Macronutrients-availing microbiomes: biodiversity, mechanisms, and biotechnological applications for agricultural sustainability
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
39592542
DOI
10.1007/s12223-024-01220-w
PII: 10.1007/s12223-024-01220-w
Knihovny.cz E-zdroje
- Klíčová slova
- Availability, Biodiversity, Macronutrients, Nitrogen, Phosphorus, Potassium, Sustainability,
- MeSH
- Bacteria * metabolismus genetika klasifikace MeSH
- biodiverzita * MeSH
- biotechnologie * MeSH
- draslík metabolismus MeSH
- dusík metabolismus MeSH
- fosfor metabolismus MeSH
- mikrobiota * MeSH
- půda chemie MeSH
- půdní mikrobiologie MeSH
- zemědělské plodiny MeSH
- zemědělství MeSH
- živiny * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- draslík MeSH
- dusík MeSH
- fosfor MeSH
- půda MeSH
Nitrogen, phosphorus, and potassium are the three most essential micronutrients which play major roles in plant survivability by being a structural or non-structural component of the cell. Plants acquire these nutrients from soil in the fixed (NO3¯, NH4+) and solubilized forms (K+, H2PO4- and HPO42-). In soil, the fixed and solubilized forms of nutrients are unavailable or available in bare minimum amounts; therefore, agrochemicals were introduced. Agrochemicals, mined from the deposits or chemically prepared, have been widely used in the agricultural farms over the decades for the sake of higher production of the crops. The excessive use of agrochemicals has been found to be deleterious for humans, as well as the environment. In the environment, agrochemical usage resulted in soil acidification, disturbance of microbial ecology, and eutrophication of aquatic and terrestrial ecosystems. A solution to such devastating agro-input was found to be substituted by macronutrients-availing microbiomes. Macronutrients-availing microbiomes solubilize and fix the insoluble form of nutrients and convert them into soluble forms without causing any significant harm to the environment. Microbes convert the insoluble form to the soluble form of macronutrients (nitrogen, phosphorus, and potassium) through different mechanisms such as fixation, solubilization, and chelation. The microbiomes having capability of fixing and solubilizing nutrients contain some specific genes which have been reported in diverse microbial species surviving in different niches. In the present review, the biodiversity, mechanism of action, and genomics of different macronutrients-availing microbiomes are presented.
Chitkara Centre for Research and Development Chitkara University Himachal Pradesh India
Department of Biotechnology Graphic Era Deemed to Be University Dehradun Uttarakhand India
Department of Biotechnology Shri Mata Vaishno Devi University Katra Jammu and Kashmir India
Department of Botany University of Jammu Jammu Jammu and Kashmir India
University Centre for Research and Development Chandigarh University Mohali Punjab India
Zobrazit více v PubMed
Aallam Y, Dhiba D, Lemriss S, Souiri A, Karray F, Rasafi TE et al (2021) Isolation and characterization of phosphate solubilizing Streptomyces sp. endemic from sugar beet fields of the Beni-Mellal Region in Morocco. Microorganisms 9:914. https://doi.org/10.3390/microorganisms9050914 PubMed DOI PMC
Abou-el-Seoud II, Abdel-Megeed A (2012) Impact of rock materials and biofertilizations on P and K availability for maize (Zea maize) under calcareous soil conditions. Saudi J Biol Sci 19:55–63. https://doi.org/10.1016/j.sjbs.2011.09.001 PubMed DOI
Adnan M, Fahad S, Khan IA, Saeed M, Ihsan MZ, Saud S et al (2019) Integration of poultry manure and phosphate solubilizing bacteria improved availability of Ca bound P in calcareous soils. 3 Biotech 9:1–10. https://doi.org/10.1007/s13205-019-1894-2 DOI
Adnan M, Fahad S, Zamin M, Shah S, Mian IA, Danish S et al (2020) Coupling phosphate-solubilizing bacteria with phosphorus supplements improve maize phosphorus acquisition and growth under lime induced salinity stress. Plants 9:900. https://doi.org/10.3390/plants9070900 PubMed DOI PMC
Adnan M, Shah Z, Fahad S, Arif M, Alam M, Khan IA et al (2018) Author correction: Phosphate-solubilizing bacteria nullify the antagonistic effect of soil calcification on bioavailability of phosphorus in alkaline soils. Sci Rep 8:4339. https://doi.org/10.1038/s41598-018-22653-7 PubMed DOI PMC
Afzal A, Ashraf M, Asad SA, Farooq M (2005) Effect of phosphate solubilizing microorganisms on phosphorus uptake, yield and yield traits of wheat (Triticum aestivum L.) in rainfed area. Int J Agric Biol 7:207–209
Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. King Saud Univ Sci 26:1–20. https://doi.org/10.1016/j.jksus.2013.05.001 DOI
Ahmad I, Ahmad M, Hussain A, Jamil M (2021) Integrated use of phosphate-solubilizing Bacillus subtilis strain IA6 and zinc-solubilizing Bacillus sp. strain IA16: a promising approach for improving cotton growth. Folia Microbiol 66:115–125. https://doi.org/10.1007/s12223-020-00831-3 DOI
Ahmed I, Ehsan M, Sin Y, Paek J, Khalid N, Hayat R et al (2014) Sphingobacterium pakistanensis sp. nov., a novel plant growth promoting rhizobacteria isolated from rhizosphere of Vigna mungo. Antonie Van Leeuwenhoek 105:325–333. https://doi.org/10.1007/s10482-013-0077-0 PubMed DOI
Aliyat FZ, Maldani M, El Guilli M, Nassiri L, Ibijbijen J (2022) Phosphate-solubilizing bacteria isolated from phosphate solid sludge and their ability to solubilize three inorganic phosphate forms: calcium, iron, and aluminum phosphates. Microorganisms 10:980. https://doi.org/10.3390/microorganisms10050980 PubMed DOI PMC
Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971. https://doi.org/10.3389/fmicb.2017.00971 PubMed DOI PMC
Altomare C, Norvell W, Björkman T, Harman G (1999) Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295–22. Appl Environ Microbiol 65:2926–2933. https://doi.org/10.1128/AEM.65.7.2926-2933.1999 PubMed DOI PMC
Ashfaq M, Hassan HM, Ghazali AHA, Ahmad M (2020) Halotolerant potassium solubilizing plant growth promoting rhizobacteria may improve potassium availability under saline conditions. Environ Monit Assess 192:697. https://doi.org/10.1007/s10661-020-08655-x PubMed DOI
Ayuni N, Radziah O, Naher U, Panhwar Q, Halimi M (2015) Effect of nitrogen on nitrogenase activity of diazotrophs and total bacterial population in rice soil. J Anim Plant Sci 25:1358–1364
Azaroual SE, Hazzoumi Z, Mernissi NE, Aasfar A, Meftah Kadmiri I, Bouizgarne B (2020) Role of inorganic phosphate solubilizing bacilli isolated from moroccan phosphate rock mine and rhizosphere soils in wheat (Triticum aestivum L) phosphorus uptake. Curr Microbiol 77:2391–2404. https://doi.org/10.1007/s00284-020-02046-8 PubMed DOI
Babalola OO, Glick BR (2012) The use of microbial inoculants in African agriculture: current practice and future prospects. J Food Agric Environ 10:540–549
Baghel V, Thakur JK, Yadav SS, Manna MC, Mandal A, Shirale AO et al (2020) Phosphorus and potassium solubilization from rock minerals by endophytic Burkholderia sp. strain FDN2-1 in soil and shift in diversity of bacterial endophytes of corn root tissue with crop growth stage. Geomicrobiol J 37:550–563. https://doi.org/10.1080/01490451.2020.1734691 DOI
Bagyalakshmi B, Ponmurugan P, Balamurugan A (2017) Potassium solubilization, plant growth promoting substances by potassium solubilizing bacteria (KSB) from southern Indian Tea plantation soil. Biocatal Agric Biotechnol 12:116–124. https://doi.org/10.1016/j.bcab.2017.09.011 DOI
Bahadur I, Maurya BR, Kumar A, Meena VS, Raghuwanshi R (2016) Towards the soil sustainability and potassium-solubilizing microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer India, New Delhi, pp 255–266. https://doi.org/10.1007/978-81-322-2776-2_18
Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2017) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiol J 34:454–466. https://doi.org/10.1080/01490451.2016.1219431 DOI
Bakhshandeh E, Pirdashti H, Lendeh KS (2017) Phosphate and potassium-solubilizing bacteria effect on the growth of rice. Ecol Eng 103:164–169. https://doi.org/10.1016/j.ecoleng.2017.03.008 DOI
Bal A, Anand R, Berge O, Chanway CP (2012) Isolation and identification of diazotrophic bacteria from internal tissues of Pinus contorta and Thuja plicata. Can J for Res 42:807–813 DOI
Barin M, Asadzadeh F, Hosseini M, Hammer EC, Vetukuri RR, Vahedi R (2022) Optimization of biofertilizer formulation for phosphorus solubilizing by Pseudomonas fluorescens Ur21 via response surface methodology. Processes 10:650. https://doi.org/10.3390/pr10040650 DOI
Basak BB, Biswas DR (2010) Co-inoculation of potassium solubilizing and nitrogen fixing bacteria on solubilization of waste mica and their effect on growth promotion and nutrient acquisition by a forage crop. Biol Fert Soils 46:641–648. https://doi.org/10.1007/s00374-010-0456-x DOI
Bazylinski DA, Blakemore R (1983) Nitrogen fixation (acetylene reduction) in Aquaspirillum magnetotacticum. Curr Microbiol 9:305–308. https://doi.org/10.1007/BF01588824 DOI
Bechtaoui N, Raklami A, Benidire L, Tahiri A-i, Göttfert M, Oufdou K (2020) Effects of PGPR co-inoculation on growth, phosphorus nutrition and phosphatase/phytase activities of faba bean under different phosphorus availability conditions. Pol J Environ Stud 29:1557–1565. https://doi.org/10.15244/pjoes/110345
Bertalan M, Albano R, de Pádua V, Rouws L, Rojas C, Hemerly A et al (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genom 10:450. https://doi.org/10.1186/1471-2164-10-450 DOI
Bhattacharyya P, Goswami M, Bhattacharyya L (2016) Perspective of beneficial microbes in agriculture under changing climatic scenario: a review. J Phytol 8:26–41. https://doi.org/10.19071/jp.2016.v8.3022
BhattacharyyaPN J (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350. https://doi.org/10.1007/s11274-011-0979-9 DOI
Branch NT (2012) Promoting common bean growth and nitrogen fixation by the co-inoculation of Rhizobium and Pseudomonas fluorescens isolates. Bulg J Agric Sci 18:387–395
Bromfield ES, Cloutier S, Nguyen HD (2019) Description and complete genome sequence of Bradyrhizobium amphicarpaeae sp. nov., harbouring photosystem and nitrogen-fixation genes. Int J Syst Evol Microbiol 69:2841–2848. https://doi.org/10.1099/ijsem.0.003569 PubMed DOI
Chaiharn M, Lumyong S (2011) Screening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growth. Curr Microbiol 62:173–181. https://doi.org/10.1007/s00284-010-9674-6 PubMed DOI
Chatterjee R, Allen RM, Ludden PW, Shah VK (1997) In vitro synthesis of the iron-molybdenum cofactor and maturation of the nif-encoded apodinitrogenase: effect of substitution of VNFH for NIFH. J Biol Chem 272:21604–21608. https://doi.org/10.1074/jbc.272.34.21604 PubMed DOI
Chaudhary HJ, Peng G, Hu M, He Y, Yang L, Luo Y et al (2012) Genetic diversity of endophytic diazotrophs of the wild rice, Oryza alta and identification of the new diazotroph. Acinetobacter Oryzae Sp Nov Microb Ecol 63:813–821. https://doi.org/10.1007/s00248-011-9978-5 PubMed DOI
Chauhan A, Guleria S, Balgir PP, Walia A, Mahajan R, Mehta P et al (2017) Tricalcium phosphate solubilization and nitrogen fixation by newly isolated Aneurinibacillus aneurinilyticus CKMV1 from rhizosphere of Valeriana jatamansi and its growth promotional effect. Braz J Microbiol 48:294–304. https://doi.org/10.1016/j.bjm.2016.12.001 PubMed DOI
Chen H, Zhang J, Tang L, Su M, Tian D, Zhang L et al (2019) Enhanced Pb immobilization via the combination of biochar and phosphate solubilizing bacteria. Environ Int 127:395–401. https://doi.org/10.1016/j.envint.2019.03.068 PubMed DOI
Chen M-H, Sheu S-Y, James EK, Young C-C, Chen W-M (2013) Azoarcus olearius sp. nov., a nitrogen-fixing bacterium isolated from oil-contaminated soil. Int J Syst Evol Microbiol 63:3755–3761. https://doi.org/10.1099/ijs.0.050609-0 PubMed DOI
Chen Y, Nishihara A, Haruta S (2021a) Nitrogen-fixing ability and nitrogen fixation-related genes of thermophilic fermentative bacteria in the genus Caldicellulosiruptor. Microbes Environ 36:ME21018. https://doi.org/10.1264/jsme2.ME21018 PubMed DOI PMC
Chen Y, Yang H, Shen Z, Ye J (2021b) Whole-genome sequencing and potassium-solubilizing mechanism of Bacillus aryabhattai SK1-7. Front Microbiol 12:722379. https://doi.org/10.3389/fmicb.2021.722379 PubMed DOI
Chen Y, Ye J, Kong Q (2020) Potassium-solubilizing activity of Bacillus aryabhattai SK1-7 and its growth-promoting effect on Populus alba L. Forests 11:1348. https://doi.org/10.3390/f11121348 DOI
Chowdhury SP, Schmid M, Hartmann A, Tripathi AK (2007) Identification of diazotrophs in the culturable bacterial community associated with roots of Lasiurus sindicus, a perennial grass of Thar Desert, India. Microb Ecol 54:82–90. https://doi.org/10.1007/s00248-006-9174-1 PubMed DOI
Cordell D, White S (2014) Life’s bottleneck: sustaining the world’s phosphorus for a food secure future. Ann Rev Environ Res 39:161–188. https://doi.org/10.1146/annurev-environ-010213-113300 DOI
Crovadore J, Calmin G, Cochard B, Chablais R, Lefort F (2016) Whole-genome sequence of Bradyrhizobium elkanii strain UASWS1015, a highly ammonia-tolerant nitrifying bacterium. Genom Announc 4:e00111-00116. https://doi.org/10.1128/genomea.00111-16 DOI
Dakora FD (2003) Defining new roles for plant and rhizobial molecules in sole and mixed plant cultures involving symbiotic legumes. New Phytol 158:39–49. https://doi.org/10.1046/j.1469-8137.2003.00725.x DOI
Dastager SG, Deepa C, Pandey A (2010) Isolation and characterization of novel plant growth promoting Micrococcus sp NII-0909 and its interaction with cowpea. Plant Physiol Biochem 48:987–992. https://doi.org/10.1016/j.plaphy.2010.09.006 PubMed DOI
de Souza R, Beneduzi A, Ambrosini A, da Costa PB, Meyer J, Vargas LK et al (2013) The effect of plant growth-promoting rhizobacteria on the growth of rice (Oryza sativa L.) cropped in southern Brazilian fields. Plant Soil 366:585–603. https://doi.org/10.1007/s11104-012-1430-1 DOI
Dean D (1992) Biochemical genetics of nitrogenase. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 763–834
Defez R, Andreozzi A, Bianco C (2017) The overproduction of indole-3-acetic acid (IAA) in endophytes upregulates nitrogen fixation in both bacterial cultures and inoculated rice plants. Microb Ecol 74:441–452. https://doi.org/10.1007/s00248-017-0948-4 PubMed DOI
Devi R, Alsaffar MF, Al-Taey DKA, Kumar S, Negi R, Sharma B et al. (2024a) Synergistic effect of minerals solubilizing and siderophores producing bacteria as different microbial consortium for growth and nutrient uptake of oats (Avena sativa L.). Vegetos. https://doi.org/10.1007/s42535-024-00922-3
Devi R, Alsaffar MF, Al-Taey DKA, Kumar S, Negi R, Sharma B et al. (2024b) Effect of indigenous mineral availing microbial consortia and cattle manure combination for growth of maize (Zea mays L.). Vegetos. https://doi.org/10.1007/s42535-024-00897-1
Devi R, Kaur T, Kour D, Yadav A, Yadav AN, Suman A et al (2022a) Minerals solubilizing and mobilizing microbiomes: a sustainable approach for managing minerals’ deficiency in agricultural soil. J Appl Microbiol 133:1245–1272. https://doi.org/10.1111/jam.15627 PubMed DOI
Devi R, Kaur T, Kour D, Yadav AN (2022b) Microbial consortium of mineral solubilizing and nitrogen fixing bacteria for plant growth promotion of amaranth (Amaranthus hypochondrius L.). Biocatal Agric Biotechnol 43:102404. https://doi.org/10.1016/j.bcab.2022.102404 DOI
Devi R, Kaur T, Kour D, Yadav AN, Suman A (2022c) Potential applications of mineral solubilizing rhizospheric and nitrogen fixing endophytic bacteria as microbial consortium for the growth promotion of chilli (Capsicum annum L.). Biologia 77:2933–2943. https://doi.org/10.1007/s11756-022-01127-2 DOI
Devi R, Kaur T, Negi R, Kour D, Chaubey KK, Yadav AN (2023) Indigenous plant growth-promoting rhizospheric and endophytic bacteria as liquid bioinoculants for growth of sweet pepper (Capsicum annuum L.). Biologia 78:2623–2633. https://doi.org/10.1007/s11756-023-01410-w DOI
Devi R, Kaur T, Negi R, Kour D, Kumar S, Yadav A et al (2024c) Bioformulation of mineral solubilizing microbes as novel microbial consortium for the growth promotion of wheat (Triticum aestivum) under the controlled and natural conditions. Heliyon 10:e33167. https://doi.org/10.1016/j.heliyon.2024.e33167 PubMed DOI PMC
Di YN, Kui L, Singh P, Liu LF, Xie LY, He LL et al (2023) Identification and characterization of Bacillus subtilis B9: a diazotrophic plant growth-promoting endophytic bacterium isolated from sugarcane root. J Plant Growth Regul 42:1720–1737. https://doi.org/10.1007/s00344-022-10653-x DOI
Diep CN, Hieu TN (2013) Phosphate and potassium solubilizing bacteria from weathered materials of denatured rock mountain, Ha Tien, Kiên Giang province Vietnam. Am J Life Sci 1:88–92. https://doi.org/10.11648/j.ajls.20130103.12
Ding Y, Wang J, Liu Y, Chen S (2005) Isolation and identification of nitrogen-fixing bacilli from plant rhizospheres in Beijing region. J Appl Microbiol 99:1271–1281. https://doi.org/10.1111/j.1365-2672.2005.02738.x PubMed DOI
Duponnois R, Kisa M, Plenchette C (2006) Phosphate-solubilizing potential of the nematophagous fungus Arthrobotrys oligospora. J Plant Nutr Soil Sci 169:280–282. https://doi.org/10.1002/jpln.200520551 DOI
Dutta D, Gachhui R (2006) Novel nitrogen-fixing Acetobacter nitrogenifigens sp. nov., isolated from Kombucha tea. Int J Syst Evol Microbiol 56:1899–1903. https://doi.org/10.1099/ijs.0.64101-0 PubMed DOI
Elhaissoufi W, Ghoulam C, Barakat A, Zeroual Y, Bargaz A (2021) Phosphate bacterial solubilization: a key rhizosphere driving force enabling higher P use efficiency and crop productivity. J Adv Res 38:13–28. https://doi.org/10.1016/j.jare.2021.08.014 PubMed DOI PMC
Elkoca E, Kantar F, Sahin F (2007) Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. J Plant Nutr 31:157–171. https://doi.org/10.1080/01904160701742097 DOI
Elliott GN, Chen WM, Chou JH, Wang HC, Sheu SY, Perin L et al (2007) Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimosa spp. and fixes nitrogen ex planta. New Phytol 173:168–180. https://doi.org/10.1111/j.1469-8137.2006.01894.x PubMed DOI
Emmyrafedziawati A, Stella M (2018) Identification of free-living nitrogen fixing bacteria isolated from EFB compost, molecular detection of nifH gene and measurement of the nitrogenase activity. J Trop Agric Food Sci 46:39–46
Erdogan U, Çakmakçi R, Varmazyarı A, Turan M, Erdogan Y, Kıtır N (2016) Role of inoculation with multi-trait rhizobacteria on strawberries under water deficit stress. Zemdirbyste Agric 103:67–76 DOI
Etesami H, Emami S, Alikhani HA (2017) Potassium solubilizing bacteria (KSB): mechanisms, promotion of plant growth, and future prospects a review. J Soil Sci Plant Nutr 17:897–911. https://doi.org/10.4067/S0718-95162017000400005 DOI
Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D et al (2015) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22:4907–4921. https://doi.org/10.1007/s11356-014-3754-2 DOI
Fixen PE, Johnston AM (2012) World fertilizer nutrient reserves: a view to the future. J Sci Food Agric 92:1001–1005. https://doi.org/10.1002/jsfa.4532 PubMed DOI
Fouzia A, Allaoua S, Hafsa C-S, Mostefa G (2015) Plant growth promoting and antagonistic traits of indigenous fluorescent Pseudomonas spp. isolated from wheat rhizosphere and A. halimus endosphere. Euro Sci J 11:129–148
Gallegos-Cedillo VM, Urrestarazu M, Álvaro JE (2016) Influence of salinity on transport of nitrates and potassium by means of the xylem sap content between roots and shoots in young tomato plants. J Soil Sci Plant Nutr 16:991–998. https://doi.org/10.4067/S0718-95162016005000072 DOI
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR et al (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892 PubMed DOI
George P, Gupta A, Gopal M, Thomas L, Thomas GV (2013) Multifarious beneficial traits and plant growth promoting potential of Serratia marcescens KiSII and Enterobacter sp. RNF 267 isolated from the rhizosphere of coconut palms (Cocos nucifera L.). World J Microbiol Biotechnol 29:109–117. https://doi.org/10.1007/s11274-012-1163-6 PubMed DOI
Ghadam Khani A, Enayatizamir N, Norouzi Masir M (2019) Impact of plant growth promoting rhizobacteria on different forms of soil potassium under wheat cultivation. Lett Appl Microbiol 68:514–521. https://doi.org/10.1111/lam.13132 PubMed DOI
Gillis M, Kersters K, Hoste B, Janssens D, Kroppenstedt RM, Stephan MP et al (1989) Acetobacter diazotrophicus sp. nov., a nitrogen-fixing acetic acid bacterium associated with sugarcane. Int J Syst Evol Microbiol 39:361–364. https://doi.org/10.1099/00207713-39-3-361 DOI
Gong W, Xing Y, Zhuoma QC, Yue H, Chen J (2018) Isolation, identification and low temperature adaptation of a phosphorus solubilizing bacteria from rhizosphere soil of Rhodiola fastigiata in Sehgyla Mountains. J South Agric 49:280–286
Gontia-Mishra I, Sapre S, Tiwari S (2017) Zinc solubilizing bacteria from the rhizosphere of rice as prospective modulator of zinc biofortification in rice. Rhizosphere 3:185–190. https://doi.org/10.1016/j.rhisph.2017.04.013 DOI
Good AG, Beatty PH (2011) Fertilizing nature: a tragedy of excess in the commons. PLoS Biol 9:e1001124. https://doi.org/10.1371/journal.pbio.1001124 PubMed DOI PMC
Granada CE, Passaglia LM, De Souza EM, Sperotto RA (2018) Is phosphate solubilization the forgotten child of plant growth-promoting rhizobacteria? Front Microbiol 9:2054. https://doi.org/10.3389/fmicb.2018.02054 PubMed DOI PMC
Gulati A, Vyas P, Rahi P, Kasana RC (2009) Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr Microbiol 58:371–377. https://doi.org/10.1007/s00284-008-9339-x PubMed DOI
Gundala P, Chinthala P, Sreenivasulu B (2013) A new facultative alkaliphilic, potassium solubilizing, Bacillus Sp. SVUNM9 isolated from mica cores of Nellore District, Andhra Pradesh India. Res Rev J Microbiol Biotechnol 2:1–7
Guo DJ, Singh RK, Singh P, Li DP, Sharma A, Xing YX et al (2020) Complete genome sequence of Enterobacter roggenkampii ED5, a nitrogen fixing plant growth promoting endophytic bacterium with biocontrol and stress tolerance properties, isolated from sugarcane root. Front Microbiol 11:580081. https://doi.org/10.3389/fmicb.2020.580081 PubMed DOI PMC
Guo JK, Ding YZ, Feng RW, Wang RG, Xu YM, Chen C et al (2015) Burkholderia metalliresistens sp. nov., a multiple metal-resistant and phosphate-solubilising species isolated from heavy metal-polluted soil in Southeast China. Antonie Van Leeuwenhoek 107:1591–1598. https://doi.org/10.1007/s10482-015-0453-z PubMed DOI
Gupta M, Kiran S, Gulati A, Singh B, Tewari R (2012) Isolation and identification of phosphate solubilizing bacteria able to enhance the growth and aloin-A biosynthesis of Aloe barbadensis Miller. Microbiol Res 167:358–363. https://doi.org/10.1016/j.micres.2012.02.004 PubMed DOI
Gyaneshwar P, Naresh Kumar G, Parekh L, Poole P (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93. https://doi.org/10.1023/A:1020663916259 DOI
Habibi S, Djedidi S, Ohkama-Ohtsu N, Sarhadi WA, Kojima K, Rallos RV et al (2019) Isolation and screening of indigenous plant growth-promoting rhizobacteria from different rice cultivars in Afghanistan soils. Microb Environ 34:347–355. https://doi.org/10.1264/jsme2.ME18168 DOI
Habibi S, Djedidi S, Prongjunthuek K, Mortuza MF, Ohkama-Ohtsu N, Sekimoto H et al (2014) Physiological and genetic characterization of rice nitrogen fixer PGPR isolated from rhizosphere soils of different crops. Plant Soil 379:51–66. https://doi.org/10.1007/s11104-014-2035-7 DOI
Hamim A, Boukeskasse A, Ouhdouch Y, Farrouki A, Barrijal S, Miché L et al (2019) Phosphate solubilizing and PGR activities of ericaceous shrubs microorganisms isolated from Mediterranean forest soil. Biocatal Agric Biotechnol 19:101128. https://doi.org/10.1016/j.bcab.2019.101128 DOI
Han J, Sun L, Dong X, Cai Z, Sun X, Yang H et al (2005) Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Syst Appl Microbiol 28:66–76. https://doi.org/10.1016/j.syapm.2004.09.003 PubMed DOI
Haskett T, Wang P, Ramsay J, O’Hara G, Reeve W, Howieson J et al (2016) Complete genome sequence of Mesorhizobium ciceri strain CC1192, an efficient nitrogen-fixing microsymbiont of Cicer arietinum. Genom Announc 4:e00516-00516. https://doi.org/10.1128/genomeA.00516-16 DOI
Holguin G, Guzman MA, Bashan Y (1992) Two new nitrogen-fixing bacteria from the rhizosphere of mangrove trees: their isolation, identification and in vitro interaction with rhizosphere Staphylococcus sp. FEMS Microbiol Lett 101:207–216. https://doi.org/10.1111/j.1574-6968.1992.tb05777.x DOI
Ibáñez A, Diez-Galán A, Cobos R, Calvo-Peña C, Barreiro C, Medina-Turienzo J et al (2021) Using rhizosphere phosphate solubilizing bacteria to improve barley (Hordeum vulgare) plant productivity. Microorganisms 9:1619. https://doi.org/10.3390/microorganisms9081619 PubMed DOI PMC
Igual JM, Valverde Portal Á, Cervantes E, Velázquez E (2001) Phosphate-solubilizing bacteria as inoculants for agriculture: use of updated molecular techniques in their study. Agronomie 21:561–568 DOI
Illmer P, Schinner F (1995) Solubilization of inorganic calcium phosphates—solubilization mechanisms. Soil Biol Biochem 27:257–263. https://doi.org/10.1016/0038-0717(94)00190-C DOI
Iqbal Hussain M, Naeem Asghar H, Javed Akhtar M, Arshad M (2013) Impact of phosphate solubilizing bacteria on growth and yield of maize. Soil Environ 32:71–78
Islam R, Trivedi P, Madhaiyan M, Seshadri S, Lee G, Yang J et al (2010) Isolation, enumeration, and characterization of diazotrophic bacteria from paddy soil sample under long-term fertilizer management experiment. Biol Fert Soils 46:261–269. https://doi.org/10.1007/s00374-009-0425-4 DOI
Jacobs H, Boswell GP, Ritz K, Davidson FA, Gadd GM (2002) Solubilization of calcium phosphate as a consequence of carbon translocation by Rhizoctonia solani. FEMS Microbiol Ecol 40:65–71. https://doi.org/10.1111/j.1574-6941.2002.tb00937.x PubMed DOI
Jha BK, Pragash MG, Cletus J, Raman G, Sakthivel N (2009) Simultaneous phosphate solubilization potential and antifungal activity of new fluorescent pseudomonad strains, Pseudomonas aeruginosa, P. plecoglossicida and P. mosselii. World J Microbiol Biotechnol 25:573–581. https://doi.org/10.1007/s11274-008-9925-x DOI
Jha P, Kumar A (2009) Characterization of novel plant growth promoting endophytic bacterium Achromobacter xylosoxidans from wheat plant. Microb Ecol 58:179–188. https://doi.org/10.1007/s00248-009-9485-0 PubMed DOI
Jha PN, Kumar A (2007) Endophytic colonization of Typha australis by a plant growth-promoting bacterium Klebsiella oxytoca strain GR-3. J Appl Microbiol 103:1311–1320. https://doi.org/10.1111/j.1365-2672.2007.03383.x PubMed DOI
Ji SH, Gururani MA, Chun S-C (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169:83–98. https://doi.org/10.1016/j.micres.2013.06.003 PubMed DOI
Jiao H, Wang R, Qin W, Yang J (2024) Screening of rhizosphere nitrogen fixing, phosphorus and potassium solubilizing bacteria of Malus sieversii (Ldb.) Roem. and the effect on apple growth. J Plant Physiol 292:154142. https://doi.org/10.1016/j.jplph.2023.154142 PubMed DOI
Kalaji HM, Dąbrowski P, Cetner MD, Samborska IA, Łukasik I, Brestic M et al (2017) A comparison between different chlorophyll content meters under nutrient deficiency conditions. J Plant Nutr 40:1024–1034. https://doi.org/10.1080/01904167.2016.1263323 DOI
Kalayu G (2019) Phosphate solubilizing microorganisms: promising approach as biofertilizers. Int J Agron 2019:1–7. https://doi.org/10.1155/2019/4917256 DOI
Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S et al (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338. https://doi.org/10.1093/dnares/7.6.331 PubMed DOI
Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S et al (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197. https://doi.org/10.1093/dnares/9.6.189 PubMed DOI
Kang J, Amoozegar A, Hesterberg D, Osmond D (2011) Phosphorus leaching in a sandy soil as affected by organic and incomposted cattle manure. Geoderma 161:194–201. https://doi.org/10.1016/j.geoderma.2010.12.019 DOI
Kapri A, Tewari L (2010) Phosphate solubilization potential and phosphatase activity of rhizospheric Trichoderma spp. Brazil J Microbiol 41:787–795. https://doi.org/10.1590/S1517-83822010005000001 DOI
Kaur R, Kaur S (2020) Variation in the phosphate solubilizing bacteria from virgin and the agricultural soils of Punjab. Curr Microbiol 77:2118–2127. https://doi.org/10.1007/s00284-020-02080-6 PubMed DOI
Kaur T, Devi R, Kour D, Yadav A, Yadav AN, Dikilitas M et al (2021) Plant growth promoting soil microbiomes and their potential implications for agricultural and environmental sustainability. Biologia 76:2687–2709. https://doi.org/10.1007/s11756-021-00806-w DOI
Kaur T, Devi R, Kumar S, Kour D, Yadav AN (2022a) Plant growth promotion of pearl millet (Pennisetum glaucum L.) by novel bacterial consortium with multifunctional attributes. Biologia 78:621–631. https://doi.org/10.1007/s11756-022-01291-5 DOI
Kaur T, Devi R, Kumar S, Kour D, Yadav AN (2022b) Synergistic effect of endophytic and rhizospheric microbes for plant growth promotion of foxtail millet (Setaria italica L.). Nat Acad Sci Lett 46:27–30. https://doi.org/10.1007/s40009-022-01190-y DOI
Kaur T, Devi R, Kumar S, Sheikh I, Kour D, Yadav AN (2022c) Microbial consortium with nitrogen fixing and mineral solubilizing attributes for growth of barley (Hordeum vulgare L.). Heliyon 8:e09326. https://doi.org/10.1016/j.heliyon.2022.e09326 PubMed DOI PMC
Kaur T, Devi R, Negi R, Kour D, Yadav AN (2023) Mutualistic effect of macronutrients availing microbes on the plant growth promotion of finger millet (Eleusine coracana L.). Curr Microbiol 80:186. https://doi.org/10.1007/s00284-023-03255-7 PubMed DOI
Kaur T, Devi R, Negi R, Kumar S, Singh S, Rustagi S et al. (2024) Microbial consortium with multifunctional attributes for the plant growth of eggplant (Solanum melongena L.). Folia Microbiol https://doi.org/10.1007/s12223-024-01168-x
Keshavarz Zarjani J, Aliasgharzad N, Oustan S, Emadi M, Ahmadi A (2013) Isolation and characterization of potassium solubilizing bacteria in some Iranian soils. Arch Agron Soil Sci 59:1713–1723. https://doi.org/10.1080/03650340.2012.756977 DOI
Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1:48–58
Kiba T, Krapp A (2016) Plant nitrogen acquisition under low availability: regulation of uptake and root architecture. Plant Cell Physiol 57:707–714. https://doi.org/10.1093/pcp/pcw052 PubMed DOI PMC
Kour D, Kaur T, Devi R, Chaubey KK, Yadav AN (2023) Co-inoculation of nitrogen fixing and potassium solubilizing Acinetobacter sp. for growth promotion of onion (Allium cepa). Biologia 78:2635–3264. https://doi.org/10.1007/s11756-023-01412-8 DOI
Kour D, Rana KL, Kaur T, Sheikh I, Yadav AN, Kumar V et al (2020a) Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (Sorghum bicolour L.) by drought-adaptive and phosphorus-solubilizing microbes. Biocatal Agric Biotechnol 23:101501. https://doi.org/10.1016/j.bcab.2020.101501 DOI
Kour D, Rana KL, Kaur T, Yadav N, Yadav AN, Kumar M et al (2021) Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: a review. Pedosphere 31:43–75. https://doi.org/10.1016/S1002-0160(20)60057-1 DOI
Kour D, Rana KL, Sheikh I, Kumar V, Yadav AN, Dhaliwal HS et al (2019a) Alleviation of drought stress and plant growth promotion by Pseudomonas libanensis EU-LWNA-33, a drought-adaptive phosphorus-solubilizing bacterium. Proc Natl Acad Sci India Sec B Biol Sci 90:785–795. https://doi.org/10.1007/s40011-019-01151-4 DOI
Kour D, Rana KL, Yadav AN, Sheikh I, Kumar V, Dhaliwal HS et al (2020b) Amelioration of drought stress in foxtail millet (Setaria italica L.) by P-solubilizing drought-tolerant microbes with multifarious plant growth promoting attributes. Environ Sustain 3:23–34. https://doi.org/10.1007/s42398-020-00094-1 DOI
Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA et al. (2019b) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, volume 2: perspective for value-added products and environments. Springer International Publishing, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1
Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V et al (2020c) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:10148. https://doi.org/10.1016/j.bcab.2019.101487 DOI
Kour D, Yadav AN (2023) First report on novel psychrotrophic phosphorus-solubilizing Ochrobactrum thiophenivorans EU-KL94 from Keylong Region in Great Himalayas and their role in plant growth promotion of oats (Avena sativa L.). Curr Microbiol 80:227. https://doi.org/10.1007/s00284-023-03308-x PubMed DOI
Kruasuwan W, Thamchaipenet A (2016) Diversity of culturable plant growth-promoting bacterial endophytes associated with sugarcane roots and their effect of growth by co-inoculation of diazotrophs and actinomycetes. J Plant Growth Regul 35:1074–1087. https://doi.org/10.1007/s00344-016-9604-3 DOI
Kucey R (1988) Plant growth-altering effects of Azospirillum brasilense and Bacillus C–11–25 on two wheat cultivars. J Appl Bacteriol 64:187–196. https://doi.org/10.1111/j.1365-2672.1988.tb03375.x DOI
Kumar A, Maurya B, Raghuwanshi R (2014a) Isolation and characterization of PGPR and their effect on growth, yield and nutrient content in wheat (Triticum aestivum L.). Biocatal Agric Biotechnol 3:121–128. https://doi.org/10.1016/j.bcab.2014.08.003 DOI
Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Tofazzal Islam M (2017) Co-inoculation with Enterobacter and rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under Indo-Gangetic Plain of India. J Plant Growth Regul 36:608–617. https://doi.org/10.1007/s00344-016-9663-5 DOI
Kumar S, Bauddh K, Barman S, Singh RP (2014b) Amendments of microbial biofertilizers and organic substances reduces requirement of urea and DAP with enhanced nutrient availability and productivity of wheat (Triticum aestivum L.). Ecol Eng 71:432–437. https://doi.org/10.1016/j.ecoleng.2014.07.007 DOI
Kwak Y, Park G-S, Shin J-H (2016) High quality draft genome sequence of the type strain of Pseudomonas lutea OK2 T, a phosphate-solubilizing rhizospheric bacterium. Stand Genom Sci 11:1–10. https://doi.org/10.1186/s40793-016-0173-7 DOI
Lally RD, Galbally P, Moreira AS, Spink J, Ryan D, Germaine KJ et al (2017) Application of endophytic Pseudomonas fluorescens and a bacterial consortium to Brassica napus can increase plant height and biomass under greenhouse and field conditions. Front Plant Sci 8:2193. https://doi.org/10.3389/fpls.2017.02193 PubMed DOI PMC
Lamizadeh E, Enayatizamir N, Motamedi H (2016) Isolation and identification of plant growth-promoting rhizobacteria (PGPR) from the rhizosphere of sugarcane in saline and non-saline soil. Int J Curr Microbiol Appl Sci 5:1072–1083. https://doi.org/10.20546/ijcmas.2016.510.113
Lee HS, Madhaiyan M, Kim CW, Choi SJ, Chung KY, Sa TM (2006) Physiological enhancement of early growth of rice seedlings (Oryza sativa L.) by production of phytohormone of N DOI
Lee JC, Kim CJ, Yoon KH (2011) Paenibacillus telluris sp. nov., a novel phosphate-solubilizing bacterium isolated from soil. J Microbiol 49:617–621. https://doi.org/10.1007/s12275-011-0471-0 PubMed DOI
Lee K-B, De Backer P, Aono T, Liu CT, Suzuki S, Suzuki T et al (2008) The genome of the versatile nitrogen fixer Azorhizobium caulinodans ORS571. BMC Genom 9:271. https://doi.org/10.1186/1471-2164-9-271 DOI
Leo Daniel Amalraj E, Mohanty D, Praveen Kumar G, Desai S, Mir Hassan Ahmed SK, Pradhan R et al (2015) Potential microbial consortium for plant growth promotion of sunflower (Helianthus annuus L.). Proc Natl Acad Sci India Sec B Biol Sci 85:635–642. https://doi.org/10.1007/s40011-014-0361-4 DOI
Li HB, Singh RK, Singh P, Song QQ, Xing YX, Yang LT et al (2017) Genetic diversity of nitrogen-fixing and plant growth promoting Pseudomonas species isolated from sugarcane rhizosphere. Front Microbiol 8:1268. https://doi.org/10.3389/fmicb.2017.01268 PubMed DOI PMC
Li JT, Lu JL, Wang HY, Fang Z, Wang XJ, Feng SW et al (2021) A comprehensive synthesis unveils the mysteries of phosphate-solubilizing microbes. Biol Rev 96:2771–2793. https://doi.org/10.1111/brv.12779 PubMed DOI
Li Y, Li Q, Guan G, Chen S (2020) Phosphate solubilizing bacteria stimulate wheat rhizosphere and endosphere biological nitrogen fixation by improving phosphorus content. PeerJ 8:e9062. https://doi.org/10.7717/peerj.9062 PubMed DOI PMC
Lian B, Wang B, Pan M, Liu C, Teng HH (2008) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72:87–98. https://doi.org/10.1016/j.gca.2007.10.005 DOI
Liang JL, Liu J, Jia P, Yang TT, Zeng QW, Zhang SC et al (2020) Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME J 14:1600–1613. https://doi.org/10.1038/s41396-020-0632-4 PubMed DOI PMC
Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R (2003) LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science 302:630–633. https://doi.org/10.1126/science.1090074 PubMed DOI
Lin L, Wei C, Chen M, Wang H, Li Y, Li Y et al (2015) Complete genome sequence of endophytic nitrogen-fixing Klebsiella variicola strain DX120E. Stand Genom Sci 10:1–7. https://doi.org/10.1186/s40793-015-0004-2 DOI
Lin SY, Hameed A, Tsai CF, Huang GH, Hsu YH, Young CC (2020) Description of Azoarcus nasutitermitis sp. nov. and Azoarcus rhizosphaerae sp. nov., two nitrogen-fixing species isolated from termite nest and rhizosphere of Ficus religiosa. Antonie Van Leeuwenhoek 113:933–946. https://doi.org/10.1007/s10482-020-01401-w PubMed DOI
Liu D, Lian B, Wang B (2016) Solubilization of potassium containing minerals by high temperature resistant Streptomyces sp. isolated from earthworm’s gut. Acta Geochim 35:262–270. https://doi.org/10.1007/s11631-016-0106-6 DOI
Liu YQ, Wang YH, Kong WL, Liu WH, Xie XL, Wu XQ (2020) Identification, cloning and expression patterns of the genes related to phosphate solubilization in Burkholderia multivorans WS-FJ9 under different soluble phosphate levels. AMB Exp 10:1–11. https://doi.org/10.1186/s13568-020-01032-4 DOI
Liu Y, Wang H, Sun X, Yang H, Wang Y, Song W (2011) Study on mechanisms of colonization of nitrogen-fixing PGPB, Klebsiella pneumoniae NG14 on the root surface of rice and the formation of biofilm. Curr Microbiol 62:1113–1122. https://doi.org/10.1007/s00284-010-9835-7 PubMed DOI
Loganathan P, Nair S (2004) Swaminathania salitolerans gen. nov., sp. nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 54:1185–1190. https://doi.org/10.1099/ijs.0.02817-0 PubMed DOI
López-Arredondo DL, Sánchez-Calderón L, Yong-Villalobos L (2017) Chapter 1 - Molecular and genetic basis of plant macronutrient use efficiency: concepts, opportunities, and challenges. In: Hossain MA, Kamiya T, Burritt DJ, Tran L-SP, Fujiwara T (eds) Plant macronutrient use efficiency. Academic Press, pp 1–29. https://doi.org/10.1016/B978-0-12-811308-0.00001-6
Ma Y, Zhang J, Chen S (2007) Paenibacillus zanthoxyli sp. nov., a novel nitrogen-fixing species isolated from the rhizosphere of Zanthoxylum simulans. Int J Syst Evol Microbiol 57:873–877. https://doi.org/10.1099/ijs.0.64652-0 PubMed DOI
Madhaiyan M, Chan KL, Ji L (2014) Draft genome sequence of Methylobacterium sp. strain L2–4, a leaf-associated endophytic N-fixing bacterium isolated from Jatropha curcas L. Genom Announc 2:e01306-01314. https://doi.org/10.1128/genomea.01306-14 DOI
Mahdi I, Fahsi N, Hafidi M, Benjelloun S, Allaoui A, Biskri L (2021) Rhizospheric phosphate solubilizing Bacillus atrophaeus GQJK17 S8 increases quinoa seedling, withstands heavy metals, and mitigates salt stress. Sustainability 13:3307. https://doi.org/10.3390/su13063307 DOI
Mali SD, Attar YC (2021) Formulation of cost-effective agro residues containing potassium solubilizing bacterial bio-inoculants using response surface methodology. Biocatal Agric Biotechnol 35:102113. https://doi.org/10.1016/j.bcab.2021.102113 DOI
Mansour S, Swanson E, McNutt Z, Pesce C, Harrington K, Abebe-Alele F et al (2017) Permanent draft genome sequence for Frankia sp. strain CcI49, a nitrogen-fixing bacterium isolated from Casuarina cunninghamiana that infects Elaeagnaceae. J Genom 5:119–123. https://doi.org/10.7150/2Fjgen.22138 DOI
Mansour S, Swanson E, Pesce C, Simpson S, Morris K, Thomas WK et al (2020) Draft genome sequences for the Frankia sp. strains CgS1, CcI156 and CgMI4, nitrogen-fixing bacteria isolated from Casuarina sp. in Egypt. J Genom 8:84–88. https://doi.org/10.7150/2Fjgen.51181 DOI
Marra LM, Soares CRFS, de Oliveira SM, Ferreira PAA, Soares BL, de Fráguas CR et al (2012) Biological nitrogen fixation and phosphate solubilization by bacteria isolated from tropical soils. Plant Soil 357:289–307. https://doi.org/10.1007/s11104-012-1157-z DOI
Mascarua-Esparza M, Villa-Gonzalez R, Caballero-Mellado J (1988) Acetylene reduction and indoleacetic acid production by Azospirillum isolates from Cactaceous plants. Plant Soil 106:91–95. https://doi.org/10.1007/BF02371199 DOI
Matse DT, Huang C-H, Huang Y-M, Yen M-Y (2020) Effects of coinoculation of Rhizobium with plant growth promoting rhizobacteria on the nitrogen fixation and nutrient uptake of Trifolium repens in low phosphorus soil. J Plant Nutr 43:739–752. https://doi.org/10.1080/01904167.2019.1702205 DOI
Matthew T, Shivakumar S (2021) Cellulosimicrobium funkei: a novel bacterium in potassium solubilization from soil in Bangalore. Int J Environ Agric Res 7:29–37
Maurya B, Meena VS, Meena O (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27:181–187. https://doi.org/10.5958/j.2229-4473.27.1.028 DOI
Meena V, Maurya B, Bahadur I (2014) Potassium solubilization by bacterial strain in waste mica. Bangladesh J Bot 43:235–237 DOI
Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K et al (2015) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347. https://doi.org/10.1016/j.ecoleng.2015.04.065 DOI
Meena VS, Maurya BR, Verma JP, Meena RS (2016) Potassium solubilizing microorganisms for sustainable agriculture, vol 331. Springer, New Delhi DOI
Meenakshisundaram M, Santhaguru K (2010) Isolation and nitrogen fixing efficiency of a novel endophytic diazotroph Gluconacetobacter diazotrophicus associated with Saccharum officinarum from Southern districts of Tamilnadu. Int J Biol Med Res 1:298–300
Mehta P, Walia A, Kulshrestha S, Chauhan A, Shirkot CK (2015) Efficiency of plant growth-promoting P-solubilizing Bacillus circulans CB7 for enhancement of tomato growth under net house conditions. J Basic Microbiol 55:33–44. https://doi.org/10.1002/jobm.201300562 PubMed DOI
Mei C, Chretien RL, Amaradasa BS, He Y, Turner A, Lowman S (2021) Characterization of phosphate solubilizing bacterial endophytes and plant growth promotion in vitro and in greenhouse. Microorganisms 9:1935. https://doi.org/10.3390/microorganisms9091935 PubMed DOI PMC
Morales-Jiménez J, Vera-Ponce de León A, García-Domínguez A, Martínez-Romero E, Zúñiga G, Hernández-Rodríguez C (2013) Nitrogen-fixing and uricolytic bacteria associated with the gut of Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae). Microb Ecol 66:200–210. https://doi.org/10.1007/s00248-013-0206-3 PubMed DOI
Moulin L, Klonowska A, Caroline B, Booth K, Vriezen JAC, Melkonian R et al (2014) Complete genome sequence of Burkholderia phymatum STM815T, a broad host range and efficient nitrogen-fixing symbiont of Mimosa species. Stand Genom Sci 9:763–774. https://doi.org/10.4056/sigs.4861021 DOI
Muentz A (1890) Surla decomposition desroches etla formation de la terre arable. CR Acad Sci 110:1370–1372
Naik K, Mishra S, Srichandan H, Singh PK, Sarangi PK (2019) Plant growth promoting microbes: potential link to sustainable agriculture and environment. Biocatal Agric Biotechnol 21:101326. https://doi.org/10.1016/j.bcab.2019.101326 DOI
Nath D, Maurya BR, Meena VS (2017) Documentation of five potassium- and phosphorus-solubilizing bacteria for their K and P-solubilization ability from various minerals. Biocatal Agric Biotechnol 10:174–181. https://doi.org/10.1016/j.bcab.2017.03.007 DOI
Naureen Z, Rehman NU, Hussain H, Hussain J, Gilani SA, Al Housni SK et al (2017) Exploring the potentials of Lysinibacillus sphaericus ZA9 for plant growth promotion and biocontrol activities against phytopathogenic fungi. Front Microbiol 8:1477. https://doi.org/10.3389/fmicb.2017.01477 PubMed DOI PMC
Navarro-Noya YE, Hernández-Mendoza E, Morales-Jiménez J, Jan-Roblero J, Martínez-Romero E, Hernández-Rodríguez C (2012) Isolation and characterization of nitrogen fixing heterotrophic bacteria from the rhizosphere of pioneer plants growing on mine tailings. Appl Soil Ecol 62:52–60. https://doi.org/10.1016/j.apsoil.2012.07.011 DOI
Negi R, Sharma B, Jan T, Kaur T, Chowdhury S, Kapoor M et al (2024a) Microbial consortia: promising tool as plant bioinoculants for agricultural sustainability. Curr Microbiol 81:222. https://doi.org/10.1007/s00284-024-03755-0 PubMed DOI
Negi R, Sharma B, Parastesh F, Kaur S, Khan SS, Kour D et al (2024b) Microbial consortia mediated regulation of plant defense: a promising tool for sustaining crops protection. Physiol Mol Plant Pathol 134:102393. https://doi.org/10.1016/j.pmpp.2024.102393
Neilson A, Sparell L (1976) Acetylene reduction (nitrogen fixation) by Enterobacteriaceae isolated from paper mill process waters. Appl Environ Microbiol 32:197–205. https://doi.org/10.1128/aem.32.2.197-205.1976 PubMed DOI PMC
Nguyen HD, Cloutier S, Bromfield ES (2018) Complete genome sequence of Bradyrhizobium ottawaense OO99T, an efficient nitrogen-fixing symbiont of soybean. Microbiol Res Announc 7:e01477-e1418. https://doi.org/10.1128/mra.01477-18 DOI
Nguyen NK, Vo DTV, Le TX, Morton LW, Tran HT, Robatjazi J et al (2024) Isolation, and selection of indigenous potassium solubilizing bacteria from Vietnam Mekong Delta rhizospheric soils and their effects on diverse cropping systems. Biocatal Agric Biotechnol 58:103200. https://doi.org/10.1016/j.bcab.2024.103200 DOI
Padma S, Sukumar J (2015) Response of mulberry to inoculation of potash mobilizing bacterial isolate and other bio-inoculants. Global J Biosci Biotechnol 4:50–53
Pahari A, Mishra B (2017) Characterization of siderophore producing rhizobacteria and its effect on growth performance of different vegetables. Int J Curr Microbiol App Sci 6:1398–1405. https://doi.org/10.20546/ijcmas.2017.605.152
Panda P, Choudhury A, Chakraborty S, Ray DP, Deb S, Patra PS et al (2017) Phosphorus solubilizing bacteria from tea soils and their phosphate solubilizing abilities. Int J Biores Sci 4:113–125. https://doi.org/10.5958/2454-9541.2017.00018.4 DOI
Pande A, Kaushik S, Pandey P, Negi A (2020) Isolation, characterization, and identification of phosphate-solubilizing Burkholderia cepacia from the sweet corn cv. Golden Bantam rhizosphere soil and effect on growth-promoting activities. Int J Veg Sci 26:591–607. https://doi.org/10.1080/19315260.2019.1692121 DOI
Pandey A, Trivedi P, Kumar B, Palni LMS (2006) Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a Sub-Alpine location in the Indian Central Himalaya. Curr Microbiol 53:102–107. https://doi.org/10.1007/s00284-006-4590-5 PubMed DOI
Park M, Kim C, Yang J, Lee H, Shin W, Kim S et al (2005) Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol Res 160:127–133. https://doi.org/10.1016/j.micres.2004.10.003 PubMed DOI
Peix A, Rivas R, Santa-Regina I, Mateos PF, Martínez-Molina E, Rodríguez-Barrueco C et al (2004) Pseudomonas lutea sp. nov., a novel phosphate-solubilizing bacterium isolated from the rhizosphere of grasses. Int J Syst Evol Microbiol 54:847–850. https://doi.org/10.1099/ijs.0.02966-0 PubMed DOI
Peng Q, Yi L, Peng Q, Peng Y (2017) Draft genome sequence of the potassium feldspar-solubilizing bacterium Ensifer adhaerens L18. Genom Announc 5:e00199-e117. https://doi.org/10.1128/genomea.00199-17 DOI
Peters JW, Fisher K, Dean DR (1995) Nitrogenase structure and function: a biochemical-genetic perspective. Ann Rev Microbiol 49:335–367 DOI
Pettigrew WT (2008) Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant 133:670–681. https://doi.org/10.1111/j.1399-3054.2008.01073.x PubMed DOI
Piao Z, Cui Z, Yin B, Hu J, Zhou C, Xie G et al (2005) Changes in acetylene reduction activities and effects of inoculated rhizosphere nitrogen-fixing bacteria on rice. Biol Fert Soils 41:371–378. https://doi.org/10.1007/s00374-005-0860-9 DOI
Prajapati K, Modi H (2012) Isolation and characterization of potassium solubilizing bacteria from ceramic industry soil. Cibtech J Microbiol 1:8–14
Prajapati K, Sharma M, Modi H (2013) Growth promoting effect of potassium solubilizing microorganisms on Abelmoscus esculantus. Int J Agric Sci 3:181–188
Pramanik P, Goswami AJ, Ghosh S, Kalita C (2019) An indigenous strain of potassium-solubilizing bacteria Bacillus pseudomycoides enhanced potassium uptake in tea plants by increasing potassium availability in the mica waste-treated soil of North-east India. J Appl Microbiol 126:215–222. https://doi.org/10.1111/jam.14130 PubMed DOI
Prasanna A, Deepa V, Murthy PB, Deecaraman M, Sridhar R, Dhandapani P (2011) Insoluble phosphate solubilization by bacterial strains isolated from rice rhizosphere soils from Southern India. Int J Soil Sci 6:134 DOI
Rajawat MVS, Ansari WA, Singh D, Singh R (2019) Potassium solubilizing bacteria (KSB). In: Singh D, Prabha R (eds) Microbial interventions in agriculture and environment. Springer, Singapore, pp 189–209. https://doi.org/10.1007/978-981-32-9084-6_9
Rajawat MVS, Singh R, Singh D, Yadav AN, Singh S, Kumar M et al (2020) Spatial distribution and identification of bacteria in stressed environments capable to weather potassium aluminosilicate mineral. Braz J Microbiol 51:751–764. https://doi.org/10.1007/s42770-019-00210-2 PubMed DOI PMC
Raji M, Thangavelu M (2021) Isolation and screening of potassium solubilizing bacteria from saxicolous habitat and their impact on tomato growth in different soil types. Arch Microbiol 203:3147–3161. https://doi.org/10.1007/s00203-021-02284-9 PubMed DOI
Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springerplus 2:6. https://doi.org/10.1186/2193-1801-2-6 PubMed DOI PMC
Ramírez-Bahena M-H, Cuesta MJ, Flores-Félix JD, Mulas R, Rivas R, Castro-Pinto J et al (2014) Pseudomonas helmanticensis sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 64:2338–2345. https://doi.org/10.1099/ijs.0.063560-0 PubMed DOI
Rana A, Saharan B, Joshi M, Prasanna R, Kumar K, Nain L (2011) Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat. Ann Microbiol 61:893–900. https://doi.org/10.1007/s13213-011-0211-z DOI
Rana KL, Kour D, Kaur T, Devi R, Yadav AN, Yadav N et al (2020a) Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek 113:1075–1107. https://doi.org/10.1007/s10482-020-01429-y PubMed DOI
Rana KL, Kour D, Kaur T, Sheikh I, Yadav AN, Kumar V et al (2020b) Endophytic microbes from diverse wheat genotypes and their potential biotechnological applications in plant growth promotion and nutrient uptake. Proc Natl Acad Sci India Sect B Biol Sci 90:969–979. https://doi.org/10.1007/s40011-020-01168-0 DOI
Rana KL, Negi R, Sharma B, Yadav A, Devi R, Kaur T et al (2024) Potential effect of novel endophytic nitrogen fixing diverse species of Rahnella on growth promotion of wheat (Triticum aestivum L.). J Crop Sci Biotechnol 27:605–615. https://doi.org/10.1007/s12892-024-00254-3
Rashid MH-o, Krehenbrink M, Akhtar MS (2015) Nitrogen-fixing plant-microbe symbioses. In: Lichtfouse E (ed) Sustainable agriculture reviews: Volume 15. Springer International Publishing, Cham, pp 193–234. https://doi.org/10.1007/978-3-319-09132-7_4
Rawat P, Shankhdhar D, Shankhdhar SC (2022) Synergistic impact of phosphate solubilizing bacteria and phosphorus rates on growth, antioxidative defense system, and yield characteristics of upland rice (Oryza sativa L.). J Plant Growth Regul 41:2449–2461. https://doi.org/10.1007/s00344-021-10458-4 DOI
Reddy TB, Thomas AD, Stamatis D, Bertsch J, Isbandi M, Jansson J et al (2015) The Genomes OnLine Database (GOLD) v. 5: a metadata management system based on a four level (meta) genome project classification. Nucleic Acids Res 43:D1099–D1106. https://doi.org/10.1093/nar/gku950 PubMed DOI
Rfaki A, Zennouhi O, Aliyat FZ, Nassiri L, Ibijbijen J (2020) Isolation, selection and characterization of root-associated rock phosphate solubilizing bacteria in moroccan wheat (Triticum aestivum L.). Geomicrobiol J 37:230–241. https://doi.org/10.1080/01490451.2019.1694106 DOI
Rodríguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21. https://doi.org/10.1007/s11104-006-9056-9 DOI
Roy M, Saha S, Das J (2017) Synergetic effect of different free-living diazotrophic bacteria, P-solubilizing bacteria and Rhizobium on growth of Oryza sativa L.(cv. NDR-359). Indian J Agric Res 51:221–226. https://doi.org/10.18805/ijare.v51i03.7910
Sablok G, Rosselli R, Seeman T, van Velzen R, Polone E, Giacomini A et al (2017) Draft genome sequence of the nitrogen-fixing Rhizobium sullae type strain IS123T focusing on the key genes for symbiosis with its host Hedysarum coronarium L. Front Microbiol 8:01348. https://doi.org/10.3389/fmicb.2017.01348 DOI
Saha B, Saha S, Das A, Bhattacharyya PK, Basak N, Sinha AK et al. (2017) Biological nitrogen fixation for sustainable agriculture. In: Meena VS, Mishra PK, Bisht JK, Pattanayak A (eds) Agriculturally important microbes for sustainable agriculture: volume 2: applications in crop production and protection. Springer Singapore, Singapore, pp 81–128. https://doi.org/10.1007/978-981-10-5343-6_4
Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016) Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic Plains of India. Biocatal Agric Biotechnol 7:202–209. https://doi.org/10.1016/j.bcab.2016.06.007 DOI
Saikia J, Sarma RK, Dhandia R, Yadav A, Bharali R, Gupta VK et al (2018) Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Sci Rep 8:3560. https://doi.org/10.1038/s41598-018-21921-w PubMed DOI PMC
Saiyad SA, Jhala YK, Vyas R (2015) Comparative efficiency of five potash and phosphate solubilizing bacteria and their key enzymes useful for enhancing and improvement of soil fertility. Int J Sci Res Pub 5:1–6
Sangeeth K, Bhai RS, Srinivasan V (2012) Paenibacillus glucanolyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum L.) rhizosphere. J Spic Aromat Crops 21:118–124
Schindler DW, Hecky R, Findlay D, Stainton M, Parker B, Paterson M et al (2008) Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proc Natl Acad Sci 105:11254–11258. https://doi.org/10.1073/pnas.0805108105 PubMed DOI PMC
Schwab S, Terra LA, Baldani JI (2018) Genomic characterization of Nitrospirillum amazonense strain CBAmC, a nitrogen-fixing bacterium isolated from surface-sterilized sugarcane stems. Mol Genet Genom 293:997–1016. https://doi.org/10.1007/s00438-018-1439-0 DOI
Seefeldt LC, Hoffman BM, Dean DR (2009) Mechanism of Mo-dependent nitrogenase. Ann Rev Biochem 78:701. https://doi.org/10.1146/2Fannurev.biochem.78.070907.103812 PubMed DOI
Selvakumar G, Joshi P, Nazim S, Mishra P, Bisht J, Gupta H (2009) Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984), a psychrotolerant bacterium isolated from a high-altitude Himalayan rhizosphere. Biologia 64:239–245. https://doi.org/10.2478/s11756-009-0041-7 DOI
Shabbir I, Samad MYA, Othman R, Wong M-Y, Sulaiman Z, Jaafar NM et al (2020) Silicate solubilizing bacteria UPMSSB7, a potential biocontrol agent against white root rot disease pathogen of rubber tree. J Rubber Res 23:227–235. https://doi.org/10.1007/s42464-020-00052-w DOI
Shagol CC, Krishnamoorthy R, Kim K, Sundaram S, Sa T (2014) Arsenic-tolerant plant-growth-promoting bacteria isolated from arsenic-polluted soils in South Korea. Environ Sci Pollut Res 21:9356–9365. https://doi.org/10.1007/s11356-014-2852-5 DOI
Sharma MK, Kumawat D (2021) Co-inoculation study of Bradyrhizobium japonicum and Aspergillus niger in soybean for nitrogen fixation. J Microbiol Biotechnol Food Sci 2021:383–394
Sharma S, Kumar V, Tripathi RB (2011) Isolation of phosphate solubilizing microorganism (PSMs) from soil. J Microbiol Biotechnol Res 1:90–95
Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:1–14. https://doi.org/10.1186/2193-1801-2-587 DOI
Shelobolina E, Konishi H, Xu H, Benzine J, Xiong MY, Wu T et al (2012) Isolation of phyllosilicate–iron redox cycling microorganisms from an illite–smectite rich hydromorphic soil. Front Microbiol 3:134. https://doi.org/10.3389/fmicb.2012.00134 PubMed DOI PMC
Sheng XF, Zhao F, He LY, Qiu G, Chen L (2008) Isolation and characterization of silicate mineral-solubilizing Bacillus globisporus Q12 from the surfaces of weathered feldspar. Can J Microbiol 54:1064–1068 PubMed DOI
Shimoda Y, Hirakawa H, Sato S, Saeki K, Hayashi M (2016) Whole-genome sequence of the nitrogen-fixing symbiotic rhizobium Mesorhizobium loti strain TONO. Genom Announc 4:e01016-01016. https://doi.org/10.1128/genomea.01016-16 DOI
Shinjo R, Uesaka K, Ihara K, Sakazaki S, Yano K, Kondo M et al (2018) Draft genome sequence of Burkholderia vietnamiensis strain rs1, a nitrogen-fixing endophyte isolated from sweet potato. Microbiol Res Announc 7:e00820-e818. https://doi.org/10.1128/mra.00820-18 DOI
Shukla K, Negi R, Kaur T, Devi R, Kour D, Yadav AN (2023) First report on rhizospheric silicate mineral weathering bacteria from Indian Himalayas and their roles for plant growth promotion of tomato (Solanum lycopersium L.). Natl Acad Sci Lett 46:435–443. https://doi.org/10.1007/s40009-023-01258-3 DOI
Silvia MdOL, ro MM, Fatima MdSM (2013) Evaluation of plant growth-promoting traits of Burkholderia and Rhizobium strains isolated from Amazon soils for their co-inoculation in common bean. Afr J Microbiol Research 7:948-959 https://doi.org/10.5897/AJMR12.1055
Singh A, Shah S, Prasad B (2010) Effect of phosphate solubilizing bacteria on plant growth promotion and nodulation in soybean (Glycine max (L.) Merr.). J Hill Agric 1:35–39
Singh C, Tiwari S, Singh JS, Yadav AN (2020a) Microbes in agriculture and environmental development. CRC Press, Boca Raton DOI
Singh N, Singh R, Meena V, Meena R (2015a) Can we use maize (Zea mays) rhizobacteria as plant growth promoter. Vegetos 28:86–99. https://doi.org/10.5958/2229-4473.2015.00012.9 DOI
Singh P, Kim YJ, Nguyen NL, Hoang VA, Sukweenadhi J, Farh MEA et al (2015b) Cupriavidus yeoncheonense sp. nov., isolated from soil of ginseng. Antonie Van Leeuwenhoek 107:749–758. https://doi.org/10.1007/s10482-014-0369-z PubMed DOI
Singh R, Kumar A, Singh M, Pandey KD (2019) Isolation and characterization of plant growth promoting rhizobacteria from Momordica Charantia L. In: Singh AK, Kumar A, Singh PK (eds) PGPR amelioration in sustainable agriculture. Elsevier, Netherlands, pp 217–238. https://doi.org/10.1016/B978-0-12-815879-1.00011-2
Singh RK, Singh P, Li H-B, Song Q-Q, Guo D-J, Solanki MK et al (2020b) Diversity of nitrogen-fixing rhizobacteria associated with sugarcane: a comprehensive study of plant-microbe interactions for growth enhancement in Saccharum spp. BMC Plant Biol 20:220. https://doi.org/10.1186/s12870-020-02400-9 PubMed DOI PMC
Song C, Wang W, Gan Y, Wang L, Chang X, Wang Y et al (2022) Growth promotion ability of phosphate-solubilizing bacteria from the soybean rhizosphere under maize–soybean intercropping systems. J Sci Food Agric 102:1430–1442. https://doi.org/10.1002/jsfa.11477 PubMed DOI
Srinivasan R, Yandigeri MS, Kashyap S, Alagawadi AR (2012) Effect of salt on survival and P-solubilization potential of phosphate solubilizing microorganisms from salt affected soils. Saudi J Biol Sci 19:427–434. https://doi.org/10.1016/j.sjbs.2012.05.004 PubMed DOI PMC
Srivastava AK, Saxena P, Sharma A, Srivastava R, Jamali H, Bharati AP et al (2019) Draft genome sequence of a cold-adapted phosphorous-solubilizing Pseudomonas koreensis P2 isolated from Sela Lake India. 3 Biotech 9:256. https://doi.org/10.1007/s13205-019-1784-7 PubMed DOI PMC
Stajkovic O, Delic D, Josic D, Kuzmanovic D, Rasulic N, Knezevic-Vukcevic J (2011) Improvement of common bean growth by co-inoculation with Rhizobium and plant growth-promoting bacteria. Rom Biotechnol Lett 16:5919–5926
Sukweenadhi J, Kim YJ, Lee KJ, Koh SC, Hoang VA, Nguyen NL et al (2014) Paenibacillus yonginensis sp. nov., a potential plant growth promoting bacterium isolated from humus soil of Yongin forest. Antonie Van Leeuwenhoek 106:935–945. https://doi.org/10.1007/s10482-014-0263-8 PubMed DOI
Sun S, Chen Y, Cheng J, Li Q, Zhang Z, Lan Z (2018) Isolation, characterization, genomic sequencing, and GFP-marked insertional mutagenesis of a high-performance nitrogen-fixing bacterium, Kosakonia radicincitans GXGL-4A and visualization of bacterial colonization on cucumber roots. Folia Microbiol 63:789–802. https://doi.org/10.1007/s12223-018-0608-1 DOI
Swamy CT, Gayathri D, Devaraja TN, Bandekar M, D’Souza SE, Meena RM et al (2016) Plant growth promoting potential and phylogenetic characteristics of a lichenized nitrogen fixing bacterium, Enterobacter cloacae. J Basic Microbiol 56:1369–1379. https://doi.org/10.1002/jobm.201600197 PubMed DOI
Tajini F, Trabelsi M, Drevon J-J (2012) Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.). Saudi J Biol Sci 19:157–163. https://doi.org/10.1016/j.sjbs.2011.11.003 PubMed DOI
Tang A, Haruna AO, Majid NMA, Jalloh MB (2020) Potential PGPR properties of cellulolytic, nitrogen-fixing, phosphate-solubilizing bacteria in rehabilitated tropical forest soil. Microorganisms 8:442. https://doi.org/10.3390/microorganisms8030442 PubMed DOI PMC
Taurian T, Anzuay MS, Ludueña LM, Angelini JG, Muñoz V, Valetti L et al (2013) Effects of single and co-inoculation with native phosphate solubilising strain Pantoea sp J49 and the symbiotic nitrogen fixing bacterium Bradyrhizobium sp SEMIA 6144 on peanut (Arachis hypogaea L.) growth. Symbiosis 59:77–85. https://doi.org/10.1007/s13199-012-0193-z DOI
Tejera N, Lluch C, Martinez-Toledo M, Gonzalez-Lopez J (2005) Isolation and characterization of Azotobacter and Azospirillum strains from the sugarcane rhizosphere. Plant Soil 270:223–232. https://doi.org/10.1007/s11104-004-1522-7 DOI
Thakur N, Kaur S, Kaur T, Tomar P, Devi R, Thakur S et al. (2022) 25 - Organic agriculture for agro-environmental sustainability. In: Soni R, Suyal DC, Yadav AN, Goel R (eds) Trends of applied microbiology for sustainable economy. Academic Press, pp 699–735. https://doi.org/10.1016/B978-0-323-91595-3.00018-5
Tilak K, Ranganayaki N, Pal K, De R, Saxena A, Nautiyal CS et al (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–150
Toniutti MA, Albicoro FJ, Castellani LG, García SLL, Fornasero LV, Zuber NE et al (2021) Genome sequence of Bradyrhizobium yuanmingense strain P10 130, a highly efficient nitrogen-fixing bacterium that could be used for Desmodium incanum inoculation. Gene 768:145267. https://doi.org/10.1016/j.gene.2020.145267 PubMed DOI
Toribio-Jiménez J, Rodríguez-Barrera MÁ, Hernández-Flores G, Ruvacaba-Ledezma JC, Castellanos-Escamilla M, Romero-Ramírez Y (2017) Isolation and screening of bacteria from Zea mays plant growth promoters. Rev Int Contam Ambient 33:143–150. https://doi.org/10.20937/RICA.2017.33.esp01.13
Toro M, Ramírez-Bahena M-H, Cuesta MJ, Velázquez E, Peix A (2013) Pseudomonas guariconensis sp. nov., isolated from rhizospheric soil. Int J Syst Evol Microbiol 63:4413–4420. https://doi.org/10.1099/ijs.0.051193-0 PubMed DOI
Tu TC, Lin SH, Shen FT (2021) Enhancing Symbiotic nitrogen fixation and soybean growth through co-inoculation with Bradyrhizobium and Pseudomonas isolates. Sustainability 13:11539. https://doi.org/10.3390/su132011539 DOI
Van Chuong N, Le Kim TT (2024) Isolation and characterization identification of edophytic nitrogen-fixing bacteria from peanut nodules. Int J Microbiol 2024:8973718. https://doi.org/10.1155/2024/8973718 PubMed DOI PMC
Venieraki A, Dimou M, Pergalis P, Kefalogianni I, Chatzipavlidis I, Katinakis P (2011) The genetic diversity of culturable nitrogen-fixing bacteria in the rhizosphere of wheat. Microb Ecol 61:277–285. https://doi.org/10.1007/s00248-010-9747-x PubMed DOI
Veresoglou SD, Shaw LJ, Sen R (2011) Glomus intraradices and Gigaspora margarita arbuscular mycorrhizal associations differentially affect nitrogen and potassium nutrition of Plantago lanceolata in a low fertility dune soil. Plant Soil 340:481–490. https://doi.org/10.1007/s11104-010-0619-4 DOI
Verma JP, Jaiswal DK, Krishna R, Prakash S, Yadav J, Singh V (2018) Characterization and screening of thermophilic Bacillus strains for developing plant growth promoting consortium from hot spring of Leh and Ladakh region of India. Front Microbiol 9:1293. https://doi.org/10.3389/fmicb.2018.01293 PubMed DOI PMC
Verma JP, Yadav J, Tiwari KN (2012) Enhancement of nodulation and yield of chickpea by co-inoculation of indigenous Mesorhizobium spp. and plant growth–promoting rhizobacteria in eastern Uttar Pradesh. Commun Soil Sci Plant Anal 43:605–621. https://doi.org/10.1080/00103624.2012.639110 DOI
Verma JP, Yadav J, Tiwari KN, Kumar A (2013) Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol Eng 51:282–286. https://doi.org/10.1016/j.ecoleng.2012.12.022 DOI
Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2014) Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int J Curr Microbiol Appl Sci 3:432–447
Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016a) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58. https://doi.org/10.1002/jobm.201500459 PubMed DOI
Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK et al (2016b) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci 26:1882–1895. https://doi.org/10.1016/j.sjbs.2016.01.042 PubMed DOI PMC
Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK et al (2015) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899. https://doi.org/10.1007/s13213-014-1027-4 DOI
Wahid F, Sharif M, Steinkellner S, Khan MA, Marwat K, Khan S (2016) Inoculation of arbuscular mycorrhizal fungi and phosphate solubilizing bacteria in the presence of rock phosphate improves phosphorus uptake and growth of maize. Pak J Bot 48:739–747
Walpola BC, Yoon MH (2013) Isolation and characterization of phosphate solubilizing bacteria and their co-inoculation efficiency on tomato plant growth and phosphorous uptake. Afr J Microbiol Res 7:266–275. https://doi.org/10.5897/AJMR12.2282 DOI
Wang J, Li R, Zhang H, Wei G, Li Z (2020) Beneficial bacteria activate nutrients and promote wheat growth under conditions of reduced fertilizer application. BMC Microbiol 20:38. https://doi.org/10.1186/s12866-020-1708-z PubMed DOI PMC
Wang S, Hao B, Li J, Gu H, Peng J, Xie F et al (2014) Whole-genome sequencing of Mesorhizobium huakuii 7653R provides molecular insights into host specificity and symbiosis island dynamics. BMC Genom 15:440. https://doi.org/10.1186/1471-2164-15-440 DOI
Wang X, Wang C, Sui J, Liu Z, Li Q, Ji C et al (2018) Isolation and characterization of phosphofungi, and screening of their plant growth-promoting activities. AMB Exp 8:63. https://doi.org/10.1186/s13568-018-0593-4 DOI
Wani P, Khan M, Zaidi A (2007) Co-inoculation of nitrogen-fixing and phosphate-solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta Agron Hung 55:315–323. https://doi.org/10.1556/AAgr.55.2007.3.7 DOI
Wright SF, Weaver R (1981) Enumeration and identification of nitrogen-fixing bacteria from forage grass roots. Appl Environ Microbiol 42:97–101. https://doi.org/10.1128/aem.42.1.97-101.1981 PubMed DOI PMC
Wu SC, Cao Z, Li Z, Cheung K, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166. https://doi.org/10.1016/j.geoderma.2004.07.003 DOI
Wu SC, Cheung KC, Luo YM, Wong MH (2006) Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135. https://doi.org/10.1016/j.envpol.2005.06.023 PubMed DOI
Xing YX, Wei CY, Mo Y, Yang LT, Huang SL, Li YR (2016) Nitrogen-fixing and plant growth-promoting ability of two endophytic bacterial strains isolated from sugarcane stalks. Sugar Tech 18:373–379. https://doi.org/10.1007/s12355-015-0397-7 DOI
Yadav AN (2021) Soil microbiomes for sustainable agriculture, Vol-2: Functional Annotation. Springer, Cham DOI
Yadav AN (2022a) Phosphate-solubilizing microorganisms for agricultural sustainability. J Appl Biol Biotechnol 10:1–6. https://doi.org/10.7324/JABB.2022.103ed DOI
Yadav AN (2022b) Potassium-solubilizing microorganisms for agricultural sustainability. J Appl Biol Biotechnol 10:1–6. https://doi.org/10.7324/JABB.2022.105ed DOI
Yadav AN, Kour D, Kaur T, Devi R, Yadav A, Dikilitas M et al (2021a) Biodiversity, and biotechnological contribution of beneficial soil microbiomes for nutrient cycling, plant growth improvement and nutrient uptake. Biocatal Agric Biotechnol 33:102009. https://doi.org/10.1016/j.bcab.2021.102009 DOI
Yadav AN, Sachan SG, Verma P, Saxena AK (2016) Bioprospecting of plant growth promoting psychrotrophic Bacilli from the cold desert of north western Indian Himalayas. Indian J Exp Biol 54:142–150 PubMed
Yadav AN, Sharma D, Gulati S, Singh S, Dey R, Pal KK et al (2015) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 5:12293. https://doi.org/10.1038/srep12293 PubMed DOI PMC
Yadav AN, Singh J, Rastegari AA, Yadav N (2020) Plant microbiomes for sustainable agriculture. Springer, Cham DOI
Yadav AN, Singh S, Mishra S, Gupta A (2019) Recent advancement in white biotechnology through fungi. Volume 2: Perspective for value-added products and environments. Springer International Publishing, Cham
Yadav J, Verma JP (2014) Effect of seed inoculation with indigenous Rhizobium and plant growth promoting rhizobacteria on nutrients uptake and yields of chickpea (Cicer arietinum L.). Euro J Soil Biol 63:70–77. https://doi.org/10.1016/j.ejsobi.2014.05.001 DOI
Yadav AN, Kaur T, Kour D, Devi R, Guleria G, Negi R, et al. (2021b). Functional Annotation and Biotechnological Applications of Soil Microbiomes: Current Research and Future Challenges. In: Yadav AN, ed. Soil Microbiomes for Sustainable Agriculture: Functional Annotation. Cham: Springer International Publishing. pp. 605–634. https://doi.org/10.1007/978-3-030-73507-4_19
Yaghoubi Khanghahi M, Pirdashti H, Rahimian H, Nematzadeh G, Ghajar Sepanlou M (2018) Potassium solubilising bacteria (KSB) isolated from rice paddy soil: from isolation, identification to K use efficiency. Symbiosis 76:13–23. https://doi.org/10.1007/s13199-017-0533-0 DOI
Yaish MW, Antony I, Glick BR (2015) Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Antonie Van Leeuwenhoek 107:1519–1532. https://doi.org/10.1007/s10482-015-0445-z PubMed DOI
Yan Y, Yang J, Dou Y, Chen M, Ping S, Peng J et al (2008) Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci 105:7564–7569. https://doi.org/10.1073/pnas.0801093105 PubMed DOI PMC
Yang E, Sun L, Ding X, Sun D, Liu J, Wang W (2019) Complete genome sequence of Caulobacter flavus RHGG3 T, a type species of the genus Caulobacter with plant growth-promoting traits and heavy metal resistance. 3 Biotech 9:42. https://doi.org/10.1007/s13205-019-1569-z PubMed DOI PMC
Yu H, Yuan M, Lu W, Yang J, Dai S, Li Q et al (2011) Complete genome sequence of the nitrogen-fixing and rhizosphere-associated bacterium Pseudomonas stutzeri strain DSM4166. Am Soc Microbiol 193:3422–3423. https://doi.org/10.1128/jb.05039-11 DOI
Yu X, Liu X, Zhu TH, Liu GH, Mao C (2012) Co-inoculation with phosphate-solubilzing and nitrogen-fixing bacteria on solubilization of rock phosphate and their effect on growth promotion and nutrient uptake by walnut. Euro J Soil Biol 50:112–117. https://doi.org/10.1016/j.ejsobi.2012.01.004 DOI
Yu Z, Yang G, Liu X, Wang Y, Zhuang L, Zhou S (2018) Complete genome sequence of the nitrogen-fixing bacterium Azospirillum humicireducens type strain SgZ-5T. Stand Genom Sci 13:28. https://doi.org/10.1186/s40793-018-0322-2 DOI
Zahid M (2015) Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.). Front Microbiol 6:207. https://doi.org/10.3389/fmicb.2015.00207 PubMed DOI PMC
Zaidi A, Khan M, Ahemad M, Oves M (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56:263–284. https://doi.org/10.1556/amicr.56.2009.3.6 PubMed DOI
Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25. https://doi.org/10.1016/j.apsoil.2014.05.002 DOI
Zhang H, Han L, Jiang B, Long C (2021) Identification of a phosphorus-solubilizing Tsukamurella tyrosinosolvens strain and its effect on the bacterial diversity of the rhizosphere soil of peanuts growth-promoting. World J Microbiol Biotechnol 37:109. https://doi.org/10.1007/s11274-021-03078-3 PubMed DOI
Zhang J, Wang P, Fang L, Qi-An Z, Yan C, Chen J (2017) Isolation and characterization of phosphate-solubilizing bacteria from mushroom residues and their effect on tomato plant growth promotion. Polish J Microbiol 66:57 DOI
Zhang W, Feng Y (2008) Characterization of nitrogen-fixing moderate halophilic cyanobacteria isolated from saline soils of Songnen Plain in China. Prog Nat Sci 18:769–773. https://doi.org/10.1016/j.pnsc.2008.01.022 DOI
Zhang X, Tong J, Dong M, Akhtar K, He B (2022) Isolation, identification and characterization of nitrogen fixing endophytic bacteria and their effects on cassava production. PeerJ 10:e12677. https://doi.org/10.7717/peerj.12677 PubMed DOI PMC
Zhu B, Chen M, Lin L, Yang L, Li Y, An Q (2012) Genome sequence of Enterobacter sp. strain SP1, an endophytic nitrogen-fixing bacterium isolated from sugarcane. Am Soc Microbiol 194:6963–6964. https://doi.org/10.1128/jb.01933-12 DOI
Zhu F, Qu L, Hong X, Sun X (2011) Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of Yellow Sea of China. Evid Base Compl Alternative Med 2011:615032. https://doi.org/10.1155/2011/615032 DOI