Common mycorrhizal networks improve survival and mediate facilitative plant interactions among Andropogon gerardii seedlings under drought stress

. 2025 Feb 03 ; 35 (1) : 8. [epub] 20250203

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39900749

Grantová podpora
MZE-RO0423 the Ministry of Agriculture of the Czech Republic
2145142 National Science Foundation

Odkazy

PubMed 39900749
PubMed Central PMC11790713
DOI 10.1007/s00572-025-01181-z
PII: 10.1007/s00572-025-01181-z
Knihovny.cz E-zdroje

Under drought conditions, arbuscular mycorrhizal (AM) fungi may improve plant performance by facilitating the movement of water through extensive hyphal networks. When these networks interconnect neighboring plants in common mycorrhizal networks (CMNs), CMNs are likely to partition water among many individuals. The consequences of CMN-mediated water movement for plant interactions, however, are largely unknown. We set out to examine CMN-mediated interactions among Andropogon gerardii seedlings in a target-plant pot experiment, with watering (watered or long-term drought) and CMN status (intact or severed) as treatments. Intact CMNs improved the survival of seedlings under drought stress and mediated positive, facilitative plant interactions in both watering treatments. Watering increased mycorrhizal colonization rates and improved P uptake, particularly for large individuals. Under drought conditions, improved access to water most likely benefited neighboring plants interacting across CMNs. CMNs appear to have provided the most limiting resource within each treatment, whether P, water, or both, thereby improving survival and growth. Neighbors near large, photosynthate-fixing target plants likely benefited from their establishment of extensive hyphal networks that could access water and dissolved P within soil micropores. In plant communities, CMNs may be vital during drought, which is expected to increase in frequency, intensity, and length with climate change.

Zobrazit více v PubMed

Allen MF (2007) Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone Journal 6:291–297

Allen MF (2022) Mycorrhizal dynamics in ecological systems. Cambridge University Press, United Kingdom

Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

Augé RM (2004) Arbuscular mycorrhizae and soil/plant water relations. Can J Soil Sci 84:373–381

Augé RM, Stodola AJ, Tims JE, Saxton AM (2001) Moisture retention properties of a mycorrhizal soil. Plant Soil 230:87–97

Augé RM, Toler HD, Moore JL et al (2007) Comparing contributions of soil versus root colonization to variations in stomatal behavior and soil drying in mycorrhizal Sorghum bicolor and Cucurbita pepo. J Plant Physiol 164:1289–1299 PubMed

Augé RM, Toler HD, Saxton AM (2015) Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25:13–24 PubMed

Balestrini R, Gómez-Ariza J, Lanfranco L, Bonfante P (2007) Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Mol Plant Microbe Interact 20:1055–1062 PubMed

Bárzana G, Aroca R, Bienert GP et al (2014) New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Mol Plant Microbe Interact 27:349–363 PubMed

Bitterlich M, Franken P, Graefe J (2018) Arbuscular mycorrhiza improves substrate hydraulic conductivity in the plant available moisture range under root growth exclusion. Front Plant Sci 9:301 PubMed PMC

Błaszkowski J, Sánchez-García M, Niezgoda P et al (2022) A new order, Entrophosporales, and three new Entrophospora species in Glomeromycota. Front Microbiol 13:962856. 10.3389/fmicb.2022.962856 PubMed PMC

Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220:1108–1115 PubMed

Caretta MA, Mukherji A, Arfanuzzaman M, et al (2022) Water. In: Pörtner H-O, Roberts DC, Tignor M, Poloczanska ES, Mintenbeck K, Alegría A, Craig M, Langsdorf S, Löschke S, Möller V, Okem A, Rama B (eds) Climate Change 2022: Impacts, Adaptation, and Vulnerability, Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, pp 555–668. 10.1017/9781009325844

Chen G, Tian H, Zhang C et al (2012) Drought in the Southern United States over the 20th century: variability and its impacts on terrestrial ecosystem productivity and carbon storage. Clim Change 114:379–397. 10.1007/s10584-012-0410-z

Delavaux CS, Smith-Ramesh LM, Kuebbing SE (2017) Beyond nutrients: a meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology 98:2111–2119 PubMed

Dreyer I, Spitz O, Kanonenberg K et al (2019) Nutrient exchange in arbuscular mycorrhizal symbiosis from a thermodynamic point of view. New Phytol 222:1043–1053 PubMed PMC

Duc NH, Csintalan Z, Posta K (2018) Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants. Plant Physiol Biochem 132:297–307. 10.1016/j.plaphy.2018.09.011 PubMed

Egerton-Warburton LM, Querejeta JI, Allen MF (2007) Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. J Exp Bot 58:1473–1483. 10.1093/jxb/erm009 PubMed

Egerton-Warburton LM, Querejeta JI, Allen MF (2008) Efflux of hydraulically lifted water from mycorrhizal fungal hyphae during imposed drought. Null 3:68–71. 10.4161/psb.3.1.4924 PubMed PMC

El-Samad HMA, El-Hakeem KNSA (2019) Strategy Role of Mycorrhiza Inoculation on Osmotic Pressure, Chemical Constituents and Growth Yield of Maize Plant Gown under Drought Stress. Am J Plant Sci 10:1102–1120. 10.4236/ajps.2019.106080

Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72:673–689. 10.1007/s00018-014-1767-0 PubMed PMC

Fay PA, Carlisle JD, Knapp AK et al (2003) Productivity responses to altered rainfall patterns in a C4-dominated grassland. Oecologia 137:245–251. 10.1007/s00442-003-1331-3 PubMed

Fellbaum CR, Mensah JA, Cloos AJ et al (2014) Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytol 203:646–656. 10.1111/nph.12827 PubMed

Forczek ST, Bukovská P, Püschel D et al (2022) Drought rearranges preferential carbon allocation to arbuscular mycorrhizal community members co-inhabiting roots of Medicago truncatula. Environ Exp Bot 199:104897

Gehring CA, Swaty RL, Deckert RJ (2017) Chapter 16 - Mycorrhizas, Drought, and Host-Plant Mortality. In: Johnson NC, Gehring C, Jansa J (eds) Mycorrhizal Mediation of Soil. Elsevier, pp 279–298

Geneva M, Kirova E, Sichanova M et al (2022) Physiological analysis of drought stress influenced by Claroideoglomus claroideum inoculation of in vitro or seed-propagated Coleus forskohlii Briq plants. Biologia 78:641–654. 10.1007/s11756-022-01231-3

Graham JH, Eissenstat DM, Drouillard DL (1991) On the Relationship Between a Plant’s Mycorrhizal Dependency and Rate of Vesicular-Arbuscular Mycorrhizal Colonization. Funct Ecol 5:773–779. 10.2307/2389540

Gutjahr C, Paszkowski U (2013) Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis. Front Plant Sci 4:204 PubMed PMC

Hammer EC, Pallon J, Wallander H, Olsson PA (2011) Tit for tat? A mycorrhizal fungus accumulates phosphorus under low plant carbon availability. FEMS Microbiol Ecol 76:236–244. 10.1111/j.1574-6941.2011.01043.x PubMed

Hartnett DC, Hetrick BAD, Wilson GWT, Gibson DJ (1993) Mycorrhizal Influence on Intra- and Interspecific Neighbour Interactions among Co-Occurring Prairie Grasses. J Ecol 81:787–795. 10.2307/2261676

He M, Dijkstra FA (2014) Drought effect on plant nitrogen and phosphorus: a meta-analysis. New Phytol 204:924–931 PubMed

Hetrick BD, Kitt DG, Wilson GT (1988) Mycorrhizal dependence and growth habit of warm-season and cool-season tallgrass prairie plants. Can J Bot 66:1376–1380

Horton TR (2015) Mycorrhizal networks. Springer, Dordrecht, The Netherlands

Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. New Phytol 120:371–380. 10.1111/j.1469-8137.1992.tb01077.x

Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91 PubMed

Jansa J, Mozafar A, Frossard E (2003) Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie 23:481–488

Kakouridis A, Hagen JA, Kan MP et al (2022) Routes to roots: direct evidence of water transport by arbuscular mycorrhizal fungi to host plants. New Phytol 236:210–221. 10.1111/nph.1828 PubMed PMC

Kiers ET, Duhamel M, Beesetty Y et al (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882 PubMed

Koziol L (2023) MycoBloom Mycorrhizae: Native Prairie Endomycorrhizal Fungi. In: FAQ: MycoBloom. http://mycobloom.com/faq.html. Accessed 22 Feb 2023

Leake J, Johnson D, Donnelly D et al (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045. 10.1139/b04-060

Lehmann A, Rillig MC (2015) Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops – A meta-analysis. Soil Biol Biochem 81:147–158. 10.1016/j.soilbio.2014.11.013

Lekberg Y, Hammer EC, Olsson PA (2010) Plants as resource islands and storage units–adopting the mycocentric view of arbuscular mycorrhizal networks. FEMS Microbiol Ecol 74:336–345 PubMed

Leyva-Morales R, Gavito ME, Carrillo-Saucedo SM (2019) Morphological and physiological responses of the external mycelium of Rhizophagus intraradices to water stress. Mycorrhiza 29:141–147. 10.1007/s00572-019-00880-8 PubMed

Lidoy J, López-García Á, Amate C et al (2023) Regulation of mycorrhizal colonization under stress in tomato depends on symbiotic efficiency. Environ Exp Bot 215:105479. 10.1016/j.envexpbot.2023.105479

Mäder P, Vierheilig H, Alt M, Wiemken A (1993) Boundaries between soil compartments formed by microporous hydrophobic membranes (GORE-TEX ®) can be crossed by vesicular-arbuscular mycorrhizal fungi but not by ions in the soil solution. Plant Soil 152:201–206

McCune B, Mefford MJ (2011) PC-ORD: multivariate analysis of ecological data. Gleneden Beach, OR, USA: M Software

McGonigle TP, Miller MH, Evans DG et al (1990) A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytol 115:495–501 PubMed

Merrild MP, Ambus P, Rosendahl S, Jakobsen I (2013) Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants. New Phytol 200:229–240. 10.1111/nph.12351 PubMed

Miller RM, Reinhardt DR, Jastrow JD (1995) External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia 103(1):17–23 PubMed

Montesinos-Navarro A, Verdú M, Querejeta JI et al (2016) Soil fungi promote nitrogen transfer among plants involved in long-lasting facilitative interactions. Perspect Plant Ecol, Evol Syst 18:45–51. 10.1016/j.ppees.2016.01.004

Moreno Jiménez E, Ferrol N, Corradi N, et al (2024) The potential of arbuscular mycorrhizal fungi to enhance metallic micronutrient uptake and mitigate food contamination in agriculture: prospects and challenges. New Phytologist. 10.1111/nph.19269 PubMed

Oehl F, de Souza FA, Sieverding E (2008) Revision of Scutellospora and description of five new genera and three new families in the arbuscular mycorrhiza-forming Glomeromycetes. Mycotaxon 106:311–360

Ouledali S, Ennajeh M, Zrig A et al (2018) Estimating the contribution of arbuscular mycorrhizal fungi to drought tolerance of potted olive trees (Olea europaea). Acta Physiol Plant 40:81. 10.1007/s11738-018-2656-1

Pagano MC, Zandavalli RB, Araújo FS (2013) Biodiversity of arbuscular mycorrhizas in three vegetational types from the semiarid of Ceará State, Brazil. Appl Soil Ecol 67:37–46. 10.1016/j.apsoil.2013.02.007

Pauwels R, Jansa J, Püschel D et al (2020) Root growth and presence of Rhizophagus irregularis distinctly alter substrate hydraulic properties in a model system with Medicago truncatula. Plant Soil 457:131–151. 10.1007/s11104-020-04723-w

Pauwels R, Graefe J, Bitterlich M (2023) An arbuscular mycorrhizal fungus alters soil water retention and hydraulic conductivity in a soil texture specific way. Mycorrhiza 33:165–179. 10.1007/s00572-023-01106-8 PubMed PMC

Püschel D, Bitterlich M, Rydlová J, Jansa J (2020) Facilitation of plant water uptake by an arbuscular mycorrhizal fungus: a Gordian knot of roots and hyphae. Mycorrhiza 30:299–313 PubMed

Püschel D, Bitterlich M, Rydlová J, Jansa J (2021) Drought accentuates the role of mycorrhiza in phosphorus uptake. Soil Biol Biochem 157:108243

Püschel D, Bitterlich M, Rydlová J et al (2023) Benefits in plant N uptake via the mycorrhizal pathway in ample soil moisture persist under severe drought. Soil Biol Biochem 187:109220. 10.1016/j.soilbio.2023.109220

Puy J, Carmona CP, Hiiesalu I et al (2022) Mycorrhizal symbiosis alleviates plant water deficit within and across generations via phenotypic plasticity. J Ecol 110:262–276. 10.1111/1365-2745.13810

Querejeta J, Egerton-Warburton LM, Allen MF (2003) Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying. Oecologia 134:55–64. 10.1007/s00442-002-1078-2 PubMed

Quiroga G, Erice G, Ding L et al (2019) The arbuscular mycorrhizal symbiosis regulates aquaporins activity and improves root cell water permeability in maize plants subjected to water stress. Plant, Cell Environ 42:2274–2290. 10.1111/pce.13551 PubMed

Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New Perspect Mol Stud Mycorrhiza 13:309–317 PubMed

Ruiz-Lozano JM, Azcón R (1995) Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol Plant 95:472–478. 10.1111/j.1399-3054.1995.tb00865.x

Ruth B, Khalvati M, Schmidhalter U (2011) Quantification of mycorrhizal water uptake via high-resolution on-line water content sensors. Plant Soil 342:459–468. 10.1007/s11104-010-0709-3

Saharan K, Schütz L, Kahmen A, et al (2018) Finger millet growth and nutrient uptake is improved in intercropping with pigeon pea through “biofertilization” and “bioirrigation” mediated by arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria. Front Environ Sci 6. 10.3389/fenvs.2018.00046

Schüssler A, Walker C (2010) The glomeromycota: a species list with new families and new genera. amf-phylogeny.com. Accessed 22 Feb 2023

Selosse M-A, Richard F, He X, Simard SW (2006) Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol 21:621–628. 10.1016/j.tree.2006.07.003 PubMed

Singh D, Mathimaran N, Boller T, Kahmen A (2019) Bioirrigation: a common mycorrhizal network facilitates the water transfer from deep-rooted pigeon pea to shallow-rooted finger millet under drought. Plant Soil 440:277–292. 10.1007/s11104-019-04082-1

Singh D, Mathimaran N, Boller T, Kahmen A (2020) Deep-rooted pigeon pea promotes the water relations and survival of shallow-rooted finger millet during drought—Despite strong competitive interactions at ambient water availability. PLoS ONE 15:e0228993. 10.1371/journal.pone.0228993 PubMed PMC

Smith FA, Jakobsen I, Smith SE (2000) Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytol 147:357–366

Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic Press, London, UK

Symanczik S, Lehmann MF, Wiemken A et al (2018) Effects of two contrasted arbuscular mycorrhizal fungal isolates on nutrient uptake by Sorghum bicolor under drought. Mycorrhiza 28:779–785. 10.1007/s00572-018-0853-9 PubMed

Taiz L, Zeiger E, Møller IM, Murphy A (2015) Plant physiology and development. Sinauer Associates Inc., Sunderland, MA, U.S.A.

Taylor JR (1982) An introduction to error analysis. Edited by Eugene D. Commins. Sausalito. CA USA: University Science Books

Tereucán G, Ruiz A, Nahuelcura J et al (2022) Shifts in biochemical and physiological responses by the inoculation of arbuscular mycorrhizal fungi in Triticum aestivum growing under drought conditions. J Sci Food Agric 102:1927–1938. 10.1002/jsfa.11530 PubMed

Thonar C, Schnepf A, Frossard E et al (2011) Traits related to differences in function among three arbuscular mycorrhizal fungi. Plant Soil 339:231–245

Uehlein N, Fileschi K, Eckert M et al (2007) Arbuscular mycorrhizal symbiosis and plant aquaporin expression. Phytochemistry 68:122–129. 10.1016/j.phytochem.2006.09.033 PubMed

van der Heijden MG, Martin FM, Selosse M-A, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423 PubMed

von Liebig J (1840) Die organische Chemie in ihrer Anwendung auf Agricultur und Physiologie. Vieweg

Walder F, van der Heijden MG (2015) Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. Nat Plants 1:1–7 PubMed

Walder F, Niemann H, Natarajan M et al (2012) Mycorrhizal Networks: Common Goods of Plants Shared under Unequal Terms of Trade. Plant Physiol 159:789–797. 10.1104/pp.112.195727 PubMed PMC

Walder F, Boller T, Wiemken A, Courty P-E (2016) Regulation of plants’ phosphate uptake in common mycorrhizal networks: Role of intraradical fungal phosphate transporters. Plant Signal Behav 11:e1131372. 10.1080/15592324.2015.1131372 PubMed PMC

Walker C, Trappe J (1981) Acaulospora spinosa sp. nov. with a key to the species of Acaulospora. Mycotaxon 12:515–521

Weremijewicz J, Janos DP (2013) Common mycorrhizal networks amplify size inequality in Andropogon gerardii monocultures. New Phytol 198:203–213 PubMed

Weremijewicz J, Janos DP (2019) Investigation of plant interactions across common mycorrhizal networks using rotated cores. JoVE (Journal of Visualized Experiments) (145):e59338 PubMed

Weremijewicz J, Seto K (2016) Mycorrhizas influence functional traits of two tallgrass prairie species. Ecol Evol 6:3977–3990. 10.1002/ece3.2129 PubMed PMC

Weremijewicz J, da Silveira LO, Janos DP (2018) Arbuscular common mycorrhizal networks mediate intra-and interspecific interactions of two prairie grasses. Mycorrhiza 28:71–83 PubMed

Weremijewicz J, Sternberg L da SLO, Janos DP (2016) Common mycorrhizal networks amplify competition by preferential mineral nutrient allocation to large host plants. New Phytologist 212:461–471 PubMed

Wesseling J, Van Wijk WR, Fireman M et al (1957) Land drainage in relation to soils and crops. Drain Agric Lands 7:461–578

Wipf D, Krajinski F, van Tuinen D et al (2019) Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytol 223:1127–1142 PubMed

Wu H-H, Zou Y-N, Rahman MM et al (2017) Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress. Sci Rep 7:1–10 PubMed PMC

Wu C, Bi Y, Zhu W (2024) Is the amount of water transported by arbuscular mycorrhizal fungal hyphae negligible? Insights from a compartmentalized experimental study. Plant Soil 499:537–552. 10.1007/s11104-024-06477-1

Yang Y, Tang M, Sulpice R et al (2014) Arbuscular Mycorrhizal Fungi Alter Fractal Dimension Characteristics of Robinia pseudoacacia L. Seedlings Through Regulating Plant Growth, Leaf Water Status, Photosynthesis, and Nutrient Concentration Under Drought Stress. J Plant Growth Regul 33:612–625. 10.1007/s00344-013-9410-0

Zheng C, Ji B, Zhang J et al (2015) Shading decreases plant carbon preferential allocation towards the most beneficial mycorrhizal mutualist. New Phytol 205:361–368. 10.1111/nph.13025 PubMed

Zou Y-N, Wu Q-S, Kuča K (2021) Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biol 23:50–57. 10.1111/plb.13161 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...