Biochar and urease inhibitor mitigate NH3 and N2O emissions and improve wheat yield in a urea fertilized alkaline soil

. 2021 Aug 31 ; 11 (1) : 17413. [epub] 20210831

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34465833
Odkazy

PubMed 34465833
PubMed Central PMC8408238
DOI 10.1038/s41598-021-96771-0
PII: 10.1038/s41598-021-96771-0
Knihovny.cz E-zdroje

In this study, we explored the role of biochar (BC) and/or urease inhibitor (UI) in mitigating ammonia (NH3) and nitrous oxide (N2O) discharge from urea fertilized wheat cultivated fields in Pakistan (34.01°N, 71.71°E). The experiment included five treatments [control, urea (150 kg N ha-1), BC (10 Mg ha-1), urea + BC and urea + BC + UI (1 L ton-1)], which were all repeated four times and were carried out in a randomized complete block design. Urea supplementation along with BC and BC + UI reduced soil NH3 emissions by 27% and 69%, respectively, compared to sole urea application. Nitrous oxide emissions from urea fertilized plots were also reduced by 24% and 53% applying BC and BC + UI, respectively, compared to urea alone. Application of BC with urea improved the grain yield, shoot biomass, and total N uptake of wheat by 13%, 24%, and 12%, respectively, compared to urea alone. Moreover, UI further promoted biomass and grain yield, and N assimilation in wheat by 38%, 22% and 27%, respectively, over sole urea application. In conclusion, application of BC and/or UI can mitigate NH3 and N2O emissions from urea fertilized soil, improve N use efficiency (NUE) and overall crop productivity.

Crop Science Institute of Crop Science and Resources Conservation University of Bonn Bonn Germany

Department of Agricultural Chemistry The University of Agriculture Peshawar Pakistan

Department of Agriculture University of Swabi Swabi Khyber Pakhtunkhwa Pakistan

Department of Agronomy MNS University of Agriculture Multan Multan Pakistan

Department of Agronomy The University of Haripur Haripur Khyber Pakhtunkhwa 22620 Pakistan

Department of Botany Hindu College Moradabad Moradabad 244001 India

Department of Geology and Pedology Faculty of Forestry and Wood Technology Mendel University in Brno Zemedelska1 61300 Brno Czech Republic

Department of Horticulture Northeast Agricultural University Harbin China

Department of Plant Pathology The University of Agriculture Peshawar Pakistan

Department of Plant Protection The University of Agriculture Peshawar Pakistan

Department of Soil and Environmental Science The University of Agriculture Peshawar KPK Pakistan

Department of Soil Science Bangladesh Agricultural University Mymensingh 2202 Bangladesh

Department of Soil Science Faculty of Agricultural Sciences and Technology Bahauddin Zakariya University Multan Punjab 60800 Pakistan

Faculty of Tropical AgriSciences Czech University of Life Sciences Prague Prague Czech Republic

Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource College of Tropical Crops Hainan University Haikou 570228 Hainan China

Institute of Biotechnology and Genetic Engineering The University of Agriculture Peshawar Pakistan

Process and Environmental Technology Lab Department of Chemical Engineering KU Leuven Leuven Belgium

Zobrazit více v PubMed

Battaglia ML, Lee C, Thomason W. Corn yield components and yield responses to defoliation at different row widths. Agron. J. 2018;110:210–225. doi: 10.2134/agronj2017.06.0322. DOI

Liu XY, et al. Nitrate is an important nitrogen source for Arctic tundra plants. Proc. Natl. Acad. Sci. 2018;115:3398–3403. doi: 10.1073/pnas.1715382115. PubMed DOI PMC

Kumar P, et al. Impacts of nitrogen fertilization rate and landscape position on select soil properties in switchgrass field at four sites in the USA. CATENA. 2019;180:183–193. doi: 10.1016/j.catena.2019.04.028. DOI

Diatta AA, et al. Assessment of nitrogen fixation by mungbean genotypes in different soil textures using 15N natural abundance method. J. Soil Sci. Plant Nutr. 2020 doi: 10.1007/s42729-020-00290-2. DOI

Müller C, Laughlin RJ, Spott O, Rütting T. Quantification of N2O emission pathways via a 15N tracing model. Soil Biol. Biochem. 2014;72:44–54. doi: 10.1016/j.soilbio.2014.01.013. DOI

Yi Q, et al. Effects of nitrogen application rate, nitrogen synergist and biochar on nitrous oxide emissions from vegetable field in south China. PLoS ONE. 2017;12:e0175325. doi: 10.1371/journal.pone.0175325. PubMed DOI PMC

Adnan M, et al. Coupling phosphate-solubilizing bacteria with phosphorus supplements improve maize phosphorus acquisition and growth under lime induced salinity stress. Plants. 2020;9:900. doi: 10.3390/plants9070900. PubMed DOI PMC

Dawar K, et al. Effects of the nitrification inhibitor nitrapyrin and the plant growth regulator gibberellic acid on yield-scale nitrous oxide emission in maize fields under hot climatic conditions. Pedosphere. 2021;31:323–331. doi: 10.1016/S1002-0160(20)60076-5. DOI

Li H, Liang X, Chen Y, Tian G, Zhang Z. Ammonia volatilization from urea in rice fields with zero-drainage water management. Agric. Water Manag. 2008;95:887–894. doi: 10.1016/j.agwat.2007.05.016. DOI

Dawar K, Zaman M, Rowarth JS, Blennerhassett J, Turnbull MH. Urease inhibitor reduces N losses and improves plant-bioavailability of urea applied in fine particle and granular forms under field conditions. Agric. Ecosyst. Environ. 2011;144:41–50. doi: 10.1016/j.agee.2011.08.007. DOI

Galloway JN, et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science. 2008;320:889–892. doi: 10.1126/science.1136674. PubMed DOI

Schlesinger WH. On the fate of anthropogenic nitrogen. Proc. Natl. Acad. Sci. USA. 2009;106:203–208. doi: 10.1073/pnas.0810193105. PubMed DOI PMC

Dawar K, et al. The effect of biochar and nitrogen inhibitor on ammonia and nitrous oxide emissions and wheat productivity. J. Plant Growth Regul. 2021 doi: 10.1007/s00344-020-10283-1. DOI

Finlayson-Pitts BJ, Pitts JN., Jr . Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. Academic Press Inc. Elsevier; 1999.

Saylor R, Myles L, Sibble D, Caldwell J, Xing J. Recent trends in gas-phase ammonia and PM2.5 ammonium in the Southeast United States. J. Air Waste Manag. Assoc. 2015;65:347–357. doi: 10.1080/10962247.2014.992554. PubMed DOI

Chow JC, et al. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006;56:1368–1380. doi: 10.1080/10473289.2006.10464545. PubMed DOI

Battye WH, et al. Evaluating ammonia (NH3) predictions in the NOAA National Air Quality Forecast Capability (NAQFC) using in situ aircraft, ground-level, and satellite measurements from the DISCOVER-AQ Colorado campaign. Atmos. Environ. 2016;140:342–351. doi: 10.1016/j.atmosenv.2016.06.021. DOI

Bray CD, et al. Evaluating ammonia (NH3) predictions in the NOAA National Air Quality Forecast Capability (NAQFC) using in-situ aircraft and satellite measurements from the CalNex2010 campaign. Atmos. Environ. 2017;163:65–76. doi: 10.1016/j.atmosenv.2017.05.032. DOI

Galloway JN, Leach AM, Bleeker A, Erisman JW. A chronology of human understanding of the nitrogen cycle. Philos. Trans. R. Soc. B Biol. Sci. 2013;368:20130120. doi: 10.1098/rstb.2013.0120. PubMed DOI PMC

Pinder GF, Gray WG. Essentials of Multiphase Flow and Transport in Porous Media. Wiley; 2008.

Megaritis AG, Fountoukis C, Charalampidis PE, Pilinis C, Pandis SN. Response of fine particulate matter concentrations to changes of emissions and temperature in Europe. Atmos. Chem. Phys. 2013;13:3423–3443. doi: 10.5194/acp-13-3423-2013. DOI

Beusen AHW, Bouwman AF, Heuberger PSC, Van Drecht G, Van Der Hoek KW. Bottom-up uncertainty estimates of global ammonia emissions from global agricultural production systems. Atmos. Environ. 2008;42:6067–6077. doi: 10.1016/j.atmosenv.2008.03.044. DOI

Del Grosso SJ, Wirth T, Ogle SM, Parton WJ. Estimating agricultural nitrous oxide emissions. EOS Trans. Am. Geophys. Union. 2008;89:529. doi: 10.1029/2008EO510001. DOI

IPCC (Intergovernmental Panel on Climate Change). Climate change 2013: The physical science basis. In Working Group I contribution to the IPCC Fifth Assessment Report. (Cambridge Univ. Press, 2014) 10.1017/cbo9781107415324.023.

Fowler D, et al. Atmospheric composition change: Ecosystems–atmosphere interactions. Atmos. Environ. 2009;43:5193–5267. doi: 10.1016/j.atmosenv.2009.07.068. DOI

Wrage N, Velthof GL, Van Beusichem ML, Oenema O. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem. 2001;33:1723–1732. doi: 10.1016/S0038-0717(01)00096-7. DOI

Saggar S, et al. Denitrification and N2O:N2 production in temperate grasslands: Processes, measurements, modelling and mitigating negative impacts. Sci. Total Environ. 2013;465:173–195. doi: 10.1016/j.scitotenv.2012.11.050. PubMed DOI

Zhu T, et al. Nitrogen mineralization, immobilization turnover, heterotrophic nitrification, and microbial groups in acid forest soils of subtropical China. Biol. Fertil. soils. 2013;49:323–331. doi: 10.1007/s00374-012-0725-y. DOI

Mueller ND, et al. Closing yield gaps through nutrient and water management. Nature. 2012;490:254–257. doi: 10.1038/nature11420. PubMed DOI

Wrage-Mönnig N, et al. The role of nitrifier denitrification in the production of nitrous oxide revisited. Soil Biol. Biochem. 2018;123:A3–A16. doi: 10.1016/j.soilbio.2018.03.020. DOI

Hayatsu M, Tago K, Saito M. Various players in the nitrogen cycle: Diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci. Plant Nutr. 2008;54:33–45. doi: 10.1111/j.1747-0765.2007.00195.x. DOI

Chen L, Zheng H, Wang ZY. The formation of toxic compounds during biochar production. Appl. Mech. Mater. 2013;361:867–870. doi: 10.4028/www.scientific.net/AMM.361-363.867. DOI

Zhang M, et al. A 2-yr field assessment of the effects of chemical and biological nitrification inhibitors on nitrous oxide emissions and nitrogen use efficiency in an intensively managed vegetable cropping system. Agric. Ecosyst. Environ. 2015;201:43–50. doi: 10.1016/j.agee.2014.12.003. DOI

Sanz-Cobena A, Sánchez-Martín L, García-Torres VA. Gaseous emissions of N2O and NO and NO3− leaching from urea applied with urease and nitrification inhibitors to a maize (Zea mays) crop. Agric. Ecosyst. Environ. 2012;149:64–73. doi: 10.1016/j.agee.2011.12.016. DOI

Sanz-Cobena A, et al. Yield-scaled mitigation of ammonia emission from N fertilization: The Spanish case. Environ. Res. Lett. 2014;9:125005. doi: 10.1088/1748-9326/9/12/125005. DOI

He T, et al. Effects of application of inhibitors and biochar to fertilizer on gaseous nitrogen emissions from an intensively managed wheat field. Sci. Total Environ. 2018;628–629:121–130. doi: 10.1016/j.scitotenv.2018.02.048. PubMed DOI

Battaglia, M., Groover, G. & Thomason, W. Harvesting and nutrient replacement costs associated with corn stover removal in Virginia. Virginia Cooperative Extension Publication CSES-229NPhttps://pubs.ext.vt.edu/content/dam/pubs_ext_vt_edu/CSES/cses-229/CSES-229.pdf (2018).

Battaglia M, et al. The broad impacts of corn stover and wheat straw removal for biofuel production on crop productivity, soil health and greenhouse gas emissions: A review. GCB Bioenergy. 2021;13(1):45–57. doi: 10.1111/gcbb.12774. DOI

Saarnio S, Heimonen K, Kettunen R. Biochar addition indirectly affects N2O emissions via soil moisture and plant N uptake. Soil Biol. Biochem. 2013;58:99–106. doi: 10.1016/j.soilbio.2012.10.035. DOI

Malińska K, Zabochnicka-Świątek M, Dach J. Effects of biochar amendment on ammonia emission during composting of sewage sludge. Ecol. Eng. 2014;71:474–478. doi: 10.1016/j.ecoleng.2014.07.012. DOI

Lehmann J, Gaunt J, Rondon M. Bio-char sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strateg. Glob. Chang. 2006;11:395–419. doi: 10.1007/s11027-005-9006-5. DOI

Scheer C, Grace PR, Rowlings DW, Kimber S, Van Zwieten L. Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia. Plant Soil. 2011;345:47–58. doi: 10.1007/s11104-011-0759-1. DOI

Taghizadeh-Toosi A, Clough TJ, Sherlock RR, Condron LM. Biochar adsorbed ammonia is bioavailable. Plant Soil. 2012;350:57–69. doi: 10.1007/s11104-011-0870-3. DOI

Ameloot N, et al. Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biol. Biochem. 2013;57:401–410. doi: 10.1016/j.soilbio.2012.10.025. DOI

Nelissen V, Saha BK, Ruysschaert G, Boeckx P. Effect of different biochar and fertilizer types on N2O and NO emissions. Soil Biol. Biochem. 2014;70:244–255. doi: 10.1016/j.soilbio.2013.12.026. DOI

Sánchez-García M, Roig A, Sánchez-Monedero MA, Cayuela ML. Biochar increases soil N2O emissions produced by nitrification-mediated pathways. Front. Environ. Sci. 2014;2:25.

Sun H, Zhang H, Powlson D, Min J, Shi W. Rice production, nitrous oxide emission and ammonia volatilization as impacted by the nitrification inhibitor 2-chloro-6-(trichloromethyl)-pyridine. Food Crop. Res. 2015;173:1–7. doi: 10.1016/j.fcr.2014.12.012. DOI

Sun H, Lu H, Chu L, Shao H, Shi W. Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. Sci. Total Environ. 2017;575:820–825. doi: 10.1016/j.scitotenv.2016.09.137. PubMed DOI

Idrees M, et al. Animal manure-derived biochars produced via fast pyrolysis for the removal of divalent copper from aqueous media. J. Environ. Manag. 2018;213:109–118. doi: 10.1016/j.jenvman.2018.02.003. PubMed DOI

Diatta AA, Fike JH, Battaglia ML, Galbraith JM, Baig MB. Effects of biochar on soil fertility and crop productivity in arid regions: A review. Arab. J. Geosci. 2020;13:595. doi: 10.1007/s12517-020-05586-2. DOI

Joseph S, et al. Shifting paradigms: Development of high-efficiency biochar fertilizers based on nano-structures and soluble components. Carbon Manag. 2013;4:323–343. doi: 10.4155/cmt.13.23. DOI

Zheng J, et al. Biochar compound fertilizer increases nitrogen productivity and economic benefits but decreases carbon emission of maize production. Agric. Ecosyst. Environ. 2017;241:70–78. doi: 10.1016/j.agee.2017.02.034. DOI

Zhou Z, et al. Biodegradation of a biochar-modified waterborne polyacrylate membrane coating for controlled-release fertilizer and its effects on soil bacterial community profiles. Environ. Sci. Pollut. Res. 2015;22:8672–8682. doi: 10.1007/s11356-014-4040-z. PubMed DOI

Wen P, et al. Microwave-assisted synthesis of a novel biochar-based slow-release nitrogen fertilizer with enhanced water-retention capacity. ACS Sustain. Chem. Eng. 2017;5:7374–7382. doi: 10.1021/acssuschemeng.7b01721. DOI

El Sharkawi HM, Tojo S, Chosa T, Malhat FM, Youssef AM. Biochar-ammonium phosphate as an uncoated-slow release fertilizer in sandy soil. Biomass Bioenergy. 2018;117:154–160. doi: 10.1016/j.biombioe.2018.07.007. DOI

Chunxue YAO, et al. Developing more effective enhanced biochar fertilisers for improvement of pepper yield and quality. Pedosphere. 2015;25:703–712. doi: 10.1016/S1002-0160(15)30051-5. DOI

Cole DP, Smith EA, Lee YJ. High-resolution mass spectrometric characterization of molecules on biochar from pyrolysis and gasification of switchgrass. Energy Fuels. 2012;26:3803–3809. doi: 10.1021/ef300356u. DOI

Clough T, Condron L, Kammann C, Müller C. A review of biochar and soil nitrogen dynamics. Agronomy. 2013;3:275–293. doi: 10.3390/agronomy3020275. DOI

Nelissen V, Rütting T, Huygens D, Ruysschaert G, Boeckx P. Temporal evolution of biochar’s impact on soil nitrogen processes—a 15N tracing study. Gcb Bioenergy. 2015;7:635–645. doi: 10.1111/gcbb.12156. DOI

Mandal S, et al. Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat. Chemosphere. 2016;142:120–127. doi: 10.1016/j.chemosphere.2015.04.086. PubMed DOI

Chen W, et al. Effects of different types of biochar on methane and ammonia mitigation during layer manure composting. Waste Manag. 2017;61:506–515. doi: 10.1016/j.wasman.2017.01.014. PubMed DOI

Thies, J. & Rillig, M. C. Characteristics of biochar: Biological properties. In Biochar for Environmental Management: Science and Technology (2009).

Thangarajan R, et al. The potential value of biochar in the mitigation of gaseous emission of nitrogen. Sci. Total Environ. 2018;612:257–268. doi: 10.1016/j.scitotenv.2017.08.242. PubMed DOI

Agyarko-Mintah E, et al. Biochar lowers ammonia emission and improves nitrogen retention in poultry litter composting. Waste Manag. 2017;61:129–137. doi: 10.1016/j.wasman.2016.12.009. PubMed DOI

Feng Y, et al. Biochar applied at an appropriate rate can avoid increasing NH3 volatilization dramatically in rice paddy soil. Chemosphere. 2017;168:1277–1284. doi: 10.1016/j.chemosphere.2016.11.151. PubMed DOI

Wang S, et al. Different effects of biochar and a nitrification inhibitor application on paddy soil denitrification: A field experiment over two consecutive rice-growing seasons. Sci. Total Environ. 2017;593–594:347–356. PubMed

Abalos D, Sanz-Cobena A, Misselbrook T, Vallejo A. Effectiveness of urease inhibition on the abatement of ammonia, nitrous oxide and nitric oxide emissions in a non-irrigated Mediterranean barley field. Chemosphere. 2012;89:310–318. doi: 10.1016/j.chemosphere.2012.04.043. PubMed DOI

Cantarella H, Otto R, Soares JR, de Brito Silva AG. Agronomic efficiency of NBPT as a urease inhibitor: A review. J. Adv. Res. 2018;13:19–27. doi: 10.1016/j.jare.2018.05.008. PubMed DOI PMC

Mira AB, et al. Optimizing urease inhibitor usage to reduce ammonia emission following urea application over crop residues. Agric. Ecosyst. Environ. 2017;248:105–112. doi: 10.1016/j.agee.2017.07.032. DOI

Li Q, et al. Effect of a new urease inhibitor on ammonia volatilization and nitrogen utilization in wheat in north and northwest China. Food Crop. Res. 2015;175:96–105. doi: 10.1016/j.fcr.2015.02.005. DOI

Marcinkowski T, Kierończyk M. Effectiveness of urease inhibitor NBPT in mitigation ammonia emission from urea and urea ammonium nitrate solutions (UAN) applied in mineral fertilization of plants. J. Civil. Eng. Environ. Architect. 2015;62:271–279. doi: 10.7862/rb.2015.112. DOI

Engel RE, Williams E, Wallander R, Hilmer J. Apparent persistence of N-(n-butyl) thiophosphoric triamide is greater in alkaline soils. Soil Sci. Soc. Am. J. 2013;77:1424–1429. doi: 10.2136/sssaj2012.0380. DOI

Dawar K, Zaman M, Rowarth JS, Blennerhassett J, Turnbull MH. Urea hydrolysis and lateral and vertical movement in the soil: Effects of urease inhibitor and irrigation. Biol. Fertil. Soils. 2011;47:139–146. doi: 10.1007/s00374-010-0515-3. DOI

Schirrmann, M. et al. Biochar reduces N2O emissions from soils: A meta-analysis. in EGU General Assembly Conference Abstracts 8265 (2017).

Case SDC, McNamara NP, Reay DS, Whitaker J. Can biochar reduce soil greenhouse gas emissions from a Miscanthus bioenergy crop? GCB Bioenergy. 2014;6:76–89. doi: 10.1111/gcbb.12052. DOI

Sharma, S. P. Biochar for carbon sequestration. In Omics Technologies and Bio-Engineering 365–385 10.1016/b978-0-12-815870-8.00020-6 (2018).

Kammann C, Ratering S, Eckhard C, Müller C. Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils. J. Environ. Qual. 2012;41:1052. doi: 10.2134/jeq2011.0132. PubMed DOI

Müller C, Sherlock RR. Nitrous oxide emissions from temperate grassland ecosystems in the Northern and Southern Hemispheres. Glob. Biogeochem. Cycles. 2004;18:GB1045.

Liu S, et al. A meta-analysis of fertilizer-induced soil NO and combined NO+ N2O emissions. Glob. Chang. Biol. 2017;23:2520–2532. doi: 10.1111/gcb.13485. PubMed DOI

Niu Y, et al. Yield-scaled N2O emissions were effectively reduced by biochar amendment of sandy loam soil under maize-wheat rotation in the North China Plain. Atmos. Environ. 2017;170:58–70. doi: 10.1016/j.atmosenv.2017.09.050. DOI

Zhang W, et al. Effect of biochar on root morphological and physiological characteristics and yield in rice. Acta Agron. Sin. 2013;39:1445–1451. doi: 10.3724/SP.J.1006.2013.01445. DOI

Järveoja J, et al. Impact of water table level on annual carbon and greenhouse gas balances of a restored peat extraction area. Biogeosciences. 2016;13:2637–2651. doi: 10.5194/bg-13-2637-2016. DOI

Araújo EDS, et al. Calibration of a semi-opened static chamber for the quantification of volatilized ammonia from soil. Pesqui. Agropecuária Bras. 2009;44:769–776. doi: 10.1590/S0100-204X2009000700018. DOI

Jantalia CP, et al. Nitrogen source effects on ammonia volatilization as measured with semi-static chambers. Agron. J. 2012;104:1595–1603. doi: 10.2134/agronj2012.0210. DOI

Li B, Fan CH, Xiong ZQ, Li QL, Zhang M. The combined effects of nitrification inhibitor and biochar incorporation on yield-scaled N2O emissions from an intensively managed vegetable field in southeastern China. Biogeosciences. 2015;12:2003–2017. doi: 10.5194/bg-12-2003-2015. DOI

Keeney, D. R. & Nelson, D. W. Nitrogen-inorganic forms. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9.2.2 (ed Page, A. L.) Vol. 9 643–698 (American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 1983).

Steel RG, Torrie JH, Dickey DA. Principles and Procedures of Statistics: A Biometrical Approach. McGraw Hill Book International Co.; 1997.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...