Optimizing nutrient use efficiency, productivity, energetics, and economics of red cabbage following mineral fertilization and biopriming with compatible rhizosphere microbes
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34344947
PubMed Central
PMC8333308
DOI
10.1038/s41598-021-95092-6
PII: 10.1038/s41598-021-95092-6
Knihovny.cz E-zdroje
- MeSH
- Brassica fyziologie MeSH
- dusík chemie metabolismus MeSH
- energetický metabolismus MeSH
- fertilizace * MeSH
- fyziologie rostlin * MeSH
- mikrobiota * MeSH
- minerály * MeSH
- pěstování plodin MeSH
- průmyslová hnojiva MeSH
- půda chemie MeSH
- rhizosféra * MeSH
- uhlík chemie MeSH
- vývoj rostlin * MeSH
- živiny * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dusík MeSH
- minerály * MeSH
- průmyslová hnojiva MeSH
- půda MeSH
- uhlík MeSH
Conventional agricultural practices and rising energy crisis create a question about the sustainability of the present-day food production system. Nutrient exhaustive crops can have a severe impact on native soil fertility by causing nutrient mining. In this backdrop, we conducted a comprehensive assessment of bio-priming intervention in red cabbage production considering nutrient uptake, the annual change in soil fertility, nutrient use efficiency, energy budgeting, and economic benefits for its sustainable intensification, among resource-poor farmers of Middle Gangetic Plains. The compatible microbial agents used in the study include Trichoderma harzianum, Pseudomonas fluorescens, and Bacillus subtilis. Field assays (2016-2017 and 2017-2018) of the present study revealed supplementing 75% of recommended NPK fertilizer with dual inoculation of T. harzianum and P. fluorescens increased macronutrient uptake (N, P, and K), root length, heading percentage, head diameter, head weight, and the total weight of red cabbage along with a positive annual change in soil organic carbon. Maximum positive annual change in available N and available P was recorded under 75% RDF + P. fluorescens + B. subtilis and 75% RDF + T. harzianum + B. subtilis, respectively. Bio-primed plants were also higher in terms of growth and nutrient use efficiency (agronomic efficiency, physiological efficiency, apparent recovery efficiency, partial factor productivity). Energy output (26,370 and 26,630 MJ ha-1), energy balance (13,643 and 13,903 MJ ha-1), maximum gross return (US $ 16,030 and 13,877 ha-1), and net return (US $ 15,966 and 13,813 ha-1) were considerably higher in T. harzianum, and P. fluorescens treated plants. The results suggest the significance of the bio-priming approach under existing integrated nutrient management strategies and the role of dual inoculations in producing synergistic effects on plant growth and maintaining the soil, food, and energy nexus.
Department of Agronomy The University of Haripur Haripur 22620 Pakistan
Department of Botany Hindu College Moradabad Moradabad Uttar Pradesh 244001 India
Sinarmas Forestry Corporate Research and Development Perawang 28772 Indonesia
Zobrazit více v PubMed
Ramakrishna-Parama VR. Need for sustained nutrient cycling and management—issues and responses. J. Indian Soc. Soil Sci. 2014;62:S86–S94.
Priyadarshini P, Abhilash PC. Policy recommendations for enabling transition towards sustainable agriculture in India. Land Use Policy. 2020;96:104718. doi: 10.1016/j.landusepol.2020.104718. DOI
Sarkar D, Rakshit A. Safeguarding the fragile rice–wheat ecosystem of the Indo-Gangetic Plains through bio-priming and bioaugmentation interventions. FEMS Microbiol. Ecol. 2020;96:fiaa221. doi: 10.1093/femsec/fiaa221. PubMed DOI
Meena SK, Rakshit A, Meena VS. Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatal. Agric. Biotechnol. 2016;6:68–75. doi: 10.1016/j.bcab.2016.02.010. DOI
Singh V, Upadhyay RS, Sarma BK, Singh HB. Trichoderma asperellum spore dose depended modulation of plant growth in vegetable crops. Microbiol. Res. 2016;193:74–86. doi: 10.1016/j.micres.2016.09.002. PubMed DOI
Chatterjee N, et al. On-farm seed priming interventions in agronomic crops. Acta Agric. Slov. 2018;111:715–735. doi: 10.14720/aas.2018.111.3.19. DOI
Yadav SK, et al. Co-inoculated biopriming with Trichoderma, Pseudomonas and Rhizobium improves crop growth in Cicer arietinum and Phaseolus vulgaris. Int. J. Agric. Environ. Biotechnol. 2013;6:255–259.
Meena SK, Rakshit A, Singh HB, Meena VS. Effect of nitrogen levels and seed bio-priming on root infection, growth and yield attributes of wheat in varied soil type. Biocatal. Agric. Biotechnol. 2017;12:172–178. doi: 10.1016/j.bcab.2017.10.006. DOI
Bottner P, Pansu M, Sallih Z. Modelling the effect of active roots on soil organic matter turnover. Plant Soil. 1999;216:15–25. doi: 10.1023/A:1004769317657. DOI
Buchenauer, H. Biological control of soil-borne diseases by rhizobacteria/Biologische Bekämpfung von bodenbürtigen Krankheiten durch Rhizobakterien. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal Plant Dis. Prot.105, 329–348 (1998).
Glick BR. Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo). 2012;2012:963401. PubMed PMC
Ahemad M, Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J. King Saud Univ. Sci.e. 2014;26:1–20. doi: 10.1016/j.jksus.2013.05.001. DOI
de Souza R, Ambrosini A, Passaglia LMP. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet. Mol. Biol. 2015;38:401–419. doi: 10.1590/S1415-475738420150053. PubMed DOI PMC
Sarkar D, Rakshit A, et al. Red cabbage as potential functional food in the present perspective. Int. J. Bioresour. Sci. 2017;4:7. doi: 10.5958/2454-9541.2017.00002.0. DOI
Rakshit, A. Impact assessment of bio priming mediated nutrient use efficiency for climate resilient agriculture. In Climate Change and Agriculture in India: Impact and Adaptation 57–68 (Springer, 2019).
Paungfoo-Lonhienne C, Redding M, Pratt C, Wang W. Plant growth promoting rhizobacteria increase the efficiency of fertilisers while reducing nitrogen loss. J. Environ. Manag. 2019;233:337–341. doi: 10.1016/j.jenvman.2018.12.052. PubMed DOI
Pereira SIA, Abreu D, Moreira H, Vega A, Castro PML. Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions. Heliyon. 2020;6:e05106. doi: 10.1016/j.heliyon.2020.e05106. PubMed DOI PMC
Yadav GS, et al. Energy budgeting for designing sustainable and environmentally clean/safer cropping systems for rainfed rice fallow lands in India. J. Clean. Prod. 2017;158:29–37. doi: 10.1016/j.jclepro.2017.04.170. DOI
Singh KP, Prakash V, Srinivas K, Srivastva AK. Effect of tillage management on energy-use efficiency and economics of soybean (Glycine max) based cropping systems under the rainfed conditions in North-West Himalayan Region. Soil Tillage Res. 2008;100:78–82. doi: 10.1016/j.still.2008.04.011. DOI
Tuti MD, et al. Energy budgeting of colocasia-based cropping systems in the Indian sub-Himalayas. Energy. 2012;45:986–993. doi: 10.1016/j.energy.2012.06.056. DOI
Mihov M, Tringovska I. Energy assessment of conventional and organic production of head cabbage. Bulg. J. Agric. Sci. 2012;18:320–324.
Pal S, Singh HB. Energy inputs and yield relationship in greenhouse okra production by bio-priming. Int. J. Agric. Environ. Biotechnol. 2018;11:741–746.
Mizgier P, et al. Characterization of phenolic compounds and antioxidant and anti-inflammatory properties of red cabbage and purple carrot extracts. J. Funct. Foods. 2016;21:133–146. doi: 10.1016/j.jff.2015.12.004. DOI
Sarkar, D. & Rakshit, A. Red cabbage as potential functional food in the present perspective. Int. J. Bioresour. Sci. 4, 7 (2017).
Narayanamma M, Chiranjeevi CH, Reddy IP, Ahmed SR. Integrated nutrient management in cauliflower (Brassica oleracea var botrytis L.) Veg Sci. 2005;32:62–64.
Chatterjee R, Choudhuri P, Thirumdasu RK. Uptake and availability of major nutrients in cabbage crop amended with organic and inorganic nutrient sources under Eastern Himalayan Region. J. Basic Appl. Res. Int. 2016;2:100–105.
Bhardwaj S, Kaushal R, Kaushal M, Bhardwaj KK. Integrated nutrient management for improved cauliflower yield and soil health. Int. J. Veg. Sci. 2018;24:29–42. doi: 10.1080/19315260.2017.1370762. DOI
Danish S, Zafar-Ul-Hye M, Hussain S, Riaz M, Qayyum MF. Mitigation of drought stress in maize through inoculation with drought tolerant ACC deaminase containing PGPR under axenic conditions. Pakistan J. Bot. 2020;52:49–60.
Danish S, Zafar-ul-Hye M, Mohsin F, Hussain M. ACC-deaminase producing plant growth promoting rhizobacteria and biochar mitigate adverse effects of drought stress on maize growth. PLoS ONE. 2020;15:e0230615. doi: 10.1371/journal.pone.0230615. PubMed DOI PMC
Zafar-Ul-Hye M, Danish S, Abbas M, Ahmad M, Munir TM. ACC deaminase producing PGPR Bacillus amyloliquefaciens and agrobacterium fabrum along with biochar improve wheat productivity under drought stress. Agronomy. 2019;9:343. doi: 10.3390/agronomy9070343. DOI
Danish S, et al. Drought stress alleviation by ACC deaminase producing achromobacter xylosoxidans and enterobacter cloacae, with and without timber waste biochar in maize. Sustainability. 2020;12:6286. doi: 10.3390/su12156286. DOI
Kaur G, Reddy MS. Role of phosphate-solubilizing bacteria in improving the soil fertility and crop productivity in organic farming. Arch. Agron. Soil Sci. 2014;60:549–564. doi: 10.1080/03650340.2013.817667. DOI
Basak N, et al. Impact of long-term application of organics, biological, and inorganic fertilizers on microbial activities in rice-based cropping system. Commun. Soil Sci. Plant Anal. 2017;48:2390–2401. doi: 10.1080/00103624.2017.1411502. DOI
Ranjit C, Bandhopadhyay S, Jana JC. Organic amendments influencing growth, head yield and nitrogen use efficiency in cabbage (Brassica oleracea var Capitata L.) Am. Int. J. Res. Formal Appl. Nat. Sci. 2014;5:90–95.
Visconti D, et al. Can Trichoderma-based biostimulants optimize N Use efficiency and stimulate growth of leafy vegetables in greenhouse intensive cropping systems? Agronomy. 2020;10:121. doi: 10.3390/agronomy10010121. DOI
Yaseen M, Malhi SS. Variation in yield, phosphorus uptake, and physiological efficiency of wheat genotypes at adequate and stress phosphorus levels in soil. Commun. Soil Sci. Plant Anal. 2009;40:3104–3120. doi: 10.1080/00103620903261643. DOI
Emami S, et al. Consortium of endophyte and rhizosphere phosphate solubilizing bacteria improves phosphorous use efficiency in wheat cultivars in phosphorus deficient soils. Rhizosphere. 2020;14:e100196. doi: 10.1016/j.rhisph.2020.100196. DOI
Khanghahi MY, Pirdashti H, Rahimian H, Nematzadeh G, Sepanlou MG. Potassium solubilising bacteria (KSB) isolated from rice paddy soil: from isolation, identification to K use efficiency. Symbiosis. 2018;76:13–23. doi: 10.1007/s13199-017-0533-0. DOI
Chatterjee R. Physiological attributes of cabbage (Brassica oleracea) as influenced by different sources of nutrients under eastern Himalayan region. Res. J. Agric. Sci. 2010;1:318–321.
Moyin-Jesu EI. Use of different organic fertilizers on soil fertility improvement, growth and head yield parameters of cabbage (Brassica oleraceae L) HortScience. 2015;4:291–298.
Mihov M, Antonova G, Masheva S, Yankova V, et al. Energy efficiency improvement of greenhouse tomato production by applying new biofertilizers. Bulg. J. Agric. Sci. 2010;16:454–458.
Munda S, et al. Inorganic phosphorus along with biofertilizers improves profitability and sustainability in soybean (Glycine max)–potato (Solanum tuberosum) cropping system. J. Saudi Soc. Agric. Sci. 2018;17:107–113.
Tahir FA, Ahamad N, Rasheed MK, Danish S. Effect of various application rate of zinc fertilizer with and without fruit waste biochar on the growth and Zn uptake in maize. Int. J. Biosci. 2018;13:159–166. doi: 10.12692/ijb/13.1.159-166. DOI
Ahmed N, et al. Rhizobacteria and silicon synergy modulates the growth, nutrition and yield of mungbean under saline soil. Pak. J. Bot. 2020;52:9–15.
Adnan M, et al. Coupling phosphate-solubilizing bacteria with phosphorus supplements improve maize phosphorus acquisition and growth under lime induced salinity stress. Plants. 2020;9:900. doi: 10.3390/plants9070900. PubMed DOI PMC
Rafiullah, et al. Phosphorus nutrient management through synchronization of application methods and rates in wheat and maize crops. Plants. 2020;9:1389. doi: 10.3390/plants9101389. PubMed DOI PMC
Zafar-ul-Hye M, Hussain NM, Danish S, Aslam U, Zahir ZA. Multi-Strain bacterial inoculation of enterobacter cloacae, serratia ficaria and burkholderia phytofirmans with fertilizers for enhancing resistance in wheat against salinity stress. Pak. J. Bot. 2019;51:1839–1846. doi: 10.30848/PJB2019-5(24). DOI
Zafar-ul-Hye, M., Zahra, M. B., Danish, S. & Abbas, M. Multi-strain inoculation with PGPR producing ACC deaminase is more effective than single-strain inoculation to improve wheat (Triticum aestivum) growth and yield. Phyton-Int. J. Exp. Bot.89, 405–413 (2020).
Thakur J, Kumar P, Mohit Studies on conjoint application of nutrient sources and PGPR on growth, yield, quality, and economics of cauliflower (Brassica oleracea var botrytis L) J. Plant Nutr. 2018;41:1862–1867. doi: 10.1080/01904167.2018.1463382. DOI
Kamal K, Devi S, Prasad VM. Effect of microbial inoculants and chemical fertilizers on yield and economics of hybrid cabbage (Brassica oleracea var. capitata) Asian J. Hortic. 2016;11:338–343. doi: 10.15740/HAS/TAJH/11.2/338-343. DOI
Gee, G. W. & Bauder, J. W. Particle-size analysis. In Methods of soil analysis. Part 1. Physical and mineralogical methods 383–411 (1986). 10.2136/sssabookser5.1.2ed.c15.
Blake, G. R. Bulk Density. in Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling, 9.1 (eds. Black, C. A. & Evans, D. D.) 374–390 (American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 1965).
Klute, A. Water Capacity. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling, 9.1 (eds. Black, C. A. & Evans, D. D.) 273–278 (American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 1965).
Page, A. L., Miller, R. H. & Keeny, D. R. Soil pH and lime requirement. In Methods of Soil Analysis 199–208 (American Society of Agronomy, 1982).
Rhoades, J. D. Salinity: Electrical Conductivity and Total Dissolved Solids. In Methods of Soil Analysis, Part 3, Chemical Methods (eds. D.L. Sparks et al.) vol. 5 417–435 (Soil Science Society of America, 1996).
Hesse PR. A textbook of soil Chemical Analysis. New York: Cambridge University Press; 1971.
Chapman HD. Cation-exchange capacity. In: Norman AG, editor. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 92. Wiley; 1965. pp. 891–901.
Walkley A, Black IA. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934;37:29–38. doi: 10.1097/00010694-193401000-00003. DOI
Subbiah, B. V. & Asija, G. L. A rapid procedure for the determination of available nitrogen in soils. Curr. Sci.25, 259–260.
Olsen, S., Cole, C., Watanabe, F. & Dean, L. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. No. 939. (United States Department of Agriculture, Washington, D.C. 1954 ).
Pratt PF. Potassium. In: Norman AG, editor. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9.2. Wiley; 1965. pp. 1022–1030.
Sarkar D, Rakshit A. Bio-priming in combination with mineral fertilizer improves nutritional quality and yield of red cabbage under Middle Gangetic Plains India. Sci. Hortic. (Amsterdam) 2021;283:110. doi: 10.1016/j.scienta.2021.110075. DOI
Jain A, Singh A, Singh S, Singh HB. Phenols enhancement effect of microbial consortium in pea plants restrains Sclerotinia sclerotiorum. Biol. Control. 2015;89:23–32. doi: 10.1016/j.biocontrol.2015.04.013. DOI
Donald AH, Miller RO. Determination of total nitrogen in plant tissue. In: Kalra Y, editor. Handbook of Reference Methods for Plant Analysis. CRC Press; 1998. pp. 75–83.
Miller O. Nitric-perchloric acid wet digestion in an open vessel. In: Kalra Y, editor. Reference Methods for Plant Analysis. New York: CRC Press; 1998. pp. 57–62.
Donald AH, Hanson D. Determination of potassium and sodium by flame emmision spectrophotometery. In: Kalra Y, editor. Handbook of Reference Methods for Plant Analysis. CRC Press; 1998. pp. 153–155.
Steel RG, Torrie JH, Dickey DA. Principles and Procedures of Statistics: A Biometrical Approach. McGraw Hill Book International Co.; 1997.
S.P.S.S. SPSS Statistics for Windows, Version 20.0. (SPSS Inc).