium enhanced grain zinc accumulation in wheat grown on a calcareous saline-sodic soil. Pak J Bot. 2020;52: 69–74.
Hafeez B. Role of Zinc in Plant Nutrition- A Review. Am J Exp Agric. 2013;3: 374–391. doi: 10.9734/ajea/2013/2746 DOI
Alloway BJ. Zinc in soils and crop nutrition. International Zinc Association, Brussels. 2nd ed. International Fertilizer Industry Association, Paris. Brussels, Belgium and Paris, France: International Zinc Association and International Fertilizer Industry Association.; 2008.
Munir M, Khan A, Khan SM, Khan SA, Saeed M, Bari A. Phenology and yield of coarse and fine rice under varying levels of zinc and farmyard manure. Pak J Bot. 2020;52: 557–564.
Ahmed N, Umer A, Ali MA, Iqbal J, Mubashir M, Grewal AG, et al.. Micronutrients status of mango (Mangifera indica) orchards in Multan region, Punjab, Pakistan, and relationship with soil properties. Open Agric. 2020;5: 271–279.
Khan MMH, Ahmed N, Irfan M, Ali M, Arif Ali M, Irfan M, et al.. Synchronization of Boron Application Methods and Rates is Environmentally Friendly Approach to Improve Quality Attributes of Mangifera indica L. on Sustainable Basis. Saudi J Biol Sci. 2021; 10.1016/j.sjbs.2021.10.036. 10.1016/j.sjbs.2021.10.036 PubMed DOI PMC
Saboor A, Ali MA, Hussain S, El Enshasy HA, Hussain S, Ahmed N, et al.. Zinc nutrition and arbuscular mycorrhizal symbiosis effects on maize (Zea mays L.) growth and productivity. Saudi J Biol Sci. 2021;28: 6339–6351. doi: 10.1016/j.sjbs.2021.06.096 PubMed DOI PMC
Saboor A, Ali MA, Ahmed N, Skalicky M, Danish S, Fahad S, et al.. Biofertilizer-Based Zinc Application Enhances Maize Growth, Gas Exchange Attributes, and Yield in Zinc-Deficient Soil. Agriculture. 2021;11: 310. doi: 10.3390/agriculture11040310 DOI
Ali Z, Ahmad R, Farooq WA, Khan A, Khan AA, Bibi S, et al.. Synthesis and Characterization of Functionalized Nanosilica for Zinc Ion Mitigation; Experimental and Computational Investigations. Molecules. 2020;25. doi: 10.3390/molecules25235534 PubMed DOI PMC
Kumar D, Patel KP, Ramani VP, Shukla AK, Meena RS. Management of Micronutrients in Soil for the Nutritional Security. Nutrient Dynamics for Sustainable Crop Production. Springer Singapore; 2020. pp. 103–134. doi: 10.1007/978-981-13-8660-2_4 DOI
Rafiullah, Tariq M, Khan F, Shah AH, Fahad S, Wahid F, et al.. Effect of micronutrients foliar supplementation on the production and eminence of plum. Qual Assur Saf Crop Foods. 2020;12: 32–40. doi: 10.15586/qas.v12iSP1.793 DOI
Bibi F, Ahmad I, Bakhsh A, Kiran S, Danish S, Ullah H, et al.. Effect of foliar application of boron with calcium and potassium on quality and yield of mango cv. summer bahisht (SB) Chaunsa. Open Agric. 2019;4. doi: 10.1515/opag-2019-0009 DOI
Tahir FA, Ahamad N, Rasheed MK, Danish S. Effect of various application rate of zinc fertilizer with and without fruit waste biochar on the growth and Zn uptake in maize. Int J Biosci. 2018;13: 159–166. doi: 10.12692/ijb/13.1.159–166 DOI
Zafar-Ul-hye M, Naeem M, Danish S, Fahad S, Datta R, Abbas M, et al.. Alleviation of cadmium adverse effects by improving nutrients uptake in bitter gourd through cadmium tolerant rhizobacteria. Environ—MDPI. 2020;7: 54. doi: 10.3390/environments7080054 DOI
Kopittke PM, Lombi E, Wang P, Schjoerring JK, Husted S. Nanomaterials as fertilizers for improving plant mineral nutrition and environmental outcomes. Environ Sci Nano. 2019;6: 3513–3524.
Sher ALI, Naveed K, Ahmad G, Khan A, Khan SM, Shah S. Grain zinc and iron enrichment through foliar application augments wheat yield under varying nitrogen regimes. Pakistan J Bot. 2020;52: 85–94. doi: 10.30848/PJB2020-1(25) DOI
Shafi MI, Adnan M, Fahad S, Wahid F, Khan A, Yue Z, et al.. Application of single superphosphate with humic acid improves the growth, yield and phosphorus uptake of wheat (Triticum aestivum L.) in calcareous soil. Agronomy. 2020;10: 1224. doi: 10.3390/agronomy10091224 DOI
Danish S, Younis U, Akhtar N, Ameer A, Ijaz M, Nasreen S, et al.. Phosphorus solubilizing bacteria and rice straw biochar consequence on maize pigments synthesis. Int J Biosci. 2015;5: 31–39. doi: 10.12692/ijb/5.12.31–39 DOI
Vasundhara D, Chhabra V. Foliar nutrition in cereals: A review. Pharma Innov J. 2021;10: 1247–1254.
Danish S, Tahir FA, Rasheed MK, Ahmad N, Ali MA, Kiran S, et al.. Effect of foliar application of Fe and banana peel waste biochar on growth, chlorophyll content and accessory pigments synthesis in spinach under chromium (IV) toxicity. Open Agric. 2019;4: 381–390. doi: 10.1515/opag-2019-0034 DOI
Masood F, Ahmad S, Malik A. Role of Rhizobacterial Bacilli in Zinc Solubilization. In: Tabrez S, Khan, Malik A, editors. Microbial Biofertilizers and Micronutrient Availability. Cham: Springer International Publishing; 2022. pp. 361–377. doi: 10.1007/978-3-030-76609-2_15 DOI
Bibi F, Saleem I, Ehsan S, Jamil S, Ullah H, Mubashir M, et al.. Effect of various application rates of phosphorus combined with different zinc rates and time of zinc application on phytic acid concentration and zinc bioavailability in wheat. Agric Nat Resour. 2020;54: 265–272. doi: 10.34044/j.anres.2020.54.3.05 DOI
Wahid F, Fahad S, Danish S, Adnan M, Yue Z, Saud S, et al.. Sustainable management with mycorrhizae and phosphate solubilizing bacteria for enhanced phosphorus uptake in calcareous soils. Agriculture. 2020;10: 334. doi: 10.3390/agriculture10080334 DOI
Workman D. Rice Exports by Country. World’s Top Export. 2019; 16–18.
Juliano BO. Rice in human nutrition. Food and Agriculture Organization of the United Nations. Int. Rice Res. Inst.; 1993.
Danish S, Zafar-ul-Hye M. Co-application of ACC-deaminase producing PGPR and timber-waste biochar improves pigments formation, growth and yield of wheat under drought stress. Sci Rep. 2019;9: 5999. doi: 10.1038/s41598-019-42374-9 PubMed DOI PMC
Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949;24: 1. doi: 10.1104/pp.24.1.1 PubMed DOI PMC
Lutts S, Kinet JM, Bouharmont J. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot. 1996;78: 389–398. doi: 10.1006/anbo.1996.0134 DOI
Bremner M. Nitrogen-Total. In: Sumner DL A.L. S, P P.A., H R.H., LP N., SM A., et al.., editors. Methods of Soil Analysis Part 3 Chemical Methods-SSSA Book Series 5. Madison, WI, USA: John Wiley & Sons, Inc.; 1996. pp. 1085–1121.
Miller O. Nitric-Perchloric Acid Wet Digestion In an Open Vessel. 1st ed. In: Kalra Y, editor. Reference Methods for Plant Analysis. 1st ed. Washington, D.C.: CRC Press; 1998. pp. 57–62.
Kuo S. Phosphorus. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, et al.., editors. Methods of Soil Analysis Part 3: Chemical Methods. SSSA, Madison, Wisconsin: John Wiley & Sons, Ltd; 1996. pp. 869–919. doi: 10.2136/sssabookser5.3.c32 DOI
Pratt PF. Potassium. In: Norman AG, editor. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 92. John Wiley & Sons, Ltd; 1965. pp. 1022–1030. doi: 10.2134/agronmonogr9.2.c20 DOI
Hanlon EA. Elemental determination by atomic absorption spectrophotometery. 1st ed. In: Kalra Y, editor. Handbook of Reference Methods for Plant Analysis. 1st ed. Washington D.C.: CRC Press; 1998. pp. 157–164.
Steel RG, Torrie JH, Dickey DA. Principles and Procedures of Statistics: A Biometrical Approach. 3rd ed. Singapore: McGraw Hill Book International Co.; 1997.
OriginLab Corporation. OriginPro. Northampton, MA, USA.: OriginLab; 2021. Available: https://store.originlab.com/store/Default.aspx?CategoryID=59&ItemID=EF-096N0P-ESTU
Basu S, Rabara RC, Negi S. AMF: The future prospect for sustainable agriculture. Physiol Mol Plant Pathol. 2018;102: 36–45.
Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, et al.. Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Front Plant Sci. 2019;10: 1068. doi: 10.3389/fpls.2019.01068 PubMed DOI PMC
Bennett AE, Meek HC. The influence of arbuscular mycorrhizal fungi on plant reproduction. J Chem Ecol. 2020;46: 707–721. doi: 10.1007/s10886-020-01192-4 PubMed DOI
Turrini A, Avio L, Giovannetti M, Agnolucci M. Functional complementarity of arbuscular mycorrhizal fungi and associated microbiota: the challenge of translational research. Front Plant Sci. 2018;9: 1407. doi: 10.3389/fpls.2018.01407 PubMed DOI PMC
Valkov VT, Sol S, Rogato A, Chiurazzi M. The functional characterization of LjNRT2. 4 indicates a novel, positive role of nitrate for an efficient nodule N2-fixation activity. New Phytol. 2020;228: 682–696. doi: 10.1111/nph.16728 PubMed DOI
Coskun D, Britto DT, Shi W, Kronzucker HJ. How plant root exudates shape the nitrogen cycle. Trends Plant Sci. 2017;22: 661–673. doi: 10.1016/j.tplants.2017.05.004 PubMed DOI
Sharma PN, Tripathi A, Bisht SS. Zinc requirement for stomatal opening in cauliflower. Plant Physiol. 1995;107: 751–756. doi: 10.1104/pp.107.3.751 PubMed DOI PMC
Tsonev T, Cebola Lidon FJ. Zinc in plants-an overview. Emirates J Food \& Agric. 2012;24: 322–333.
Waraich EA, Ahmad R, Saifullah, Ashraf MY, Ehsanullah. Role of mineral nutrition in alleviation of drought stress in plants. Aust J Crop Sci. 2011;5: 764–777.
Matile P, Schellenberg M, Vicentini F. Planta Localization of chlorophyllase in the chloroplast envelope. Planta. 1997;201: 96–99. doi: 10.1007/BF01258685 DOI