Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28181575
PubMed Central
PMC5299426
DOI
10.1038/srep42389
PII: srep42389
Knihovny.cz E-zdroje
- MeSH
- fyziologický stres * MeSH
- Glomeromycota fyziologie MeSH
- listy rostlin enzymologie metabolismus MeSH
- metabolismus sacharidů MeSH
- mykorhiza fyziologie MeSH
- období sucha * MeSH
- počet mikrobiálních kolonií MeSH
- Poncirus růst a vývoj metabolismus mikrobiologie MeSH
- prolin metabolismus MeSH
- sacharosa metabolismus MeSH
- semenáček metabolismus MeSH
- voda metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- prolin MeSH
- sacharosa MeSH
- voda MeSH
Arbuscular mycorrhizal fungi (AMF) can enhance drought tolerance in plants, whereas little is known regarding AMF contribution to sucrose and proline metabolisms under drought stress (DS). In this study, Funneliformis mosseae and Paraglomus occultum were inoculated into trifoliate orange (Poncirus trifoliata) under well watered and DS. Although the 71-days DS notably (P < 0.05) inhibited mycorrhizal colonization, AMF seedlings showed significantly (P < 0.05) higher plant growth performance and leaf relative water content, regardless of soil water status. AMF inoculation significantly (P < 0.05) increased leaf sucrose, glucose and fructose concentration under DS, accompanied with a significant increase of leaf sucrose phosphate synthase, neutral invertase, and net activity of sucrose-metabolized enzymes and a decrease in leaf acid invertase and sucrose synthase activity. AMF inoculation produced no change in leaf ornithine-δ-aminotransferase activity, but significantly (P < 0.05) increased leaf proline dehydrogenase activity and significantly (P < 0.05) decreased leaf both Δ1-pyrroline-5-carboxylate reductase and Δ1-pyrroline-5-carboxylate synthetase activity, resulting in lower proline accumulation in AMF plants under DS. Our results therefore suggest that AMF strongly altered leaf sucrose and proline metabolism through regulating sucrose- and proline-metabolized enzyme activities, which is important for osmotic adjustment of the host plant.
Brix' N Berries Leduc Alberta Canada
College of Horticulture and Gardening Yangtze University Jingzhou Hubei 434025 China
Institute of Root Biology Yangtze University Jingzhou Hubei 434025 China
Zobrazit více v PubMed
Wu Q. S., Cao M. Q., Zou Y. N., Wu C. & He X. H. Mycorrhizal colonization represents functional equilibrium on root morphology and carbon distribution of trifoliate orange grown in a split-root system. Sci. Hortic. 199, 95–102 (2016).
Smith S. E. & Read D. J. Mycorrhizal symbiosis (Academic Press, San Diego, 2008).
Asrar A. A., Abdel-Fattah G. M. & Elhindi K. M. Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica 50, 305–316 (2012).
Wu Q. S., Zou Y. N., Huang Y. M., Li Y. & He X. H. Arbuscular mycorrhizal fungi induce sucrose cleavage for carbon supply of arbuscular mycorrhizas in citrus genotypes. Sci. Hortic. 160, 320–325 (2013).
Wu Q. S., Srivastava A. K. & Zou Y. N. AMF-induced tolerance to drought stress in citrus: a review. Sci. Hortic. 164, 77–87 (2013).
Manoharan P. T. et al.. Influence of AM fungi on the growth and physiological status of Erythrina variegata Linn. grown under different water stress conditions. Eur. J. Soil Biol. 46, 151–156 (2010).
Patakas A., Nikolaou N., Zioziou E., Radoglou K. & Noitsakis B. The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines. Plant Sci. 163, 361–367 (2002).
Zeng Y. L., Li L., Yang R. R., Yi X. Y. & Zhang B. H. Contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment in Halostachys caspica response to salt stress. Sci. Reports 5, 13639 (2015). PubMed PMC
Martìnez J. P., Lutts S., Schanck A., Bajji M. & Kinet J. M. Is osmotic adjustment required for drought stress resistance in the Mediterranean shrub Atriplex halimus L? J. Plant Physiol. 161, 1041–1051 (2004). PubMed
Doidy J. et al.. Sugar transporters in plants and in their interactions with fungi. Trends Plant Sci. 17, 413–422 (2012). PubMed
Kühn C. & Grof C. P. L. Sucrose transporters of higher plants. Plant Biol. 13, 288–298 (2010). PubMed
Sturm A. & Tang G. Q. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci. 4, 401–407 (1999). PubMed
Hubbard N. L., Huber S. C. & Pharr D. M. Sucrose phosphate synthase and acid invertase as determinants of sucrose concentration in developing muskmelon (Cucumis melo L.) fruits. Plant Physiol. 91, 1527–1534 (1989). PubMed PMC
Wu Q. S., Lou Y. G. & Li Y. Plant growth and tissue sucrose metabolism in the system of trifoliate orange and arbuscular mycorrhizal fungi. Sci. Hortic. 181, 189–193 (2015).
Schubert A., Allara P. & Morte A. Cleavage of sucrose in roots of soybean (Glycine max) colonized by an arbuscular mycorrhizal fungus. New Phytol. 161, 495–501 (2003). PubMed
Szabados L. & Savouré A. Proline: a multifunctional amino acid. Trends Plant Sci. 15, 89–97 (2009). PubMed
Hu C. A., Delauney A. J. & Verma D. P. A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyses the first two steps in proline biosynthesis in plants. Proc. Nat. Acad. Sci. USA. 89, 9354–9358 (1992). PubMed PMC
Szoke A., Miao G. M., Hong Z. & Verma D. P. Subcellular location of delta-pyrroline-5-carboxylate reductase in root/nodule and leaf of soybean. Plant Physiol. 99, 1642–1649 (1992). PubMed PMC
Roosens N. H., Thu T. T., Iskandar H. M. & Jacobs M. Isolation of the ornithine-delta-aminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana. Plant Physiol. 117, 263–271 (1998). PubMed PMC
Ruíz-Sánchez M. et al.. Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. J. Plant Physiol. 168, 1031–1037 (2011). PubMed
Zhang Z. F., Zhang J. C. & Huang Y. Q. Effects of arbuscular mycorrhizal fungi on the drought tolerance of Cyclobalanopsis glauca seedlings under greenhouse conditions. New Forest. 45, 545–556 (2014).
Hazzoumi Z., Moustakime Y., Elharchli E. H. & Joutei K. A. Effect of arbuscular mycorrhizal fungi (AMF) and water stress on growth, phenolic compounds, glandular hairs, and yield of essential oil in basil (Ocimum gratissimum, L). Chemi. Biol. Technol. Agric. 2, 1–11 (2015).
Yooyongwech S., Phaukinsang N., Chaum S. & Supaibulwatana K. Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation. Plant Growth Regul. 69, 285–293 (2013).
Huang Y. M. et al.. Mycorrhizal-induced calmodulin mediated changes in antioxidant enzymes and growth response of drought-stressed trifoliate orange. Front. Microbiol. 5, 682 (2014). PubMed PMC
Zou Y. N., Huang Y. M., Wu Q. S. & He X. H. Mycorrhiza-induced lower oxidative burst is related with higher antioxidant enzyme activities, net H2O2, effluxes, and Ca2+, influxes in trifoliate orange roots under drought stress. Mycorrhiza 25, 143–152 (2015). PubMed
Yooyongwech S., Samphumphuang T., Tisarum R., Theerawitaya C. & Cha-Um S. Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments via soluble sugar and free proline. Sci. Hortic. 198, 107–117 (2016).
Huang Z. et al.. Physiological and photosynthetic responses of melon (Cucumis melo L.) seedlings to three glomus species under water deficit. Plant Soil 339, 391–399 (2011).
Frosi G. et al.. Symbiosis with AMF and leaf Pi supply increases water deficit tolerance of woody species from seasonal dry tropical forest. J. Plant Physiol. 207, 84–93 (2016). PubMed
Zhu X. C., Song F. B., Liu F. L., Liu S. Q. & Tian C. J. Carbon and nitrogen metabolism in arbuscular mycorrhizal maize plants under low-temperature stress. Crop Past. Sci. 66, 62–70 (2015).
Ravnskov S., Wu Y. & Graham J. H. Arbuscular mycorrhizal fungi differentially affect expression of genes coding for sucrose synthases in maize roots. New Phytol. 157, 539–545 (2003). PubMed
Wu Q. S., Srivastava A. K. & Li Y. Effects of mycorrhizal symbiosis on growth behavior and carbohydrate metabolism of trifoliate orange under different substrate P levels. Plant Growth Regul. 34, 499–508 (2015).
Porcel R., Barea J. M. & Ruiz-Lozano J. M. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J. Exp. Bot. 55, 1743–1750 (2004). PubMed
Augé R. M. & Moore J. L. [Arbuscular mycorrhizal symbiosis and plant drought resistance]. Mycorrhiza: role and applications [ Mehrotra V. S. (ed.)] [136–162] (Allied Publishers, Nagpur, 2005).
Zou Y. N., Wu Q. S., Huang Y. M., Ni Q. D. & He X. H. Mycorrhizal-mediated lower proline accumulation in Poncirus trifoliata under water deficit derives from the integration of inhibition of proline synthesis with increase of proline degradation. PLOS ONE 8, e80568 (2013). PubMed PMC
Phillips J. M. & Hayman D. S. Improved procedures for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55, 158–161 (1970).
Lowell C. A., Tomlinson P. T. & Koch K. E. Sucrose-metabolizing enzymes in transport tissue and adjacent sink structures in developing citrus fruit. Plant Physiol. 90, 1394–1402 (1989). PubMed PMC
Troll W. & Lindsely J. A photometric method for the determination of proline. J. Biol. Chem. 215, 655–660 (1955). PubMed
Chilson O. P., Kelly-Chilson A. E. & Sieqei N. R. Pyrroline-5-carboxylate reductase in soybean nodules: isolation/partial primary structure/evidence for isozymes. Arch. Biochem. Biophys. 288, 350–357 (1991). PubMed