Synergistic effects of boron and saponin in mitigating salinity stress to enhance sweet potato growth
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
38844823
PubMed Central
PMC11156973
DOI
10.1038/s41598-024-63840-z
PII: 10.1038/s41598-024-63840-z
Knihovny.cz E-zdroje
- Klíčová slova
- Antioxidant activity, Boron, Chlorophyll content, Photosynthetic rate, Saponin, Sweet potato,
- MeSH
- bor * farmakologie MeSH
- chlorofyl metabolismus MeSH
- fotosyntéza účinky léků MeSH
- Ipomoea batatas * růst a vývoj MeSH
- kořeny rostlin růst a vývoj účinky léků MeSH
- salinita MeSH
- saponiny * farmakologie MeSH
- solný stres * účinky léků MeSH
- synergismus léků MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bor * MeSH
- chlorofyl MeSH
- saponiny * MeSH
Salinity stress significantly hinders plant growth by disrupting osmotic balance and inhibiting nutrient uptake, leading to reduced biomass and stunted development. Using saponin (SAP) and boron (B) can effectively overcome this issue. Boron decreases salinity stress by stabilizing cell walls and membranes, regulating ion balance, activating antioxidant enzymes, and enhancing water uptake. SAP are bioactive compounds that have the potential to alleviate salinity stress by improving nutrient uptake, modulating plant hormone levels, promoting root growth, and stimulating antioxidant activity. That's why the current study was planned to use a combination of SAP and boron as amendments to mitigate salinity stress in sweet potatoes. Four levels of SAP (0%, 0.1%, 0.15%, and 0.20%) and B (control, 5, 10, and 20 mg/L B) were applied in 4 replications following a completely randomized design. Results illustrated that 0.15% SAP with 20 mg/L B caused significant enhancement in sweet potato vine length (13.12%), vine weight (12.86%), root weight (8.31%), over control under salinity stress. A significant improvement in sweet potato chlorophyll a (9.84%), chlorophyll b (20.20%), total chlorophyll (13.94%), photosynthetic rate (17.69%), transpiration rate (16.03%), and stomatal conductance (17.59%) contrast to control under salinity stress prove the effectiveness of 0.15% SAP + 20 mg/L B treatment. In conclusion, 0.15% SAP + 20 mg/L B is recommended to mitigate salinity stress in sweet potatoes.
Department of Botany Hindu College Moradabad Moradabad India
Pesticide Quality Control Laboratory Old Shujabad Road Multan 60000 Punjab Pakistan
Zobrazit více v PubMed
Paz AM, et al. Salt-affected soils: Field-scale strategies for prevention, mitigation, and adaptation to salt accumulation. Ital. J. Agron. 2023 doi: 10.4081/ija.2023.2166. DOI
Naorem A, et al. Soil constraints in an arid environment—Challenges, prospects, and implications. Agronomy. 2023;13:220. doi: 10.3390/agronomy13010220. DOI
Ijaz U, et al. Rice straw based silicon nanoparticles improve morphological and nutrient profile of rice plants under salinity stress by triggering physiological and genetic repair mechanisms. Plant Physiol. Biochem. 2023;201:107788. doi: 10.1016/j.plaphy.2023.107788. PubMed DOI
Milani, M. H., Feyzi, H., Ghobadloo, F. C., Gohari, G. & Vita, F. Recent advances in nano-enabled agriculture for improving plant performances under abiotic stress condition., in EngineeredNanoparticlesinAgriculture:FromLaboratorytoField, 197 (2023).
Abdoli M. Effects of micronutrient fertilization on the overall quality of crops. In: Aftab T, Hakeem KR, editors. Plant Micronutrients Deficiency and Toxicity Management. Springer; 2020. pp. 31–71.
Khan MMH, et al. Synchronization of boron application methods and rates is environmentally friendly approach to improve quality attributes of Mangifera indica L. on sustainable basis. Saudi J. Biol. Sci. 2021 doi: 10.1016/j.sjbs.2021.10.036. PubMed DOI PMC
Yu J, et al. Enhanced dandelion phytoremediation of Cd-contaminated soil assisted by tea saponin and plant growth-promoting rhizobacteria. J. Soils Sediments. 2023;23:1745–1759. doi: 10.1007/s11368-022-03415-5. DOI
Escobar-Puentes AA, et al. Sweet potato (Ipomoea batatas L.) phenotypes: From agroindustry to health effects. Foods. 2022;11:1058. doi: 10.3390/foods11071058. PubMed DOI PMC
Yang Y, Chen Y, Bo Y, Liu Q, Zhai H. Research progress in the mechanisms of resistance to biotic stress in sweet potato. Genes (Basel) 2023;14:2106. doi: 10.3390/genes14112106. PubMed DOI PMC
Mourtala IZM, Innocent NM, Habibou M, Oselebe H. Recent progress in breeding for beta-carotene, dry matter content and sugar in sweet potato [Ipomoea Batatas (L.) Lam]-A review. Eur. J. Agric. Food Sci. 2023;5:6–13.
Roba, I. A. OnFarmDiversityandGeneticErosionofSweetPotato[IpomoeaBatatas(L.)Lam.]inHaramayaDistrict,EastHaraghe,Ethiopia (Haramaya University, 2023).
Tedesco D, de Almeida Moreira BR, Júnior MRB, Maeda M, da Silva RP. Sustainable management of sweet potatoes: A review on practices, strategies, and opportunities in nutrition-sensitive agriculture, energy security, and quality of life. Agric. Syst. 2023;210:103693. doi: 10.1016/j.agsy.2023.103693. DOI
Page AL, Miller RH, Keeny DR. Soil pH and lime requirement. In: Page AL, editor. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 922/Agronomy Monographs. American Society of Agronomy, Inc. and Soil Science Society of America Inc; 1983. pp. 199–208.
Estefan, G., Sommer, R. & Ryan, J. (2013) MethodsofSoil,Plant,andWaterAnalysis:AmanualfortheWestAsiaandNorthAfricaregion. International Center for Agricultural Research in the Dry Areas (ICARDA), UK.
Rhoades JD, et al. Salinity: Electrical conductivity and total dissolved solids. In: Sparks DL, et al., editors. Methods of Soil Analysis, Part 3, Chemical Methods. Soil Science Society of America; 1996. pp. 417–435.
Nelson DW, Sommers LE. Total carbon, organic carbon, and organic matter. In: Page AL, editor. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties (American Society of Agronomy. Crop Science Society of America, and Soil Science Society of America; 1982. pp. 539–579.
Bremner M, et al. Nitrogen-total. In: Sumner DL, et al., editors. Methods of Soil Analysis Part 3. Chemical Methods-SSSA Book Series 5. Wiley; 1996. pp. 1085–1121.
Kuo S, et al. Phosphorus. In: Sparks DL, et al., editors. Methods of Soil Analysis Part 3: Chemical Methods. Wiley; 2018. pp. 869–919.
Pratt PF. Potassium. In: Norman AG, editor. Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. Wiley; 2016. pp. 1022–1030.
Donald AH, Hanson D. Determination of potassium and sodium by flame emmision spectrophotometery. In: Kalra Y, editor. Handbook of Reference Methods for Plant Analysis. CRC Press; 1998. pp. 153–155.
Gee GW, Bauder JW. Particle-size analysis. Methods Soil Anal. Part 1 Phys. Miner. Methods. 1986;5:383–411. doi: 10.2136/sssabookser5.1.2ed.c15. DOI
Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39:205–207. doi: 10.1007/BF00018060. DOI
Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949;24:1. doi: 10.1104/pp.24.1.1. PubMed DOI PMC
Loggini B, Scartazza A, Brugnoli E, Navari-Izzo F. Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiol. 1999;119:1091–1100. doi: 10.1104/pp.119.3.1091. PubMed DOI PMC
Maxwell K, Johnson GN. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000;51:659–668. doi: 10.1093/jexbot/51.345.659. PubMed DOI
Cha-Um S, Supaibulwatana K, Kirdmanee C. Glycinebetaine accumulation, physiological characterizations and growth efficiency in salt-tolerant and salt-sensitive lines of indica rice (Oryza sativa L. ssp indica) in response to salt stress. J. Agron. Crop Sci. 2007;193:157–166. doi: 10.1111/j.1439-037X.2007.00251.x. DOI
Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995;28:25–30. doi: 10.1016/S0023-6438(95)80008-5. DOI
Miller NJ, Rice-Evans CA. Factors influencing the antioxidant activity determined by the ABTS·+ radical cation assay. Free Radic. Res. 1997;26:195–199. doi: 10.3109/10715769709097799. PubMed DOI
OriginLab Corporation . OriginPro. OriginLab; 2021.
Behera B, et al. Mechanistic insight on boron-mediated toxicity in plant vis-a-vis its mitigation strategies: A review. Int. J. Phytoremediation. 2023;25:9–26. doi: 10.1080/15226514.2022.2049694. PubMed DOI
Hussein AS, Abeed AHA, Usman ARA, Abou-Zaid EAA. Conventional vs. nano-micronutrients as foliar fertilization for enhancing the quality and nutritional status of pomegranate fruits. J. Saudi Soc. Agric. Sci. 2023;23:112.
Bhatla SC, Lal MA, et al. Crop physiology and biotechnology. In: Satish C, et al., editors. Plant Physiology, Development and Metabolism. Springer; 2023. pp. 809–830.
Qian S, et al. Arbuscular mycorrhiza and plant growth promoting endophytes facilitates accumulation of saponin under moderate drought stress. Chin. Herb. Med. 2023;6(2):214–226. PubMed PMC
Alila P. Boron nutrition in horticultural crops: Constraint diagnosis and their management. In: Metin A, editor. Boron, Boron Compounds and Boron-Based Materials and Structures. IntechOpen; 2023.
Giri VP, et al. A review of sustainable use of biogenic nanoscale agro-materials to enhance stress tolerance and nutritional value of plants. Plants. 2023;12:815. doi: 10.3390/plants12040815. PubMed DOI PMC
Sun W, Shahrajabian MH. The application of arbuscular mycorrhizal fungi as microbial biostimulant, sustainable approaches in modern agriculture. Plants. 2023;12:3101. doi: 10.3390/plants12173101. PubMed DOI PMC
Rahman, A. etal. Plant secondary metabolites and abiotic stress tolerance: Overview and implications (2023).
Obreja CD, et al. Detection of reed using cnn method and analysis of the dry reed (Phragmites australis) for a sustainable lake area. Plant Methods. 2023;19:1–12. doi: 10.1186/s13007-023-01042-w. PubMed DOI PMC
Modak N, Friebe VM. Amperometric biosensors: Harnessing photosynthetic reaction centers for herbicide detection. Curr. Opin. Electrochem. 2023;42:101414. doi: 10.1016/j.coelec.2023.101414. DOI
Cakmak I, et al. Marschner’s Mineral Nutrition of Plants. Elsevier; 2023. Micronutrients; pp. 283–385.
Lin J, et al. Environmental impacts and remediation of dye-containing wastewater. Nat. Rev. Earth Environ. 2023;4:1–19. doi: 10.1038/s43017-023-00489-8. DOI
Kaur H, Kaur H, Kaur H, Srivastava S. The beneficial roles of trace and ultratrace elements in plants. Plant Growth Regul. 2023;100:219–236. doi: 10.1007/s10725-022-00837-6. DOI
Yin B, Liu H, Tan B, Deng J, Xie S. The effects of sodium butyrate (NaB) combination with soy saponin dietary supplementation on the growth parameters, intestinal performance and immune-related genes expression of hybrid grouper (Epinephelus fuscoguttatus × E. lanceolatus) Fish Shellfish Immunol. 2023;141:109033. doi: 10.1016/j.fsi.2023.109033. PubMed DOI
Song X, et al. Effect of boron deficiency on the photosynthetic performance of sugar beet cultivars with contrasting boron efficiencies. Front. Plant Sci. 2023;13:1101171. doi: 10.3389/fpls.2022.1101171. PubMed DOI PMC
Ge J, et al. Boron alleviates the aluminum toxicity in tartary buckwheat by regulating antioxidant defense system and maintaining osmotic balance. J. Soil Sci. Plant Nutr. 2023;59:1–15.
Bhadra T, et al. Zinc and boron soil applications affect athelia rolfsii stress response in sugar beet (Beta vulgaris L.) plants. Plants. 2023;12:3509. doi: 10.3390/plants12193509. PubMed DOI PMC